Synthetic aperture radar(SAR)aboard SEASAT was first launched in 1978.At the beginning of the 21st century,the Chinese remote sensing community recognized the urgent need to develop domestic SAR capabilities.Unlike sc...Synthetic aperture radar(SAR)aboard SEASAT was first launched in 1978.At the beginning of the 21st century,the Chinese remote sensing community recognized the urgent need to develop domestic SAR capabilities.Unlike scatterometers and al-timeters,space-borne SAR offers high-resolution images of the ocean,regardless of weather conditions or time of day.SAR imagery provides rich information about the sea surface,capturing complicated dynamic processes in the upper layers of the ocean,particular-ly in relation to tropical cyclones.Over the past four decades,the advantages of SAR have been increasingly recognized,leading to notable marine applications,especially in the development of algorithms for retrieving wind and wave data from SAR images.This study reviews the history,progress,and future outlook of SAR-based monitoring of sea surface wind and waves.In particular,the ap-plicability of various SAR wind and wave algorithms is systematically investigated,with a particular focus on their performance un-der extreme sea conditions.展开更多
The intrinsic high magnetocrystalline anisotropy equivalent field can help the hexaferrites break through Snoek’s limit and increase the resonance frequency.This is advantageous for microwave absorption applications ...The intrinsic high magnetocrystalline anisotropy equivalent field can help the hexaferrites break through Snoek’s limit and increase the resonance frequency.This is advantageous for microwave absorption applications in the mid to low-frequency range of gigahertz.In this study,we prepared Z-type Ba_(3)Co_(1.6−x)Zn_(x)Cu_(0.4)Fe_(24)O_(41)hexaferrites using the sol-gel auto-combustion method.By changing the ratio of Co and Zn ions,the magnetocrystalline anisotropy of ferrite is further ma-nipulated,resulting in significant changes in their magnetic resonance frequency and intensity.Ba_(3)Zn_(1.6)Cu_(0.4)Fe_(24)O_(41)with high-frequency resonance achieved the lowest reflectivity of−72.18 dB at 15.56 GHz,while Ba_(3)Co_(1.5)Zn_(0.1)Cu_(0.4)Fe_(24)O_(41)with stronger loss obtained the widest bandwidth of 4.93 GHz(6.14-11.07).Additionally,we investigated surface wave suppression properties previously overlooked.Ba_(3)Co_(1.5)Zn_(0.1)Cu_(0.4)Fe_(24)O_(41)can achieve a larger attenuation at low frequency under low thickness,which has an excellent effect on reducing backscattering.This work provides a useful reference for the preparation and application of high-performance magnetic-loss materials.展开更多
On-chip devices for generating pre-designed vectorial optical fields(VOFs)under surface wave(SW)excitations are highly desired in integrated photonics.However,conventional devices are usually of large footprints,low e...On-chip devices for generating pre-designed vectorial optical fields(VOFs)under surface wave(SW)excitations are highly desired in integrated photonics.However,conventional devices are usually of large footprints,low efficiencies,and limited wave-control capabilities.Here,we present a generic approach to design ultra-compact on-chip devices that can efficiently generate pre-designed VOFs under SW excitations,and experimentally verify the concept in terahertz(THz)regime.We first describe how to design SW-excitation metasurfaces for generating circularly polarized complex beams,and experimentally demonstrate two meta-devices to realize directional emission and focusing of THz waves with oppo-site circular polarizations,respectively.We then establish a systematic approach to construct an integrated device via merging two carefully designed metasurfaces,which,under SW excitations,can separately produce pre-designed far-field patterns with different circular polarizations and generate target VOF based on their interference.As a proof of con-cept,we demonstrate experimentally a meta-device that can generate a radially polarized Bessel beam under SW excita-tion at~0.4 THz.Experimental results agree well with full-wave simulations,collectively verifying the performance of our device.Our study paves the road to realizing highly integrated on-chip functional THz devices,which may find many ap-plications in biological sensing,communications,displays,image multiplexing,and beyond.展开更多
We investigate the surface acoustic wave(SAW)modulation of the exchange bias field(H_(EB))in Py/IrMn films deposited on LiNbO_(3)substrates.We measured the anisotropic magnetoresistance(AMR)of the multilayer film when...We investigate the surface acoustic wave(SAW)modulation of the exchange bias field(H_(EB))in Py/IrMn films deposited on LiNbO_(3)substrates.We measured the anisotropic magnetoresistance(AMR)of the multilayer film when continuous SAW or pulsed SAW were applied and obtained H_(EB).With continuous SAW,the H_(EB)decreases continuously with power.While in the case of pulsed SAW,the H_(EB)first decreases and then stabilizes.Compared to pulsed SAW,the thermal effects from the continuous SAW lead to the continuous decrease of H_(EB)at higher SAW power,which is verified by the measurement of H_(EB)at different temperatures and input currents.Furthermore,our results show that pulsed SAW can effectively avoid thermal effects.The decrease of H_(EB)at smaller power in both continuous and pulsed SAW is mainly due to the SAW-induced dynamic strain field,which leads to a small perturbation in the magnetic moment of the FM layer.Combined with the AMR values measured at different angles during the saturation field,we believe that the SAW-induced dynamic strain field causes a 15°angle between the magnetic moment and the easy axis.Our experiments provide a different approach to manipulating H_(EB),opening up a potential avenue for future manipulation of antiferromagnetic moments.展开更多
Reconfigurable surface acoustic wave(SAW)phase shifters have garnered significant attention owing to their potential applications in emerging fields such as secure wireless communication,adaptable signal processing,an...Reconfigurable surface acoustic wave(SAW)phase shifters have garnered significant attention owing to their potential applications in emerging fields such as secure wireless communication,adaptable signal processing,and intelligent sensing systems.Among various modulation methods,employing gate voltage-controlled tuning methodologies that leverage acoustoelectric interactions has proven to be an efficient modulation approach that requires a low bias voltage.However,current acoustoelectric devices suffer from limited tunability,intricate heterogeneous structures,and complex manufacturing processes,all of which impede their practical applications.In this study,we present a novel material system for voltage-tunable SAW phase shifters.This system incorporates an atomic layer deposition ZnO thin-film transistors on LiNbO_(3)structure.This structure combines the benefits of LiNbO_(3)'s high electromechanical coupling coefficient(K^(2))and ZnO's superior conductivity adjustability.Besides,the device possesses a simplified structural configuration,which is easy to fabricate.Devices with different mesa lengths were fabricated and measured,and two of the different modes were compared.The results indicate that both the maximum phase shift and attenuation of the Rayleigh mode and longitudinal leaky SAW(LLSAW)increase proportionally with mesa length.Furthermore,LLSAW with larger effective electromechanical coupling coefficients(K_(eff)^(2))values exhibits greater phase velocity shifts and attenuation coefficients,with a maximum phase velocity tuning of 1.22%achieved.It is anticipated that the proposed devices will find utility in a variety of applications necessitating tunable acoustic components.展开更多
This study presents a numerical investigation of shallow water wave dynamics with particular emphasis on the role of surface tension.In the absence of surface tension,shallow water waves are primarily driven by gravit...This study presents a numerical investigation of shallow water wave dynamics with particular emphasis on the role of surface tension.In the absence of surface tension,shallow water waves are primarily driven by gravity and are well described by the classical Boussinesq equation,which incorporates fourth-order dispersion.Under this framework,solitary and shock waves arise through the balance of nonlinearity and gravity-induced dispersion,producing waveforms whose propagation speed,amplitude,and width depend largely on depth and initial disturbance.The resulting dynamics are comparatively smoother,with solitary waves maintaining coherent structures and shock waves displaying gradual transitions.When surface tension is incorporated,however,the dynamics become significantly richer.Surface tension introduces additional sixth-order dispersive terms into the governing equation,extending the classical model to the sixth-order Boussinesq equation.This higher-order dispersion modifies the balance between nonlinearity and dispersion,leading to sharper solitary wave profiles,altered shock structures,and a stronger sensitivity of wave stability to parametric variations.Surface tension effects also change the scaling laws for wave amplitude and velocity,producing conditions where solitary waves can narrow while maintaining large amplitudes,or where shock fronts steepen more rapidly compared to the tension-free case.These differences highlight how capillary forces,though often neglected in macroscopic wave studies,play a fundamental role in shaping dynamics at smaller scales or in systems with strong fluid–interface interactions.The analysis in this work is carried out using the Laplace-Adomian Decomposition Method(LADM),chosen for its efficiency and accuracy in solving high-order nonlinear partial differential equations.The numerical scheme successfully recovers both solitary and shock wave solutions under the sixth-order model,with error analysis confirming remarkably low numerical deviations.These results underscore the robustness of the method while demonstrating the profound contrast between shallow water wave dynamics without and with surface tension.展开更多
Internal solitary waves(ISW),characterized by large amplitude and long propagation distance,are widespread in global oceans.While remote sensing images have played an essential role in studying ISWs,they mainly exploi...Internal solitary waves(ISW),characterized by large amplitude and long propagation distance,are widespread in global oceans.While remote sensing images have played an essential role in studying ISWs,they mainly exploit two-dimensional image information.However,with the launch of the surface water ocean topography(SWOT)satellite on December 16,2022,a unique opportunity has emerged to capture wide-swath three-dimensional ISW-induced sea surface information.In this study,we examine ISWs in the Andaman Sea using data from the Ka-band Radar Interferometer(KaRIN),a crucial sensor onboard SWOT.KaRIN not only provides backscattering satellite images but also employs synthetic aperture interferometry techniques to retrieve wide-swath two-dimensional sea surface height measurements.Our observations in the Andaman Sea revealed the presence of ISWs characterized by dark-bright strips and surface elevation solitons.The surface soliton has an amplitude of 0.32 m,resulting in an estimation of ISW amplitude of approximately 60 m.In contrast to traditional two-dimensional satellite images or nadir-looking altimetry data,the SWOT mission’s capability to capture threedimensional sea surface information represents a significant advancement.This breakthrough holds substantial promise for ISW studies,particularly in the context of ISW amplitude inversion.展开更多
An efficient on-chip platform for generating customizable vectorial optical fields is crucial and highly-pursued.While on-chip metasurfaces have opened up avenues for multi-functional coupling from on-chip surface wav...An efficient on-chip platform for generating customizable vectorial optical fields is crucial and highly-pursued.While on-chip metasurfaces have opened up avenues for multi-functional coupling from on-chip surface wave to free-space propagating wave,they typically encounter the trade-off between extraction efficiency and wavefront accuracy.Recently,Prof.Lei Zhou’s group pioneered a strategy employing geometric metal meta-atoms with low polarization conversion ratio to overcome this bottleneck and experimentally demonstrated generation of pre-designed terahertz vector beams with efficiency exceeding 90%.This approach establishes a generic,high-performance framework for advanced on-chip meta-devices.展开更多
The stratospheric Arctic vortex(SAV)plays a critical role in forecasting cold winters in the northern midlatitudes.In this study,we systematically examined the responses of SAV intensity to regional sea surface temper...The stratospheric Arctic vortex(SAV)plays a critical role in forecasting cold winters in the northern midlatitudes.In this study,we systematically examined the responses of SAV intensity to regional sea surface temperature(SST)changes using idealized SST patch experiments with a climate model.Our findings reveal that the SAV intensity is most sensitive to SST variations in the tropics and northern midlatitudes during boreal winter(December-January-February).Specifically,warming in the tropical Pacific and Atlantic leads to a weakening of the SAV,while warming in the tropical Indian Ocean,northern midlatitude Atlantic,and northwestern Pacific strengthens the SAV.Notably,the most substantial SAV weakening(strengthening)is triggered by warming in the tropical western Pacific(tropical central Indian Ocean),with a maximum magnitude of approximately 2.23 K K^(-1)(-1.77 K K^(-1)).The SST warming in the tropics influences the tropical convections,which excite Rossby wave trains.These wave trains can interfere with the climatological waves in the mid-high latitudes,while the SST warming in the northern midlatitudes can influence tropospheric planetary wavenumber-1 and wavenumber-2 directly.The changes in tropospheric planetary waves modulate the upward propagation of wave activities and impact the SAV intensity.Additionally,the response of the SAV to tropical SST changes,especially over the Indian Ocean and subtropics,exhibits significant nonlinearity.展开更多
Due to the coexistence of compressibility,viscosity,and threedimensional effects,laminar flow is difficult to maintain for high-speed boundary layer on complex geometries.The unstable disturbance waves in the boundary...Due to the coexistence of compressibility,viscosity,and threedimensional effects,laminar flow is difficult to maintain for high-speed boundary layer on complex geometries.The unstable disturbance waves in the boundary layer are excited and rapidly increase during the receptivity process,so sufficiently large Reynolds stress causes the basic flow velocity profile to change,and the formation of turbulence is inevitable.展开更多
The successful launch of the Cyclone Global Navigation Satellite System(CYGNSS)has opened an unprecedented opportunity for rapid observation of Wind Speed(WS)across vast oceanic regions.However,considerable debate per...The successful launch of the Cyclone Global Navigation Satellite System(CYGNSS)has opened an unprecedented opportunity for rapid observation of Wind Speed(WS)across vast oceanic regions.However,considerable debate persists over the choice of input feature parameters for WS retrieval models based on CYGNSS data,and enhancing the accuracy of WS retrieval is a focal point of current research.To address the aforementioned problems,this study establishes a comprehensive CYGNSS wind speed retrieval feature parameter set through an in-depth analysis of CYGNSS data,thereby providing a reference and basis for selecting input features for WS retrieval models.Through this analysis,we identified three crucial observational features:the normalized bistatic radar cross section,leading edge slope,and signal-to-noise ratio.Using these features,we developed a WS retrieval model based on the geophysical model function for CYGNSS data.Furthermore,acknowledging the intrinsic interconnection between wind and wave dynamics,we incorporate significant wave height into the WS retrieval model to further improve the WS retrieval accuracy.Comparative assessments with datasets from the European Centre for Medium-Range Weather Forecasts,the Chinese-French Oceanography Satellite Scatterometer,and buoy WS data underscore the high accuracy of our model,demonstrating its utility as a valuable tool for research in ocean dynamics and marine environmental prediction.展开更多
The aim of our study was to examine the contribution of surface waves from WAVEWATCH-III(WW3)to the variation in sea surface temperature(SST)in the Arctic Ocean.The simulated significant wave height(SWH)were validated...The aim of our study was to examine the contribution of surface waves from WAVEWATCH-III(WW3)to the variation in sea surface temperature(SST)in the Arctic Ocean.The simulated significant wave height(SWH)were validated against the products from Haiyang-2B(HY-2B)in 2021,obtaining a root mean squared error(RMSE)of 0.45 with a correlation of 0.96 and scatter index of 0.18.The wave-induced effects,i.e.,wave breaking and mixing induced by nonbearing waves resulting in changes in radiation stress and Stokes drift,were calculated from WW3,ERA-5 wind,SST,and salinity data from the National Centers for Environmental Prediction and were taken as forcing fields in the Stony Brook Parallel Ocean Model.The results showed that an RMSE of 0.81℃ with wave-induced effects was less than the RMSE of 1.11℃ achieved without the wave term compared with the simulated SST with the measurements from Argos.Considering the four wave effects and sea ice freezing,the SST in the Arctic Ocean decreased by up to 1℃ in winter.Regression analysis revealed that the SWH was linear in SST(values without subtraction of waves)in summer and autumn,but this behavior was not observed in spring or winter due to the presence of sea ice.The interannual variation also presented a negative relationship between the difference in SST and SWH.展开更多
A trigger system is typically employed in active seismic testing to trigger and synchronize multichannel surface wave data acquisition.The effect of the trigger system on the dispersion image of surface waves is empir...A trigger system is typically employed in active seismic testing to trigger and synchronize multichannel surface wave data acquisition.The effect of the trigger system on the dispersion image of surface waves is empirically known to be negligible,however,theoretical explanation regarding the effect of the trigger system is insufficient.This study systematically examines the theory for surface wave dispersion analysis and proves that the effect of the trigger system on a dispersion image is negligible via a solid theoretical explanation.Subsequently,based on the new theoretical explanation,an alternative method that uses only the relative phase difference between sensors to extract dispersion characteristics with better conceptual clarity is proposed.Two active surface wave testing cases are considered to validate the theory and method.The results indicate that(1)an accurate trigger system is not necessary for surface wave data acquisition,and(2)it is unnecessary to assume that the impact point is the generation point of the surface waves for the experimental dispersion analysis.展开更多
Wave information retrieval from videos captured by a single camera has been increasingly applied in marine observation.However,when the camera observes ocean waves at low grazing angles,the accurate extraction of wave...Wave information retrieval from videos captured by a single camera has been increasingly applied in marine observation.However,when the camera observes ocean waves at low grazing angles,the accurate extraction of wave information from videos will be affected by the interference of the fine ripples on the sea surface.To solve this problem,this study develops a method for estimating peak wave periods from videos captured at low grazing angles.The method extracts the motion of the sea surface texture from the video and obtains the peak wave period via the spectral analysis.The calculation results captured from real-world videos are compared with those obtained from X-band radar inversion and tracking buoy movement,with maximum deviations of 8%and 14%,respectively.The analysis of the results shows that the peak wave period of the method has good stability.In addition,this paper uses a pinhole camera model to convert the displacement of the texture from pixel height to actual height and performs moving average filtering on the displacement of the texture,thus conducting a preliminary exploration of the inversion of significant wave height.This study helps to extend the application of sea surface videos.展开更多
In recent decades,the importance of surface acoustic waves,as a biocompatible tool to integrate with microfluidics,has been proven in various medical and biological applications.The numerical modeling of acoustic stre...In recent decades,the importance of surface acoustic waves,as a biocompatible tool to integrate with microfluidics,has been proven in various medical and biological applications.The numerical modeling of acoustic streaming caused by surface acoustic waves in microchannels requires the effect of viscosity to be considered in the equations which complicates the solution.In this paper,it is shown that the major contribution of viscosity and the horizontal component of actuation is concentrated in a narrow region alongside the actuation boundary.Since the inviscid equations are considerably easier to solve,a division into the viscous and inviscid domains would alleviate the computational load significantly.The particles'traces calculated by this approximation are excellently alongside their counterparts from the completely viscous model.It is also shown that the optimum thickness for the viscous strip is about 9-fold the acoustic boundary layer thickness for various flow patterns and amplitudes of actuation.展开更多
Surface wave inversion is a key step in the application of surface waves to soil velocity profiling.Currently,a common practice for the process of inversion is that the number of soil layers is assumed to be known bef...Surface wave inversion is a key step in the application of surface waves to soil velocity profiling.Currently,a common practice for the process of inversion is that the number of soil layers is assumed to be known before using heuristic search algorithms to compute the shear wave velocity profile or the number of soil layers is considered as an optimization variable.However,an improper selection of the number of layers may lead to an incorrect shear wave velocity profile.In this study,a deep learning and genetic algorithm hybrid learning procedure is proposed to perform the surface wave inversion without the need to assume the number of soil layers.First,a deep neural network is adapted to learn from a large number of synthetic dispersion curves for inferring the layer number.Then,the shear-wave velocity profile is determined by a genetic algorithm with the known layer number.By applying this procedure to both simulated and real-world cases,the results indicate that the proposed method is reliable and efficient for surface wave inversion.展开更多
Lithospheric structure beneath the northeastern Qinghai-Xizang Plateau is of vital significance for studying the geodynamic processes of crustal thickening and expansion of the Qinghai-Xizang Plateau. We conducted a j...Lithospheric structure beneath the northeastern Qinghai-Xizang Plateau is of vital significance for studying the geodynamic processes of crustal thickening and expansion of the Qinghai-Xizang Plateau. We conducted a joint inversion of receiver functions and surface wave dispersions with P-wave velocity constraints using data from the Chin Array Ⅱ temporary stations deployed across the Qinghai-Xizang Plateau. Prior to joint inversion, we applied the H-κ-c method(Li JT et al., 2019) to the receiver function data in order to correct for the back-azimuthal variations in the arrival times of Ps phases and crustal multiples caused by crustal anisotropy and dipping interfaces. High-resolution images of vS, crustal thickness, and vP/vSstructures in the Qinghai-Xizang Plateau were simultaneously derived from the joint inversion. The seismic images reveal that crustal thickness decreases outward from the Qinghai-Xizang Plateau. The stable interiors of the Ordos and Alxa blocks exhibited higher velocities and lower crustal vP/vSratios. While, lower velocities and higher vP/vSratios were observed beneath the Qilian Orogen and Songpan-Ganzi terrane(SPGZ), which are geologically active and mechanically weak, especially in the mid-lower crust.Delamination or thermal erosion of the lithosphere triggered by hot asthenospheric flow contributes to the observed uppermost mantle low-velocity zones(LVZs) in the SPGZ. The crustal thickness, vS, and vP/vSratios suggest that whole lithospheric shortening is a plausible mechanism for crustal thickening in the Qinghai-Xizang Plateau, supporting the idea of coupled lithospheric-scale deformation in this region.展开更多
Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims t...Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims to preliminarily analyze the detection capabilities of the Ka-band radar interferometer(KaRIn)and Nadir altimeter(NALT),which are carried out by SWOT for internal solitary waves(ISWs),and to gather other remote sensing images to validate SWOT observations.KaRIn effectively detects ISW surface features and generates surface height variation maps reflecting the modulations induced by ISWs.However,its swath width does not completely cover the entire wave packet,and the resolution of L2/L3 level products(about 2 km)cannot be used to identify ISWs with smaller wavelengths.Additionally,significant wave height(SWH)images exhibit blocky structures that are not suitable for ISW studies;sea surface height anomaly(SSHA)images display systematic leftright banding.We optimize this imbalance using detrending methods;however,more precise treatment should commence with L1-level data.Quantitative analysis based on L3-level SSHA data indicates that the average SSHA variation induced by ISWs ranges from 10 cm to 20 cm.NALTs disturbed by ISWs record unusually elevated SWH and SSHA values,rendering the data unsuitable for analysis and necessitating targeted corrections in future retracking algorithms.For the normalized radar cross section,Ku-band and four-parameter maximum likelihood estimation retracking demonstrated greater sensitivity to minor changes in the sea surface,making them more suitable for ISW detection.In conclusion,SWOT demonstrates outstanding capabilities in ISW detection,significantly advancing research on the modulation of the sea surface by ISWs and remote sensing imaging mechanisms.展开更多
The properties of Cylindrical Internal-Surface Acoustic Waves (CISAW) propagating on the inside surface of a high purity fused quartz tubular fiber are derived from basic principles using a variational method. The CIS...The properties of Cylindrical Internal-Surface Acoustic Waves (CISAW) propagating on the inside surface of a high purity fused quartz tubular fiber are derived from basic principles using a variational method. The CISAW consist of Energy Momentum Packets (EMP) moving in a looping motion. The EMP have mass and are affected by gravity similar to a pendulum bob. The effect of gravity on CISAW is much larger than the effect of gravity in a light wave. Therefore, one can build much smaller CISAW Interferometer Gravity wave Observatories (CIGO) than the present km size Light Interferometer Gravity wave Observatories (LIGO). An array of CIGO can be used to detect gravity wave images. Since the wavelength of gravity waves is much larger than the expected spacing between CIGO array elements this would result in sub-wavelength images. It would be interesting to determine what new discoveries could be made using such an array.展开更多
In this paper,we develop a new and effective multiple scale and strongly directional method for identifying and suppressing ground roll based on the second generation curvelet transform.Making the best use of the curv...In this paper,we develop a new and effective multiple scale and strongly directional method for identifying and suppressing ground roll based on the second generation curvelet transform.Making the best use of the curvelet transform's strong local directional characteristics,seismic frequency bands are transformed into scale data with and without noise.Since surface waves and primary reflected waves have less overlap in the curvelet domain,we can effectively identify and separate noise.Applying this method to prestack seismic data can successfully remove surface waves and,at the same time,protect the reflected events well,particularly in the low-frequency band.This indicates that the method described in this paper is an effective and amplitude-preserving method.展开更多
基金supported by the National Nat-ural Science Foundation of China(No.42376174)the Natural Science Foundation of Shanghai(No.23ZR 1426900).
文摘Synthetic aperture radar(SAR)aboard SEASAT was first launched in 1978.At the beginning of the 21st century,the Chinese remote sensing community recognized the urgent need to develop domestic SAR capabilities.Unlike scatterometers and al-timeters,space-borne SAR offers high-resolution images of the ocean,regardless of weather conditions or time of day.SAR imagery provides rich information about the sea surface,capturing complicated dynamic processes in the upper layers of the ocean,particular-ly in relation to tropical cyclones.Over the past four decades,the advantages of SAR have been increasingly recognized,leading to notable marine applications,especially in the development of algorithms for retrieving wind and wave data from SAR images.This study reviews the history,progress,and future outlook of SAR-based monitoring of sea surface wind and waves.In particular,the ap-plicability of various SAR wind and wave algorithms is systematically investigated,with a particular focus on their performance un-der extreme sea conditions.
基金supported by the National Natural Science Foundation of China(No.62371222)the Defense Industrial Technology Development Program(No.JCKY2023605C002)thePriority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)and the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory(No.ZHD202305).
文摘The intrinsic high magnetocrystalline anisotropy equivalent field can help the hexaferrites break through Snoek’s limit and increase the resonance frequency.This is advantageous for microwave absorption applications in the mid to low-frequency range of gigahertz.In this study,we prepared Z-type Ba_(3)Co_(1.6−x)Zn_(x)Cu_(0.4)Fe_(24)O_(41)hexaferrites using the sol-gel auto-combustion method.By changing the ratio of Co and Zn ions,the magnetocrystalline anisotropy of ferrite is further ma-nipulated,resulting in significant changes in their magnetic resonance frequency and intensity.Ba_(3)Zn_(1.6)Cu_(0.4)Fe_(24)O_(41)with high-frequency resonance achieved the lowest reflectivity of−72.18 dB at 15.56 GHz,while Ba_(3)Co_(1.5)Zn_(0.1)Cu_(0.4)Fe_(24)O_(41)with stronger loss obtained the widest bandwidth of 4.93 GHz(6.14-11.07).Additionally,we investigated surface wave suppression properties previously overlooked.Ba_(3)Co_(1.5)Zn_(0.1)Cu_(0.4)Fe_(24)O_(41)can achieve a larger attenuation at low frequency under low thickness,which has an excellent effect on reducing backscattering.This work provides a useful reference for the preparation and application of high-performance magnetic-loss materials.
基金the financial support from National Natural Science Foundation of China (Nos. 62192771, 12374344, 12221004)National Key Research and Development Program of China (2022YFA1204700, 2020YFA0710100)+1 种基金Natural Science Foundation of Shanghai (Grant No. 23dz2260100)China Postdoctoral Science Foundation 2021TQ0077
文摘On-chip devices for generating pre-designed vectorial optical fields(VOFs)under surface wave(SW)excitations are highly desired in integrated photonics.However,conventional devices are usually of large footprints,low efficiencies,and limited wave-control capabilities.Here,we present a generic approach to design ultra-compact on-chip devices that can efficiently generate pre-designed VOFs under SW excitations,and experimentally verify the concept in terahertz(THz)regime.We first describe how to design SW-excitation metasurfaces for generating circularly polarized complex beams,and experimentally demonstrate two meta-devices to realize directional emission and focusing of THz waves with oppo-site circular polarizations,respectively.We then establish a systematic approach to construct an integrated device via merging two carefully designed metasurfaces,which,under SW excitations,can separately produce pre-designed far-field patterns with different circular polarizations and generate target VOF based on their interference.As a proof of con-cept,we demonstrate experimentally a meta-device that can generate a radially polarized Bessel beam under SW excita-tion at~0.4 THz.Experimental results agree well with full-wave simulations,collectively verifying the performance of our device.Our study paves the road to realizing highly integrated on-chip functional THz devices,which may find many ap-plications in biological sensing,communications,displays,image multiplexing,and beyond.
基金supported by the National Natural Science Foundation of China(Grant Nos.12174166 and 12304144)the Fund from Beijing National Laboratory for Condensed Matter Physics(Grant No.2024BNLCMPKF013)the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2024-22).
文摘We investigate the surface acoustic wave(SAW)modulation of the exchange bias field(H_(EB))in Py/IrMn films deposited on LiNbO_(3)substrates.We measured the anisotropic magnetoresistance(AMR)of the multilayer film when continuous SAW or pulsed SAW were applied and obtained H_(EB).With continuous SAW,the H_(EB)decreases continuously with power.While in the case of pulsed SAW,the H_(EB)first decreases and then stabilizes.Compared to pulsed SAW,the thermal effects from the continuous SAW lead to the continuous decrease of H_(EB)at higher SAW power,which is verified by the measurement of H_(EB)at different temperatures and input currents.Furthermore,our results show that pulsed SAW can effectively avoid thermal effects.The decrease of H_(EB)at smaller power in both continuous and pulsed SAW is mainly due to the SAW-induced dynamic strain field,which leads to a small perturbation in the magnetic moment of the FM layer.Combined with the AMR values measured at different angles during the saturation field,we believe that the SAW-induced dynamic strain field causes a 15°angle between the magnetic moment and the easy axis.Our experiments provide a different approach to manipulating H_(EB),opening up a potential avenue for future manipulation of antiferromagnetic moments.
基金supported by National Natural Science Foundation of China(Grant Nos:62122004 and 62274082)Beijing Natural Science Foundation(Grant No.Z210006)+5 种基金Hong Kong Research Grant Council(Grant Nos.27206321,17205922,17212923,C1009-22G and T45-701/22-R)Shenzhen Science and Technology Innovation Commission(SGDX20220530111405040,JCYJ20220530115411025 and JCYJ20210324120409025)Research on mechanism of source/drain ohmic contact and the related Ga N p-FET(Grant No:2023A1515030034)Research on high-reliable Ga N power device and the related industrial power system(Grant No:HZQB-KCZYZ-2021052)supported by ACCESS-AI Chip Center for Emerging Smart Systems,sponsored by Innovation and Technology Fund(ITF),Hong Kong SARthe assistance of SUSTech Core Research Facilities。
文摘Reconfigurable surface acoustic wave(SAW)phase shifters have garnered significant attention owing to their potential applications in emerging fields such as secure wireless communication,adaptable signal processing,and intelligent sensing systems.Among various modulation methods,employing gate voltage-controlled tuning methodologies that leverage acoustoelectric interactions has proven to be an efficient modulation approach that requires a low bias voltage.However,current acoustoelectric devices suffer from limited tunability,intricate heterogeneous structures,and complex manufacturing processes,all of which impede their practical applications.In this study,we present a novel material system for voltage-tunable SAW phase shifters.This system incorporates an atomic layer deposition ZnO thin-film transistors on LiNbO_(3)structure.This structure combines the benefits of LiNbO_(3)'s high electromechanical coupling coefficient(K^(2))and ZnO's superior conductivity adjustability.Besides,the device possesses a simplified structural configuration,which is easy to fabricate.Devices with different mesa lengths were fabricated and measured,and two of the different modes were compared.The results indicate that both the maximum phase shift and attenuation of the Rayleigh mode and longitudinal leaky SAW(LLSAW)increase proportionally with mesa length.Furthermore,LLSAW with larger effective electromechanical coupling coefficients(K_(eff)^(2))values exhibits greater phase velocity shifts and attenuation coefficients,with a maximum phase velocity tuning of 1.22%achieved.It is anticipated that the proposed devices will find utility in a variety of applications necessitating tunable acoustic components.
文摘This study presents a numerical investigation of shallow water wave dynamics with particular emphasis on the role of surface tension.In the absence of surface tension,shallow water waves are primarily driven by gravity and are well described by the classical Boussinesq equation,which incorporates fourth-order dispersion.Under this framework,solitary and shock waves arise through the balance of nonlinearity and gravity-induced dispersion,producing waveforms whose propagation speed,amplitude,and width depend largely on depth and initial disturbance.The resulting dynamics are comparatively smoother,with solitary waves maintaining coherent structures and shock waves displaying gradual transitions.When surface tension is incorporated,however,the dynamics become significantly richer.Surface tension introduces additional sixth-order dispersive terms into the governing equation,extending the classical model to the sixth-order Boussinesq equation.This higher-order dispersion modifies the balance between nonlinearity and dispersion,leading to sharper solitary wave profiles,altered shock structures,and a stronger sensitivity of wave stability to parametric variations.Surface tension effects also change the scaling laws for wave amplitude and velocity,producing conditions where solitary waves can narrow while maintaining large amplitudes,or where shock fronts steepen more rapidly compared to the tension-free case.These differences highlight how capillary forces,though often neglected in macroscopic wave studies,play a fundamental role in shaping dynamics at smaller scales or in systems with strong fluid–interface interactions.The analysis in this work is carried out using the Laplace-Adomian Decomposition Method(LADM),chosen for its efficiency and accuracy in solving high-order nonlinear partial differential equations.The numerical scheme successfully recovers both solitary and shock wave solutions under the sixth-order model,with error analysis confirming remarkably low numerical deviations.These results underscore the robustness of the method while demonstrating the profound contrast between shallow water wave dynamics without and with surface tension.
基金Supported by the National Key Research and Development Program of China(No.2022YFE0204600)the National Natural Science Foundation for Young Scientists of China(No.41906157)。
文摘Internal solitary waves(ISW),characterized by large amplitude and long propagation distance,are widespread in global oceans.While remote sensing images have played an essential role in studying ISWs,they mainly exploit two-dimensional image information.However,with the launch of the surface water ocean topography(SWOT)satellite on December 16,2022,a unique opportunity has emerged to capture wide-swath three-dimensional ISW-induced sea surface information.In this study,we examine ISWs in the Andaman Sea using data from the Ka-band Radar Interferometer(KaRIN),a crucial sensor onboard SWOT.KaRIN not only provides backscattering satellite images but also employs synthetic aperture interferometry techniques to retrieve wide-swath two-dimensional sea surface height measurements.Our observations in the Andaman Sea revealed the presence of ISWs characterized by dark-bright strips and surface elevation solitons.The surface soliton has an amplitude of 0.32 m,resulting in an estimation of ISW amplitude of approximately 60 m.In contrast to traditional two-dimensional satellite images or nadir-looking altimetry data,the SWOT mission’s capability to capture threedimensional sea surface information represents a significant advancement.This breakthrough holds substantial promise for ISW studies,particularly in the context of ISW amplitude inversion.
基金support by the National Natural Science Foundation of China(Grant Nos.62325504,92250304,and 12174186)Dengfeng Project B of Nanjing University.
文摘An efficient on-chip platform for generating customizable vectorial optical fields is crucial and highly-pursued.While on-chip metasurfaces have opened up avenues for multi-functional coupling from on-chip surface wave to free-space propagating wave,they typically encounter the trade-off between extraction efficiency and wavefront accuracy.Recently,Prof.Lei Zhou’s group pioneered a strategy employing geometric metal meta-atoms with low polarization conversion ratio to overcome this bottleneck and experimentally demonstrated generation of pre-designed terahertz vector beams with efficiency exceeding 90%.This approach establishes a generic,high-performance framework for advanced on-chip meta-devices.
基金the financial support of National Key Research and Development Program of China(No.2022YFF0801701)National Natural Science Foundation of China(Grants 42375070)。
文摘The stratospheric Arctic vortex(SAV)plays a critical role in forecasting cold winters in the northern midlatitudes.In this study,we systematically examined the responses of SAV intensity to regional sea surface temperature(SST)changes using idealized SST patch experiments with a climate model.Our findings reveal that the SAV intensity is most sensitive to SST variations in the tropics and northern midlatitudes during boreal winter(December-January-February).Specifically,warming in the tropical Pacific and Atlantic leads to a weakening of the SAV,while warming in the tropical Indian Ocean,northern midlatitude Atlantic,and northwestern Pacific strengthens the SAV.Notably,the most substantial SAV weakening(strengthening)is triggered by warming in the tropical western Pacific(tropical central Indian Ocean),with a maximum magnitude of approximately 2.23 K K^(-1)(-1.77 K K^(-1)).The SST warming in the tropics influences the tropical convections,which excite Rossby wave trains.These wave trains can interfere with the climatological waves in the mid-high latitudes,while the SST warming in the northern midlatitudes can influence tropospheric planetary wavenumber-1 and wavenumber-2 directly.The changes in tropospheric planetary waves modulate the upward propagation of wave activities and impact the SAV intensity.Additionally,the response of the SAV to tropical SST changes,especially over the Indian Ocean and subtropics,exhibits significant nonlinearity.
文摘Due to the coexistence of compressibility,viscosity,and threedimensional effects,laminar flow is difficult to maintain for high-speed boundary layer on complex geometries.The unstable disturbance waves in the boundary layer are excited and rapidly increase during the receptivity process,so sufficiently large Reynolds stress causes the basic flow velocity profile to change,and the formation of turbulence is inevitable.
基金The Fund of Key Laboratory of Space Ocean Remote Sensing and Application,Ministry of Natural Resources under contract No.2023CFO016the National Natural Science Foundation of China under contract No.61931025the Key Program of Joint Fund of the National Natural Science Foundation of China and Shandong Province under contract No.U22A20586.
文摘The successful launch of the Cyclone Global Navigation Satellite System(CYGNSS)has opened an unprecedented opportunity for rapid observation of Wind Speed(WS)across vast oceanic regions.However,considerable debate persists over the choice of input feature parameters for WS retrieval models based on CYGNSS data,and enhancing the accuracy of WS retrieval is a focal point of current research.To address the aforementioned problems,this study establishes a comprehensive CYGNSS wind speed retrieval feature parameter set through an in-depth analysis of CYGNSS data,thereby providing a reference and basis for selecting input features for WS retrieval models.Through this analysis,we identified three crucial observational features:the normalized bistatic radar cross section,leading edge slope,and signal-to-noise ratio.Using these features,we developed a WS retrieval model based on the geophysical model function for CYGNSS data.Furthermore,acknowledging the intrinsic interconnection between wind and wave dynamics,we incorporate significant wave height into the WS retrieval model to further improve the WS retrieval accuracy.Comparative assessments with datasets from the European Centre for Medium-Range Weather Forecasts,the Chinese-French Oceanography Satellite Scatterometer,and buoy WS data underscore the high accuracy of our model,demonstrating its utility as a valuable tool for research in ocean dynamics and marine environmental prediction.
基金supported by the National Natural Science Foundation of China(Nos.42076238 and 42376174)the Natural Science Foundation of Shanghai(No.23ZR1426900).
文摘The aim of our study was to examine the contribution of surface waves from WAVEWATCH-III(WW3)to the variation in sea surface temperature(SST)in the Arctic Ocean.The simulated significant wave height(SWH)were validated against the products from Haiyang-2B(HY-2B)in 2021,obtaining a root mean squared error(RMSE)of 0.45 with a correlation of 0.96 and scatter index of 0.18.The wave-induced effects,i.e.,wave breaking and mixing induced by nonbearing waves resulting in changes in radiation stress and Stokes drift,were calculated from WW3,ERA-5 wind,SST,and salinity data from the National Centers for Environmental Prediction and were taken as forcing fields in the Stony Brook Parallel Ocean Model.The results showed that an RMSE of 0.81℃ with wave-induced effects was less than the RMSE of 1.11℃ achieved without the wave term compared with the simulated SST with the measurements from Argos.Considering the four wave effects and sea ice freezing,the SST in the Arctic Ocean decreased by up to 1℃ in winter.Regression analysis revealed that the SWH was linear in SST(values without subtraction of waves)in summer and autumn,but this behavior was not observed in spring or winter due to the presence of sea ice.The interannual variation also presented a negative relationship between the difference in SST and SWH.
基金Natural Science Foundation of Hubei Province of China for Distinguished Young Scholars (2023AFA099)Natural Science Foundation of Hubei Province of China for Key Projects (Innovation Group) (2023AFA030)National Natural Science Foundation of China (52178471)。
文摘A trigger system is typically employed in active seismic testing to trigger and synchronize multichannel surface wave data acquisition.The effect of the trigger system on the dispersion image of surface waves is empirically known to be negligible,however,theoretical explanation regarding the effect of the trigger system is insufficient.This study systematically examines the theory for surface wave dispersion analysis and proves that the effect of the trigger system on a dispersion image is negligible via a solid theoretical explanation.Subsequently,based on the new theoretical explanation,an alternative method that uses only the relative phase difference between sensors to extract dispersion characteristics with better conceptual clarity is proposed.Two active surface wave testing cases are considered to validate the theory and method.The results indicate that(1)an accurate trigger system is not necessary for surface wave data acquisition,and(2)it is unnecessary to assume that the impact point is the generation point of the surface waves for the experimental dispersion analysis.
基金The Key R&D Program of Shandong Province under contract No.2023CXPT101.
文摘Wave information retrieval from videos captured by a single camera has been increasingly applied in marine observation.However,when the camera observes ocean waves at low grazing angles,the accurate extraction of wave information from videos will be affected by the interference of the fine ripples on the sea surface.To solve this problem,this study develops a method for estimating peak wave periods from videos captured at low grazing angles.The method extracts the motion of the sea surface texture from the video and obtains the peak wave period via the spectral analysis.The calculation results captured from real-world videos are compared with those obtained from X-band radar inversion and tracking buoy movement,with maximum deviations of 8%and 14%,respectively.The analysis of the results shows that the peak wave period of the method has good stability.In addition,this paper uses a pinhole camera model to convert the displacement of the texture from pixel height to actual height and performs moving average filtering on the displacement of the texture,thus conducting a preliminary exploration of the inversion of significant wave height.This study helps to extend the application of sea surface videos.
文摘In recent decades,the importance of surface acoustic waves,as a biocompatible tool to integrate with microfluidics,has been proven in various medical and biological applications.The numerical modeling of acoustic streaming caused by surface acoustic waves in microchannels requires the effect of viscosity to be considered in the equations which complicates the solution.In this paper,it is shown that the major contribution of viscosity and the horizontal component of actuation is concentrated in a narrow region alongside the actuation boundary.Since the inviscid equations are considerably easier to solve,a division into the viscous and inviscid domains would alleviate the computational load significantly.The particles'traces calculated by this approximation are excellently alongside their counterparts from the completely viscous model.It is also shown that the optimum thickness for the viscous strip is about 9-fold the acoustic boundary layer thickness for various flow patterns and amplitudes of actuation.
基金provided through research grant No.0035/2019/A1 from the Science and Technology Development Fund,Macao SARthe assistantship from the Faculty of Science and Technology,University of Macao。
文摘Surface wave inversion is a key step in the application of surface waves to soil velocity profiling.Currently,a common practice for the process of inversion is that the number of soil layers is assumed to be known before using heuristic search algorithms to compute the shear wave velocity profile or the number of soil layers is considered as an optimization variable.However,an improper selection of the number of layers may lead to an incorrect shear wave velocity profile.In this study,a deep learning and genetic algorithm hybrid learning procedure is proposed to perform the surface wave inversion without the need to assume the number of soil layers.First,a deep neural network is adapted to learn from a large number of synthetic dispersion curves for inferring the layer number.Then,the shear-wave velocity profile is determined by a genetic algorithm with the known layer number.By applying this procedure to both simulated and real-world cases,the results indicate that the proposed method is reliable and efficient for surface wave inversion.
基金supported by the Natural Science Basic Research Program of Shaanxi(No.2023-JC-QN-0306)the Special Fund of the Institute of Geophysics,China Earthquake Administration(No.DQJB21B32)the National Natural Science Foundation of China(No.42174069).
文摘Lithospheric structure beneath the northeastern Qinghai-Xizang Plateau is of vital significance for studying the geodynamic processes of crustal thickening and expansion of the Qinghai-Xizang Plateau. We conducted a joint inversion of receiver functions and surface wave dispersions with P-wave velocity constraints using data from the Chin Array Ⅱ temporary stations deployed across the Qinghai-Xizang Plateau. Prior to joint inversion, we applied the H-κ-c method(Li JT et al., 2019) to the receiver function data in order to correct for the back-azimuthal variations in the arrival times of Ps phases and crustal multiples caused by crustal anisotropy and dipping interfaces. High-resolution images of vS, crustal thickness, and vP/vSstructures in the Qinghai-Xizang Plateau were simultaneously derived from the joint inversion. The seismic images reveal that crustal thickness decreases outward from the Qinghai-Xizang Plateau. The stable interiors of the Ordos and Alxa blocks exhibited higher velocities and lower crustal vP/vSratios. While, lower velocities and higher vP/vSratios were observed beneath the Qilian Orogen and Songpan-Ganzi terrane(SPGZ), which are geologically active and mechanically weak, especially in the mid-lower crust.Delamination or thermal erosion of the lithosphere triggered by hot asthenospheric flow contributes to the observed uppermost mantle low-velocity zones(LVZs) in the SPGZ. The crustal thickness, vS, and vP/vSratios suggest that whole lithospheric shortening is a plausible mechanism for crustal thickening in the Qinghai-Xizang Plateau, supporting the idea of coupled lithospheric-scale deformation in this region.
基金The National Natural Science Foundation of China under contract Nos U2006207 and 42006164.
文摘Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims to preliminarily analyze the detection capabilities of the Ka-band radar interferometer(KaRIn)and Nadir altimeter(NALT),which are carried out by SWOT for internal solitary waves(ISWs),and to gather other remote sensing images to validate SWOT observations.KaRIn effectively detects ISW surface features and generates surface height variation maps reflecting the modulations induced by ISWs.However,its swath width does not completely cover the entire wave packet,and the resolution of L2/L3 level products(about 2 km)cannot be used to identify ISWs with smaller wavelengths.Additionally,significant wave height(SWH)images exhibit blocky structures that are not suitable for ISW studies;sea surface height anomaly(SSHA)images display systematic leftright banding.We optimize this imbalance using detrending methods;however,more precise treatment should commence with L1-level data.Quantitative analysis based on L3-level SSHA data indicates that the average SSHA variation induced by ISWs ranges from 10 cm to 20 cm.NALTs disturbed by ISWs record unusually elevated SWH and SSHA values,rendering the data unsuitable for analysis and necessitating targeted corrections in future retracking algorithms.For the normalized radar cross section,Ku-band and four-parameter maximum likelihood estimation retracking demonstrated greater sensitivity to minor changes in the sea surface,making them more suitable for ISW detection.In conclusion,SWOT demonstrates outstanding capabilities in ISW detection,significantly advancing research on the modulation of the sea surface by ISWs and remote sensing imaging mechanisms.
文摘The properties of Cylindrical Internal-Surface Acoustic Waves (CISAW) propagating on the inside surface of a high purity fused quartz tubular fiber are derived from basic principles using a variational method. The CISAW consist of Energy Momentum Packets (EMP) moving in a looping motion. The EMP have mass and are affected by gravity similar to a pendulum bob. The effect of gravity on CISAW is much larger than the effect of gravity in a light wave. Therefore, one can build much smaller CISAW Interferometer Gravity wave Observatories (CIGO) than the present km size Light Interferometer Gravity wave Observatories (LIGO). An array of CIGO can be used to detect gravity wave images. Since the wavelength of gravity waves is much larger than the expected spacing between CIGO array elements this would result in sub-wavelength images. It would be interesting to determine what new discoveries could be made using such an array.
基金the Natural Science Foundation(Grant No.40739908)National Basic Research Program of China(973 Program)(Grant No.2007CB209605).
文摘In this paper,we develop a new and effective multiple scale and strongly directional method for identifying and suppressing ground roll based on the second generation curvelet transform.Making the best use of the curvelet transform's strong local directional characteristics,seismic frequency bands are transformed into scale data with and without noise.Since surface waves and primary reflected waves have less overlap in the curvelet domain,we can effectively identify and separate noise.Applying this method to prestack seismic data can successfully remove surface waves and,at the same time,protect the reflected events well,particularly in the low-frequency band.This indicates that the method described in this paper is an effective and amplitude-preserving method.