A higher order boundary element method(HOBEM)is presented for inviscid flow passing cylinders in bounded or unbounded domain.The traditional boundary integral equation is established with respect to the velocity poten...A higher order boundary element method(HOBEM)is presented for inviscid flow passing cylinders in bounded or unbounded domain.The traditional boundary integral equation is established with respect to the velocity potential and its normal derivative.In present work,a new integral equation is derived for the tangential velocity.The boundary is discretized into higher order elements to ensure the continuity of slope at the element nodes.The velocity potential is also expanded with higher order shape functions,in which the unknown coefficients involve the tangential velocity.The expansion then ensures the continuities of the velocity and the slope of the boundary at element nodes.Through extensive comparison of the results for the analytical solution of cylinders,it is shown that the present HOBEM is much more accurate than the conventional BEM.展开更多
In this paper, a new higher order Wilson element is presented, and the convergence is proved. Then the interpolation postprocessing technique is used to obtain the global superconvergence and posterior error estimate ...In this paper, a new higher order Wilson element is presented, and the convergence is proved. Then the interpolation postprocessing technique is used to obtain the global superconvergence and posterior error estimate of higher accuracy of this new element for the Sobolev type equations.展开更多
A fully nonlinear numerical wave tank (NWT) has been simulated by use of a three-dimensional higher order boundary element method (HOBEM) in the time domain. Within the frame of potential flow and the adoption of simp...A fully nonlinear numerical wave tank (NWT) has been simulated by use of a three-dimensional higher order boundary element method (HOBEM) in the time domain. Within the frame of potential flow and the adoption of simply Rankine source, the resulting boundary integral equation is repeatedly solved at each time step and the fully nonlinear free surface boundary conditions are integrated with time to update its position and boundary values. A smooth technique is also adopted in order to eliminate the possible saw-tooth numerical instabilities. The incident wave at the uptank is given as theoretical wave in this paper. The outgoing waves are absorbed inside a damping zone by spatially varying artificial damping on the free surface at the wave tank end. The numerical results show that the NWT developed by these approaches has a high accuracy and good numerical stability.展开更多
The present study concerns the modelization and numerical simulation for the heat and flow exchange characteristics in a novel configuration saturated with a nonNewtonian Ag-MgO hybrid nanofluid.The wavy shaped enclos...The present study concerns the modelization and numerical simulation for the heat and flow exchange characteristics in a novel configuration saturated with a nonNewtonian Ag-MgO hybrid nanofluid.The wavy shaped enclosure is equipped with onequarter of a conducting solid cylinder.The system of equations resulting from the mathematical modeling of the physical problem in its dimensionless form is discretized via the higher-order Galerkin-based finite element method(GFEM).The dependency of various factors and their interrelationships affecting the hydro-thermal behavior and heat exchange rate are delineated.The numerical experiments reveal that the best heat transfer rate is achieved for the pseudo-plastic hybrid nanoliquid with high Rayleigh number and thermal conductivity ratio and low Hartmann number.Besides,the power-law index has a major effect in deteriorating the heat convection at high Rayleigh number.展开更多
In this paper,strategies are provided for a powerful numerical manifold method(NMM)with h and p refinement in analyses of elasticity and elasto-plasticity.The new NMM is based on the concept of the independent cover,w...In this paper,strategies are provided for a powerful numerical manifold method(NMM)with h and p refinement in analyses of elasticity and elasto-plasticity.The new NMM is based on the concept of the independent cover,which gets rid of NMM's important defect of rank deficiency when using higher-order local approximation functions.Several techniques are presented.In terms of mesh generation,a relationship between the quadtree structure and the mathematical mesh is established to allow a robust h-refinement.As to the condition number,a scaling based on the physical patch is much better than the classical scaling based on the mathematical patch;an overlapping width of 1%–10%can ensure a good condition number for 2nd,3rd,and 4th order local approximation functions;the small element issue can be overcome after the local approximation on small patch is replaced by that on a regular patch.On numerical accuracy,local approximation using complete polynomials is necessary for the optimal convergence rate.Two issues that may damage the convergence rate should be prevented.The first is to approximate the curved boundary of a higher-order element by overly few straight lines,and the second is excessive overlapping width.Finally,several refinement strategies are verified by numerical examples.展开更多
基金financially supported by the National Natural Science Foundation of China (Grant Nos.52271276,52271319,and 52201364)the Natural Science Foundation of Jiangsu Province (Grant No.BK20201006)。
文摘A higher order boundary element method(HOBEM)is presented for inviscid flow passing cylinders in bounded or unbounded domain.The traditional boundary integral equation is established with respect to the velocity potential and its normal derivative.In present work,a new integral equation is derived for the tangential velocity.The boundary is discretized into higher order elements to ensure the continuity of slope at the element nodes.The velocity potential is also expanded with higher order shape functions,in which the unknown coefficients involve the tangential velocity.The expansion then ensures the continuities of the velocity and the slope of the boundary at element nodes.Through extensive comparison of the results for the analytical solution of cylinders,it is shown that the present HOBEM is much more accurate than the conventional BEM.
基金the National Natural Science Foundation of China(10671184)
文摘In this paper, a new higher order Wilson element is presented, and the convergence is proved. Then the interpolation postprocessing technique is used to obtain the global superconvergence and posterior error estimate of higher accuracy of this new element for the Sobolev type equations.
文摘A fully nonlinear numerical wave tank (NWT) has been simulated by use of a three-dimensional higher order boundary element method (HOBEM) in the time domain. Within the frame of potential flow and the adoption of simply Rankine source, the resulting boundary integral equation is repeatedly solved at each time step and the fully nonlinear free surface boundary conditions are integrated with time to update its position and boundary values. A smooth technique is also adopted in order to eliminate the possible saw-tooth numerical instabilities. The incident wave at the uptank is given as theoretical wave in this paper. The outgoing waves are absorbed inside a damping zone by spatially varying artificial damping on the free surface at the wave tank end. The numerical results show that the NWT developed by these approaches has a high accuracy and good numerical stability.
文摘The present study concerns the modelization and numerical simulation for the heat and flow exchange characteristics in a novel configuration saturated with a nonNewtonian Ag-MgO hybrid nanofluid.The wavy shaped enclosure is equipped with onequarter of a conducting solid cylinder.The system of equations resulting from the mathematical modeling of the physical problem in its dimensionless form is discretized via the higher-order Galerkin-based finite element method(GFEM).The dependency of various factors and their interrelationships affecting the hydro-thermal behavior and heat exchange rate are delineated.The numerical experiments reveal that the best heat transfer rate is achieved for the pseudo-plastic hybrid nanoliquid with high Rayleigh number and thermal conductivity ratio and low Hartmann number.Besides,the power-law index has a major effect in deteriorating the heat convection at high Rayleigh number.
基金supported by the National Natural Science Foundation of China(Grant Nos.52130905 and 52079002)。
文摘In this paper,strategies are provided for a powerful numerical manifold method(NMM)with h and p refinement in analyses of elasticity and elasto-plasticity.The new NMM is based on the concept of the independent cover,which gets rid of NMM's important defect of rank deficiency when using higher-order local approximation functions.Several techniques are presented.In terms of mesh generation,a relationship between the quadtree structure and the mathematical mesh is established to allow a robust h-refinement.As to the condition number,a scaling based on the physical patch is much better than the classical scaling based on the mathematical patch;an overlapping width of 1%–10%can ensure a good condition number for 2nd,3rd,and 4th order local approximation functions;the small element issue can be overcome after the local approximation on small patch is replaced by that on a regular patch.On numerical accuracy,local approximation using complete polynomials is necessary for the optimal convergence rate.Two issues that may damage the convergence rate should be prevented.The first is to approximate the curved boundary of a higher-order element by overly few straight lines,and the second is excessive overlapping width.Finally,several refinement strategies are verified by numerical examples.