Fatty acids are the main constituents of vegetable oils.To determine the fatty acid compositions of small trade vegetable oils and some less well studied beneficial vegetable oils,and investigate their relationships w...Fatty acids are the main constituents of vegetable oils.To determine the fatty acid compositions of small trade vegetable oils and some less well studied beneficial vegetable oils,and investigate their relationships with antioxidant activity and oxidative stability,gas chromatography-mass spectrometry was performed to characterize the associated fatty acid profiles.The antioxidant activity of vegetable oils,based on their DPPH-scavenging capacity(expressed as IC_(50) values),was used to assess their impact on human health,and their oxidative stability was characterized by performing lipid oxidation analysis to determine the oxidative induction time of fats and oils.In addition,correlation analyses were performed to examine associations between the fatty acid composition of the oils and DPPH-scavenging capacity and oxidative stability.The results revealed that among the assessed oils,coffee seed oil has the highest saturated fatty acid content(355.10 mg/g),whereas Garddenia jaminoides oil has the highest unsaturated fatty acid content(844.84 mg/g).Coffee seed oil was also found have the lowest DPPH IC_(50) value(2.30 mg/mL)and the longest oxidation induction time(17.09 h).Correlation analysis revealed a significant linear relationship(P<0.05)between oxidative stability and unsaturated fatty acid content,with lower contents tending to be associated with better oxidative stability.The findings of this study provide reference data for the screening of functional edible vegetable oils.展开更多
The aim of the present study was to evaluate the effects of baobab seed washing and origin on the chemical composition of the oil extracted by pressing. Six (6) oil samples were obtained from seeds of three (3) geogra...The aim of the present study was to evaluate the effects of baobab seed washing and origin on the chemical composition of the oil extracted by pressing. Six (6) oil samples were obtained from seeds of three (3) geographical origins. The identification and quantification of fatty acids and the polyphenolic profile were carried out by GC-MS and HPLC-UV, respectively. Analysis of fatty acid methyl esters allowed the identification and quantification of 18 fatty acids. Oils from unwashed seeds were richer in palmitic (C16:0), stearic (C18:0), oleic (C18:1) and arachidic (C20:0) acids. In addition, HPLC-UV analysis at 279 nm shows that oils from unwashed seeds are richer in tyrosol, hydroxytyrosol and caffeic acid. With regard to the polyphenolic profile, gallic acid and quercetin were not detected in these baobab oils. Principal component analysis of fatty acid and phenolic compound content showed that oils from unwashed seeds would best preserve their chemical and associated potential bioactive characteristics.展开更多
Rationale: The contamination of soil with crude oil poses significant environmental and ecological threats. Bioremediation, particularly through the use of organisms like Pleurotus ostreatus (mushroom) and Eisenia fet...Rationale: The contamination of soil with crude oil poses significant environmental and ecological threats. Bioremediation, particularly through the use of organisms like Pleurotus ostreatus (mushroom) and Eisenia fetida (earthworm), has emerged as a promising approach to mitigate crude oil pollution. Understanding the effectiveness of these organisms in reducing hydrocarbon levels in contaminated soil is crucial for devising sustainable remediation strategies. Objectives: This study aimed to evaluate the efficacy of Pleurotus ostreatus and Eisenia fetida in remediating crude oil-polluted soil. Specifically, it sought to assess the hydrocarbon profiles in soil treated with these organisms across varying concentrations of crude oil pollution. Method: Crude oil concentration levels ranging from 0% to 10% were applied to soil samples alongside control treatments, including soil only, soil with earthworms, and soil with mushrooms. Each treatment was replicated five times using a randomized complete block design. Standard methods were employed to determine the hydrocarbon contents of the soil. Results: The results indicated a significant increase (P Pleurotus ostreatus and Eisenia fetida exhibited noteworthy reductions in these hydrocarbon levels. At the three-month mark, mushrooms demonstrated a remarkable ability to reduce hydrocarbon content by 70% - 90% compared to the pollution treatment. In contrast, earthworms exhibited minimal potential for hydrocarbon reduction, particularly at both three and six-month intervals. For instance, TOC reduction reached a maximum of 96% with mushroom treatment and 85% with earthworm treatment at 5% crude oil pollution over six months. Conclusion: The findings highlight the effectiveness of Pleurotus ostreatus in significantly reducing hydrocarbon levels in crude oil-polluted soil compared to Eisenia fetida. Mushroom-treated soils consistently exhibited substantial reductions in TOC, TPH, TOG, PAH, and THC over the study period, suggesting their potential as a viable bioremediation agent. In contrast, while earthworms showed some capability in reducing hydrocarbon content, their effectiveness was comparatively limited. Recommendation: Based on the results, it is recommended to utilize Pleurotus ostreatus for the bioremediation of crude oil-polluted soils. Further research could explore optimizing remediation protocols involving mushroom-based treatments for enhanced efficiency. Statement of Significance: This study contributes valuable insights into the application of bioremediation techniques for mitigating crude oil contamination in soil. The demonstrated efficacy of Pleurotus ostreatus underscores its potential as a sustainable and eco-friendly solution for remediating hydrocarbon-polluted environments, offering a promising avenue for environmental restoration and conservation efforts.展开更多
The rising risk of synthetic preservatives as antimicrobial agent has increased,leading to potential allergic reactions,intoxications,cancer,and other degenerative diseases.As a result,essential oils(EOs),recognized a...The rising risk of synthetic preservatives as antimicrobial agent has increased,leading to potential allergic reactions,intoxications,cancer,and other degenerative diseases.As a result,essential oils(EOs),recognized as natural antimicrobial agents due to their extensive antibacterial properties,have gained attention.However,their industrial applicability is hindered by challenges such as volatility,poor water solubility,oxidation potential,photodegradation,and thermal instability.Nano-encapsulation has emerged as a transformative solution for delivering essential oils,enhancing their stability,bioavailability,and targeted administration.This review explores the use of nano-encapsulated essential oils in combating bacteria,focusing on their mechanisms of action and potential advancements for the food preservation industry.Various nano-encapsulation methods,including liposomes,nanoemulsions,polymeric nanoparticles,and biopolymers like chitosan and alginate,have shown promise in overcoming the limitations associated with EOs.展开更多
Sulphur(S)is essential for the quality of oilseed crops,ranking as the fourth major nutrient after nitrogen(N),phosphorus(P),and potassium(K).While crops need sulphur in slightly lower amounts than phosphorus,maintain...Sulphur(S)is essential for the quality of oilseed crops,ranking as the fourth major nutrient after nitrogen(N),phosphorus(P),and potassium(K).While crops need sulphur in slightly lower amounts than phosphorus,maintaining optimum sulphur levels is crucial for oilseed yield and quality.Factors such as sulphur dynamics,impact of deficiency,application methods,and climate change must be addressed to improve agricultural practices.In South Asian countries like India,Pakistan,and Bangladesh,oilseeds are vital to the agricultural economy,supporting food security,livelihoods,and economic growth.However,climate change,marginal land cultivation,and a shift to more profitable crops like wheat and maize have led to a decline in oilseed productivity.Sulphur is particularly important for vital plant functions,including protein synthesis,chlorophyll formation,and resistance to abiotic stress.Proper management of sulphur can significantly enhance the yield,oil content,and seed quality.Sulphur fertilization improves crop resilience to pests,diseases,and environmental stresses,resulting in healthier plants.To optimize oilseed production,best practices for sulphur management like integrated nutrient management,regular soil testing,and the strategic application of sulphur-enriched fertilizers must be adopted.Despite its significance,many South Asian soils suffer from sulphur deficiency due to inadequate replenishment and reliance on high-analysis fertilizers.By enhancing sulphur availability,oilseed producers can significantly increase crop yields,improve oil content,and promote overall plant health,contributing to the agricultural economy and food security in the region.This manuscript aims to evaluate the critical role of sulphur in enhancing the yield,oil quality,and stress resilience of oilseed crops in South Asia.展开更多
The development of alternative therapies to treat chicken coccidiosis has become a hot topic because of the widespread use of conventional medicines.This study aimed to investigate the effectiveness of eugenol in trea...The development of alternative therapies to treat chicken coccidiosis has become a hot topic because of the widespread use of conventional medicines.This study aimed to investigate the effectiveness of eugenol in treating Eimeria tenella infection in broilers.Broiers,at the age of 14 d,were orally infected with sporulated Eimeria tenella oocysts,and then,eugenol essential oil was added to chicken feed at three different dosages(0.1,0.2 or 0.4 g/kg).The anticoccidial effects of eugenol essential oil were assessed using the anticoccidial index(ACI).As a result,eugenol exhibited a moderate anticoccidial effect,with an ACI of 167.37 at 0.2 g/kg.After eugenol treatment,the expression of occludin in the epithelial cells of the chicken cecum was significantly greater(P<0.05)than that in the epithelial cells of the nontreated control(IC)group.The proportion of intestinal Lactobacillus_agilli increased.Eugenol therapy dramatically increased the activity of superoxide dismutase.After high-dose treatment,the expression of the proinflammatory factors IL-1βand IL-6 significantly decreased,while the expression of the cytokines IL-4 and IFN-γsignificantly increased.The safety of eugenol essential oil was evaluated at the 1,3 or 6 recommended doses.Overall,no significant differences were detected in the blood tests or serum biochemistry of the chickens between the treatment groups and the control group.As a result,eugenol essential oil can cure chicken coccidiosis by improving the intestinal microbial structure in the chicken cecum and decreasing the cecum's inflammatory reactions,thus strengthening immune function and eventually demonstrating anticoccidial properties.展开更多
As an important component of light hydrocarbon compounds,alkylbenzene compounds lack indicators to indicate the source of organic matter of light oils and condensates.Forty-one oil samples from the Tarim Basin and Bei...As an important component of light hydrocarbon compounds,alkylbenzene compounds lack indicators to indicate the source of organic matter of light oils and condensates.Forty-one oil samples from the Tarim Basin and Beibuwan Basin were analyzed by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry(GC×GC-TOFMS).The concentration distributions of thirteen light hydrocarbon compounds with organic matter source and sedimentary environment indication were studied.There is no significant difference in the concentrations of 1-methylpropylbenzene(MPB)in all studied oils.However,the concentrations of 2-MPB in the Tarim swamp oils are higher than that in the Beibuwan lacustrine oils and Tarim marine oils.Based on the significant concentration difference of 1-and 2-MPB in all studied oils,1-/2-MPB(MPBr)was proposed as an indicator to identify the source of organic matter in crude oils.The MPBr values greater than 1.5 indicate that the crude oil mainly comes from lower aquatic organisms,bacteria,and algae.The MPBr values greater than 1.0 and less than 1.5 indicate that crude oil was derived from the combined contributions of lower aquatic organisms,bacteria and algae,and terrestrial higher plants.The MPBr values less than 1.0 suggest that the crude oil was mainly derived from terrigenous higher plants.The MPBr values in crude oils basically are not or slightly affected by depositional environment and secondary alteration.The MPBr values can be used to infer the organic matter origin in sediments,especially for the lack of biomarkers of light oils and condensates.展开更多
Background:In today’s context,vegetable oils,commonly used in culinary practices such as frying and baking,are integral to numerous daily dietary choices.Palm oil,a frequently employed vegetable oil,raises concerns s...Background:In today’s context,vegetable oils,commonly used in culinary practices such as frying and baking,are integral to numerous daily dietary choices.Palm oil,a frequently employed vegetable oil,raises concerns surrounding food safety,thus presenting a significant challenge.Methods:This research aims to enhance consumer awareness regarding the potential health risks associated with 3-monochloropropane-1,2-diol(3-MCPD)and glycidyl fatty acid esters(GEs)commonly found in food and edible oil products.The study endeavours to apprise consumers of these health risks through a comprehensive survey.The survey enlisted the participation of 120 respondents within the age bracket of 18 years to those above 36 years(capped at 50 years).Results:Strikingly,a significant proportion,ranging from 88%to 89%,demonstrated a lack of awareness concerning the potential risks associated with 3-MCPD and GEs in food products.Conclusion:This study underscores the urgency of augmenting consumer's awareness levels regarding 3-MCPD and GEs.Furthermore,it promotes a more detailed examination of Malaysian edible oils and food products available in the market to establish an appropriate Tolerable Daily Intake for the Malaysian population.This research contributes to the broader discourse on food safety and public health by highlighting these crucial facets.展开更多
Lemon oils are broadly used as flavoring agents in beverages,foods,cosmetics and pharmaceuticals,yet the adulteration of natural,particularly cold pressed lemon oils is very common in the industry due to its unmet dem...Lemon oils are broadly used as flavoring agents in beverages,foods,cosmetics and pharmaceuticals,yet the adulteration of natural,particularly cold pressed lemon oils is very common in the industry due to its unmet demand and high cost.Nowadays,most quality control(QC)analysis of lemon oils is conducted by gas chromatography(GC)analysis,which is far from a reliable method.Oxygen heterocyclic compounds(OHCs)in non-volatile fraction are gaining increasing attention in authentication process because of the nearly finger-printing profiles of OHCs in cold pressed citrus essential oils.Our goal in this study was to identify OHCs using high performance liquid chromatography(HPLC)in lemon oils,establish OHC profiles,perform stepwise logistic regression analysis(SLRA)and build effective predicting model and further determine adulterated lemon oils by referencing the OHC profiles and established models.After HPLC analyses,profiling and SLRA modeling of 154 OHCs samples of industrial lemon oils,we found that the combination of isopimpinellin and total OHC concentration are essential and robust predictors to differentiate authentic samples from adulterated lemon oils with a success rate of 98%from the 5-fold cross validation.This study provided a reliable and efficient method in determining the authenticity of lemon oils.展开更多
To improve the economic benefits and farmers’enthusiasm of Brassica napus production,this study compared the agronomic traits,economic traits,and incomes from vegetable and oilseed among five early maturing varieties...To improve the economic benefits and farmers’enthusiasm of Brassica napus production,this study compared the agronomic traits,economic traits,and incomes from vegetable and oilseed among five early maturing varieties of Brassica napus,thereby selecting the suitable materials for breeding the varieties for both vegetable and oil.The results showed that all of the five varieties had low erucic acid in oil and low glucosinolate in rapeseed meal.The economic benefits of the varieties for vegetable and oil were generally higher than those of the varieties for only oil.‘CNT01’had the best economic benefits,with the vegetable yield of 8175.3 kg/hm^(2),the rapeseed yield of 2476.5 kg/hm^(2),the vegetable income of 14859.0 yuan/hm^(2),the rapeseed income of 32701.2 yuan/hm^(2),and the net income of 35560.2 yuan/hm^(2).‘CNZ01’was selected as the variety with highest oil quality,with the rapeseed yield of 2712.6 kg/hm^(2) and the net income of 11775.6 yuan/hm^(2).In conclusion,‘CNT01’was selected as the variety for both vegetable and oil.展开更多
Background The benefits of combining benzoic acid and essential oils(BAO)to mitigate intestinal impairment during the weaning process have been well established,while the detailed underlying mechanism has not been ful...Background The benefits of combining benzoic acid and essential oils(BAO)to mitigate intestinal impairment during the weaning process have been well established,while the detailed underlying mechanism has not been fully elucidated.Previous research has primarily focused on the reparative effects of BAO on intestinal injury,while neglecting its potential in enhancing intestinal stress resistance.Methods In this study,we investigated the pre-protective effect of BAO against LPS-induced stress using a modified experimental procedure.Piglets were pre-supplemented with BAO for 14 d,followed by a challenge with LPS or saline to collect blood and intestinal samples.Results Our findings demonstrated that BAO supplementation led to significant improvements in piglets’final weight,average daily gain,and feed intake/body gain ratio.Additionally,BAO supplementation positively influenced the composition of intestinal microbiota,increasing beneficial Actinobacteriota and Alloprevotella while reducing harmful Desulfobacterota,Prevotella and Oscillospira.Furthermore,BAO supplementation effectively mitigated oxidative disturbances and inflammatory responses induced by acute LPS challenge.This was evidenced by elevated levels of T-AOC,SOD,and GSH,as well as decreased levels of MDA,TNF-α,and IL-6 in the plasma.Moreover,piglets subjected to LPS challenge and pre-supplemented with BAO exhibited significant improvements in intestinal morphological structure and enhanced integrity,as indicated by restored expression levels of Occludin and Claudin-1 compared to the non-supplemented counterparts.Further analysis revealed that BAO supplementation enhanced the jejunal antioxidative capacity by increasing GSH-Px levels and decreasing MDA levels under the LPS challenge and stimulated the activation of the Nrf2 signaling pathway.Additionally,the reduction of TLR4/NF-κB/MAPK signaling pathways activation and proinflammatory factor were also observed in the jejunal of those piglets fed with BAO.Conclusions In summary,our study demonstrates that pre-supplementation of BAO enhances the anti-stress capacity of weaned piglets by improving intestinal microbiota composition,reinforcing the intestinal barrier,and enhancing antioxidative and anti-inflammatory capabilities.These effects are closely associated with the activation of Nrf2 and TLR4/NF-κB/MAPK signaling pathways.展开更多
Oil blending is the method of choice used worldwide to improve oxidative stability and nutritional value.There is no such edible oil/fat that meets all the recommendations from the health point of view.The fatty acid ...Oil blending is the method of choice used worldwide to improve oxidative stability and nutritional value.There is no such edible oil/fat that meets all the recommendations from the health point of view.The fatty acid composition of vegetable oils decides the fate of the oil.Pure single oil is unable to provide a balanced amount of fatty acids(FAs)required/recommended on a daily intake basis.Blending oils/fats is an appropriate procedure of physically mixing multiple oils in suitable proportions which may provide functional lipids with improved antioxidant potential and desirable physical and chemical properties.This review piled up the accessible data on the blending of diverse oils/fats in the combination of binary,ternary,quaternary,or other types of oils into a single blended oil.Blending can be found very convincing towards appropriate FA profile,enhancement in physicochemical characteristics,and augmented stability for the period of storage or when used as cooking/frying processes which could ultimately serve as an effectual dietary intervention towards the health protectiveness.展开更多
Essential oils(EOs) are natural, volatile substances derived from aromatic plants. They exhibit multiple pharmacological effects, including antibacterial, anticancer, anti-inflammatory, and antioxidant properties, wit...Essential oils(EOs) are natural, volatile substances derived from aromatic plants. They exhibit multiple pharmacological effects, including antibacterial, anticancer, anti-inflammatory, and antioxidant properties, with broad application prospects in health care, food, and agriculture. However, the instability of volatile components, which are susceptible to deterioration under light,heat, and oxygen exposure, as well as limited water solubility, have significantly impeded the development and application of EOs.Porous nanoclays are natural clay minerals with a layered structure. They possess unique structural characteristics such as large pore size, regular distribution, and tunable particle size, which are extensively utilized in drug delivery, adsorption separation, reaction catalysis, and other fields. Natural-derived porous nanoclays have garnered considerable attention for the encapsulation and delivery of EOs. This review comprehensively summarizes the structure, types, and properties of natural-derived porous nanoclays, focusing on the structural characteristics of porous nanoclays such as montmorillonite, palygorskite, halloysite, kaolinite, vermiculite, and natural zeolite. It also examines research advances in their delivery of EOs and explores engineering strategies to enhance the delivery of EOs by natural-derived porous nanoclays. Finally, various applications of natural-derived porous nanoclays for EOs in antibacterial, food preservation, repellent, and insecticide aspects are presented, providing a reference for the development and application of EOs.展开更多
Vegetable oils are a source of energy, essential fatty acids, antioxidants and fat-soluble vitamins useful for human health care and development. These oils also contribute to organoleptic quality of their products’ ...Vegetable oils are a source of energy, essential fatty acids, antioxidants and fat-soluble vitamins useful for human health care and development. These oils also contribute to organoleptic quality of their products’ derivatives. However, their chemical and physical properties can be modified by the mode of their extraction, storage and distribution. These modifications might negatively affect the nutritional quality of the oils. The goals of this study were to: sample different vegetable oils for cosmetic or dietary use marketed in Cameroon, and verify purity and oxidation states of each kind of oil through determination of its acidity, iodine, peroxide, saponification, refractive indexes and the conformity of the labeling. The carotene content, the level of polar components and specific absorbance were also determined. As the result, six oils namely palm, palm kernel, coconut, black cumin, peanut and shea butter were collected. Apart from labeling, chemicals and physicals parameters analyzed were generally in accordance with the Cameroonian and Codex Alimentarius standard. This study suggests that vegetable oils sampled in the Cameroonian market may not expose consumers to lipid oxidation products generating pathological oxidative stress and inflammation. However, efforts in application of existing standard need to be done as far as labeling are concerned.展开更多
Migration pathways and distances of the oils in reservoir are thought to affect the distribution of pyrrolic compounds such as carbazole,its alkyl derivatives(alkylated carbazoles)and benzocarbazoles,although other fa...Migration pathways and distances of the oils in reservoir are thought to affect the distribution of pyrrolic compounds such as carbazole,its alkyl derivatives(alkylated carbazoles)and benzocarbazoles,although other factors,including maturity and depositional environments may also affect the distribution of these organic nitrogen compounds.In this study,14 oil samples produced from conventional reservoirs in Pauls Valley,south Oklahoma were investigated using organic geochemical techniques.The sterane and hopane fingerprints suggest that most of the oils were sourced from the Devonian Woodford shale.Maturity parameters consistently indicate that the maturity level of the studied samples are all of similar maturity(Rc=~0.7%),suggesting the distribution of the organic nitrogen organic compounds is possibly reflecting variations in relative migration distances.The distribution of alkylcarbazoles revealed a preferential enrichment during migration,with the nitrogen-shielded alkylcarbazole tending to be enriched relative to the nitrogen-semi-shielded alkylcarbozoles particularly in oils produced close to the Arbuckle uplift to the east.Correspondingly,another family of pyrrolic compounds,benzocarbazoles,whose distributions also indicated that the Pauls Valley Woodford oils came from deeper part of the Anadarko Basin as the benzo-[a]/([a]+[c])-carbazole ratios decrease eastwards.In more specific migration systems,although the pyrrolic compound indicators are potentially disturbed by the structural complexes,the general migration directions suggest that the studied oils in Pauls Valley Hunton uplift were sourced from the deep basin area,and migrate upwards in porous sediments due to the buoyancy.This study investigates the feasibility of using pyrrolic compounds to estimate relative migration distances and will aid in the interpretation of migration history by using the distribution of carbazole,alkylated carbazoles,benzocarbazoles isomers in the Anadarko and Ardmore Basin petroleum systems.展开更多
In nature, plant extracts play a crucial role in defending plants against biotic and abiotic stressors. Moreover, the use of plant-based products, such as plant extracts, represents a promising alternative to syntheti...In nature, plant extracts play a crucial role in defending plants against biotic and abiotic stressors. Moreover, the use of plant-based products, such as plant extracts, represents a promising alternative to synthetic fungicides, which pose potential health risks to consumers. In this study, the antifungal activity of the essential oils (EOs) of Lippia multiflora, Eucalyptus camaldulensis and Ocimum americanum was evaluated against two strains of Aspergillus flavus via the agar dilution method. These two Aspergillus flavus fungi was isolated from Bamabra groundnut seeds. Lippia multiflora essential oil (EO) showed the best results compared with the other oils, with a minimum inhibitory concentration (MIC) of 9000 μg∙mL−1. The MIC for Eucalyptus camaldulensis and Ocimum americanum EOs was 10,800 μg∙mL−1. In view of their antifungal properties, these EOs could be used to develop a new, safe antifungal agent for food preservation.展开更多
Heavy oil is an important resource in current petroleum exploitation, and the chemical composition information of heavy oil is crucial for revealing its viscosity-inducing mechanism and solving practical exploitation ...Heavy oil is an important resource in current petroleum exploitation, and the chemical composition information of heavy oil is crucial for revealing its viscosity-inducing mechanism and solving practical exploitation issues. In this study, the techniques of high-temperature gas chromatography and high-resolution mass spectrometry equipped with an electrospray ionization source were applied to reveal the chemical composition of typical heavy oils from western, central, and eastern China. The results indicate that these heavy oils display significant variations in their bulk properties, with initial boiling points all above 200℃. Utilizing pre-treatment and ESI high-resolution mass spectrometry, an analysis of the molecular composition of saturated hydrocarbons, aromatic hydrocarbons, acidic oxygen compounds, sulfur compounds, basic nitrogen compounds, and neutral nitrogen compounds within the heavy oil was conducted. Ultimately, a semi-quantitative analysis of the molecular composition of the heavy oil was achieved by integrating the elemental content. The semi-quantitative analysis results of Shengli-J8 heavy oil and a conventional Shengli crude oil show that Shengli-J8 heavy oil lacks alkanes and low molecular weight aromatic hydrocarbons, which contributes to its high viscosity. Additionally,characteristic molecular sets for different heavy oils were identified based on the semi-quantitative analysis of molecular composition. The semi-quantitative analysis of molecular composition in heavy oils may provide valuable reference data for establishing theoretical models on the viscosity-inducing mechanism in heavy oils and designing viscosity-reducing agents for heavy oil exploitation.展开更多
Antibiotics in poultry feed to boost growth performance are becoming increasingly contentious due to concerns over antimicrobial resistance development.Essential oils(EOs),as natural,plant-derived compounds,have demon...Antibiotics in poultry feed to boost growth performance are becoming increasingly contentious due to concerns over antimicrobial resistance development.Essential oils(EOs),as natural,plant-derived compounds,have demonstrated antimicrobial and antioxidant properties.EOs may potentially improve poultry health and growth performance when included in poultry feed.Nevertheless,the incorporation of EOs as nutritional additives is hindered by their high volatility,low water solubility,poor intestinal absorption,and sensitivity to environmental conditions.Recently,nanoencapsulation strategies using nanoformulations have emerged as a potential solution to these challenges,improving the stability and bioavailability of EOs,and enabling targeted delivery in poultry feed.This review provides an overview of the antioxidant and antibacterial properties of EOs,the current limitations of their applications in poultry feed,and the recent advancements in nano-engineering to overcome these limitations.Furthermore,we outline the potential future research direction on EO nanoformulations,emphasizing their promising role in advancing sustainable poultry nutrition.展开更多
The sensitivity of biodegradation on diamondoids was investigated using a series of biodegraded oil samples from the Ronier tectonic unit of Bongor Basin,Chad.The results suggest that diamondoids,including adamantanes...The sensitivity of biodegradation on diamondoids was investigated using a series of biodegraded oil samples from the Ronier tectonic unit of Bongor Basin,Chad.The results suggest that diamondoids,including adamantanes(As)and diamantanes(Ds),are relatively resistant to biodegradation and obvious biodegradation was observed in oils with a Peters-Moldowan(PM)biodegradation rank of 6 or more.Overall,the sensibility of biodegradation on diamondoids is generally similar to hopanes and regular steranes.As biodegradation evolves,the changes in concentration and components of diamondoids show that the biodegradation process is selective and stepwise.The significant increase of MD/MA and DMD/DMA for oils with a PM ranking 6^(+) indicates that diamantanes are generally more resistant to biodegradation than adamantanes.The similar trends of DMA/MA,EA/MA,MD/D,DMD/MD and other relevant indexes,show that higher alkylation homologs are more resistant to biodegradation.The commonly used diamondoid ratios,such as MAI,EAI,MDI and DMID-1,are obviously affected by biodegradation at the stage of high-level biodegradation,which may indicate that these ratios should be used with caution in case of severely degraded oils.展开更多
Our study aimed to compare the essential oil(EO)concentration and composition of several Apiaceae species growing in the Northern region of Vietnam.The yields of EOs from materials ranged from 0.03%(root EO of Angelic...Our study aimed to compare the essential oil(EO)concentration and composition of several Apiaceae species growing in the Northern region of Vietnam.The yields of EOs from materials ranged from 0.03%(root EO of Angelica acutiloba and aerial parts EO of Heracleum bivittatum)-0.27%(leaf EO of Xyloselinum vietnamense).Gas chromatography-mass spectrometry(GC-MS)allowed the identification of 74 components in the EOs of six Apiaceae species,making up 94.4%–100.0%of the oils.In EO from Angelica acutiloba,(Z)-ligustilide accounted for an extremely large proportion(94.9%).EO of Angelica pubescens was dominated by six character-istic components includingα-pinene(21.5%),β-phellandrene(18.1%),p-cymene(12.2%),3-methylnonane(8.7%),o-cymene(8.1%),and D-sylvestrene(6.2%).The EO from Cryptotaenia japonica was characterized by high amounts ofα-selinene(48.7%),β-selinene(23.7%),and trans-β-farnesene(5.4%).The EOs from leaves and stems of Xyloselinum vietnamense were characterized by high concentrations of sabinene(69.8%and 33.8%),4-terpineol(8.7%and 7.4%)andβ-pinene(4.0%and 6.5%)while EOs from aerial parts and root of Xylo-selinum leonidii comprise four characteristic monoterpenes includingα-pinene(28.2%and 52.8%),β-pinene(7.9%and 10.3%),β-phellandrene(7.6%and 15.3%),and sabinene(3.0%and 4.1%).Additionally,cryptone is also one of the major components in the EO of Xyloselinum leonidii(13.2%in the aerial parts oil and 2.8%in the root oil).In the EOs isolated from the aerial parts and root of Heracleum bivittatum,α-pinene(22.5%and 70.2%)andβ-pinene(43.2%and 20.0%)were the predominant monoterpenes.Sabinene appeared in the EO from aerial parts of Heracleum bivittatum with a relatively high concentration(13.5%)while bornyl acetate(5.1%)was also one of the main components in the EO from its aerial parts but was not detected in other Apiaceae species in the present study.These databases help identify and control the quality of plant material studied from the family Apiaceae growing in Vietnam.展开更多
文摘Fatty acids are the main constituents of vegetable oils.To determine the fatty acid compositions of small trade vegetable oils and some less well studied beneficial vegetable oils,and investigate their relationships with antioxidant activity and oxidative stability,gas chromatography-mass spectrometry was performed to characterize the associated fatty acid profiles.The antioxidant activity of vegetable oils,based on their DPPH-scavenging capacity(expressed as IC_(50) values),was used to assess their impact on human health,and their oxidative stability was characterized by performing lipid oxidation analysis to determine the oxidative induction time of fats and oils.In addition,correlation analyses were performed to examine associations between the fatty acid composition of the oils and DPPH-scavenging capacity and oxidative stability.The results revealed that among the assessed oils,coffee seed oil has the highest saturated fatty acid content(355.10 mg/g),whereas Garddenia jaminoides oil has the highest unsaturated fatty acid content(844.84 mg/g).Coffee seed oil was also found have the lowest DPPH IC_(50) value(2.30 mg/mL)and the longest oxidation induction time(17.09 h).Correlation analysis revealed a significant linear relationship(P<0.05)between oxidative stability and unsaturated fatty acid content,with lower contents tending to be associated with better oxidative stability.The findings of this study provide reference data for the screening of functional edible vegetable oils.
文摘The aim of the present study was to evaluate the effects of baobab seed washing and origin on the chemical composition of the oil extracted by pressing. Six (6) oil samples were obtained from seeds of three (3) geographical origins. The identification and quantification of fatty acids and the polyphenolic profile were carried out by GC-MS and HPLC-UV, respectively. Analysis of fatty acid methyl esters allowed the identification and quantification of 18 fatty acids. Oils from unwashed seeds were richer in palmitic (C16:0), stearic (C18:0), oleic (C18:1) and arachidic (C20:0) acids. In addition, HPLC-UV analysis at 279 nm shows that oils from unwashed seeds are richer in tyrosol, hydroxytyrosol and caffeic acid. With regard to the polyphenolic profile, gallic acid and quercetin were not detected in these baobab oils. Principal component analysis of fatty acid and phenolic compound content showed that oils from unwashed seeds would best preserve their chemical and associated potential bioactive characteristics.
文摘Rationale: The contamination of soil with crude oil poses significant environmental and ecological threats. Bioremediation, particularly through the use of organisms like Pleurotus ostreatus (mushroom) and Eisenia fetida (earthworm), has emerged as a promising approach to mitigate crude oil pollution. Understanding the effectiveness of these organisms in reducing hydrocarbon levels in contaminated soil is crucial for devising sustainable remediation strategies. Objectives: This study aimed to evaluate the efficacy of Pleurotus ostreatus and Eisenia fetida in remediating crude oil-polluted soil. Specifically, it sought to assess the hydrocarbon profiles in soil treated with these organisms across varying concentrations of crude oil pollution. Method: Crude oil concentration levels ranging from 0% to 10% were applied to soil samples alongside control treatments, including soil only, soil with earthworms, and soil with mushrooms. Each treatment was replicated five times using a randomized complete block design. Standard methods were employed to determine the hydrocarbon contents of the soil. Results: The results indicated a significant increase (P Pleurotus ostreatus and Eisenia fetida exhibited noteworthy reductions in these hydrocarbon levels. At the three-month mark, mushrooms demonstrated a remarkable ability to reduce hydrocarbon content by 70% - 90% compared to the pollution treatment. In contrast, earthworms exhibited minimal potential for hydrocarbon reduction, particularly at both three and six-month intervals. For instance, TOC reduction reached a maximum of 96% with mushroom treatment and 85% with earthworm treatment at 5% crude oil pollution over six months. Conclusion: The findings highlight the effectiveness of Pleurotus ostreatus in significantly reducing hydrocarbon levels in crude oil-polluted soil compared to Eisenia fetida. Mushroom-treated soils consistently exhibited substantial reductions in TOC, TPH, TOG, PAH, and THC over the study period, suggesting their potential as a viable bioremediation agent. In contrast, while earthworms showed some capability in reducing hydrocarbon content, their effectiveness was comparatively limited. Recommendation: Based on the results, it is recommended to utilize Pleurotus ostreatus for the bioremediation of crude oil-polluted soils. Further research could explore optimizing remediation protocols involving mushroom-based treatments for enhanced efficiency. Statement of Significance: This study contributes valuable insights into the application of bioremediation techniques for mitigating crude oil contamination in soil. The demonstrated efficacy of Pleurotus ostreatus underscores its potential as a sustainable and eco-friendly solution for remediating hydrocarbon-polluted environments, offering a promising avenue for environmental restoration and conservation efforts.
文摘The rising risk of synthetic preservatives as antimicrobial agent has increased,leading to potential allergic reactions,intoxications,cancer,and other degenerative diseases.As a result,essential oils(EOs),recognized as natural antimicrobial agents due to their extensive antibacterial properties,have gained attention.However,their industrial applicability is hindered by challenges such as volatility,poor water solubility,oxidation potential,photodegradation,and thermal instability.Nano-encapsulation has emerged as a transformative solution for delivering essential oils,enhancing their stability,bioavailability,and targeted administration.This review explores the use of nano-encapsulated essential oils in combating bacteria,focusing on their mechanisms of action and potential advancements for the food preservation industry.Various nano-encapsulation methods,including liposomes,nanoemulsions,polymeric nanoparticles,and biopolymers like chitosan and alginate,have shown promise in overcoming the limitations associated with EOs.
文摘Sulphur(S)is essential for the quality of oilseed crops,ranking as the fourth major nutrient after nitrogen(N),phosphorus(P),and potassium(K).While crops need sulphur in slightly lower amounts than phosphorus,maintaining optimum sulphur levels is crucial for oilseed yield and quality.Factors such as sulphur dynamics,impact of deficiency,application methods,and climate change must be addressed to improve agricultural practices.In South Asian countries like India,Pakistan,and Bangladesh,oilseeds are vital to the agricultural economy,supporting food security,livelihoods,and economic growth.However,climate change,marginal land cultivation,and a shift to more profitable crops like wheat and maize have led to a decline in oilseed productivity.Sulphur is particularly important for vital plant functions,including protein synthesis,chlorophyll formation,and resistance to abiotic stress.Proper management of sulphur can significantly enhance the yield,oil content,and seed quality.Sulphur fertilization improves crop resilience to pests,diseases,and environmental stresses,resulting in healthier plants.To optimize oilseed production,best practices for sulphur management like integrated nutrient management,regular soil testing,and the strategic application of sulphur-enriched fertilizers must be adopted.Despite its significance,many South Asian soils suffer from sulphur deficiency due to inadequate replenishment and reliance on high-analysis fertilizers.By enhancing sulphur availability,oilseed producers can significantly increase crop yields,improve oil content,and promote overall plant health,contributing to the agricultural economy and food security in the region.This manuscript aims to evaluate the critical role of sulphur in enhancing the yield,oil quality,and stress resilience of oilseed crops in South Asia.
基金supported by the National Key Research and Development Program(2016YFD0501303).
文摘The development of alternative therapies to treat chicken coccidiosis has become a hot topic because of the widespread use of conventional medicines.This study aimed to investigate the effectiveness of eugenol in treating Eimeria tenella infection in broilers.Broiers,at the age of 14 d,were orally infected with sporulated Eimeria tenella oocysts,and then,eugenol essential oil was added to chicken feed at three different dosages(0.1,0.2 or 0.4 g/kg).The anticoccidial effects of eugenol essential oil were assessed using the anticoccidial index(ACI).As a result,eugenol exhibited a moderate anticoccidial effect,with an ACI of 167.37 at 0.2 g/kg.After eugenol treatment,the expression of occludin in the epithelial cells of the chicken cecum was significantly greater(P<0.05)than that in the epithelial cells of the nontreated control(IC)group.The proportion of intestinal Lactobacillus_agilli increased.Eugenol therapy dramatically increased the activity of superoxide dismutase.After high-dose treatment,the expression of the proinflammatory factors IL-1βand IL-6 significantly decreased,while the expression of the cytokines IL-4 and IFN-γsignificantly increased.The safety of eugenol essential oil was evaluated at the 1,3 or 6 recommended doses.Overall,no significant differences were detected in the blood tests or serum biochemistry of the chickens between the treatment groups and the control group.As a result,eugenol essential oil can cure chicken coccidiosis by improving the intestinal microbial structure in the chicken cecum and decreasing the cecum's inflammatory reactions,thus strengthening immune function and eventually demonstrating anticoccidial properties.
基金supported by Doctor's Scientific Research Initiation Project of Yan'an University(YAU202213093)National Nature Science Foundation of China(Grant No.41503029).
文摘As an important component of light hydrocarbon compounds,alkylbenzene compounds lack indicators to indicate the source of organic matter of light oils and condensates.Forty-one oil samples from the Tarim Basin and Beibuwan Basin were analyzed by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry(GC×GC-TOFMS).The concentration distributions of thirteen light hydrocarbon compounds with organic matter source and sedimentary environment indication were studied.There is no significant difference in the concentrations of 1-methylpropylbenzene(MPB)in all studied oils.However,the concentrations of 2-MPB in the Tarim swamp oils are higher than that in the Beibuwan lacustrine oils and Tarim marine oils.Based on the significant concentration difference of 1-and 2-MPB in all studied oils,1-/2-MPB(MPBr)was proposed as an indicator to identify the source of organic matter in crude oils.The MPBr values greater than 1.5 indicate that the crude oil mainly comes from lower aquatic organisms,bacteria,and algae.The MPBr values greater than 1.0 and less than 1.5 indicate that crude oil was derived from the combined contributions of lower aquatic organisms,bacteria and algae,and terrestrial higher plants.The MPBr values less than 1.0 suggest that the crude oil was mainly derived from terrigenous higher plants.The MPBr values in crude oils basically are not or slightly affected by depositional environment and secondary alteration.The MPBr values can be used to infer the organic matter origin in sediments,especially for the lack of biomarkers of light oils and condensates.
文摘Background:In today’s context,vegetable oils,commonly used in culinary practices such as frying and baking,are integral to numerous daily dietary choices.Palm oil,a frequently employed vegetable oil,raises concerns surrounding food safety,thus presenting a significant challenge.Methods:This research aims to enhance consumer awareness regarding the potential health risks associated with 3-monochloropropane-1,2-diol(3-MCPD)and glycidyl fatty acid esters(GEs)commonly found in food and edible oil products.The study endeavours to apprise consumers of these health risks through a comprehensive survey.The survey enlisted the participation of 120 respondents within the age bracket of 18 years to those above 36 years(capped at 50 years).Results:Strikingly,a significant proportion,ranging from 88%to 89%,demonstrated a lack of awareness concerning the potential risks associated with 3-MCPD and GEs in food products.Conclusion:This study underscores the urgency of augmenting consumer's awareness levels regarding 3-MCPD and GEs.Furthermore,it promotes a more detailed examination of Malaysian edible oils and food products available in the market to establish an appropriate Tolerable Daily Intake for the Malaysian population.This research contributes to the broader discourse on food safety and public health by highlighting these crucial facets.
文摘Lemon oils are broadly used as flavoring agents in beverages,foods,cosmetics and pharmaceuticals,yet the adulteration of natural,particularly cold pressed lemon oils is very common in the industry due to its unmet demand and high cost.Nowadays,most quality control(QC)analysis of lemon oils is conducted by gas chromatography(GC)analysis,which is far from a reliable method.Oxygen heterocyclic compounds(OHCs)in non-volatile fraction are gaining increasing attention in authentication process because of the nearly finger-printing profiles of OHCs in cold pressed citrus essential oils.Our goal in this study was to identify OHCs using high performance liquid chromatography(HPLC)in lemon oils,establish OHC profiles,perform stepwise logistic regression analysis(SLRA)and build effective predicting model and further determine adulterated lemon oils by referencing the OHC profiles and established models.After HPLC analyses,profiling and SLRA modeling of 154 OHCs samples of industrial lemon oils,we found that the combination of isopimpinellin and total OHC concentration are essential and robust predictors to differentiate authentic samples from adulterated lemon oils with a success rate of 98%from the 5-fold cross validation.This study provided a reliable and efficient method in determining the authenticity of lemon oils.
文摘To improve the economic benefits and farmers’enthusiasm of Brassica napus production,this study compared the agronomic traits,economic traits,and incomes from vegetable and oilseed among five early maturing varieties of Brassica napus,thereby selecting the suitable materials for breeding the varieties for both vegetable and oil.The results showed that all of the five varieties had low erucic acid in oil and low glucosinolate in rapeseed meal.The economic benefits of the varieties for vegetable and oil were generally higher than those of the varieties for only oil.‘CNT01’had the best economic benefits,with the vegetable yield of 8175.3 kg/hm^(2),the rapeseed yield of 2476.5 kg/hm^(2),the vegetable income of 14859.0 yuan/hm^(2),the rapeseed income of 32701.2 yuan/hm^(2),and the net income of 35560.2 yuan/hm^(2).‘CNZ01’was selected as the variety with highest oil quality,with the rapeseed yield of 2712.6 kg/hm^(2) and the net income of 11775.6 yuan/hm^(2).In conclusion,‘CNT01’was selected as the variety for both vegetable and oil.
基金supported by the National Key Research and Development Program(2021YFD1300400)Natural Science Foundation of Guangdong Province(2021A1515010944)Science and Technology Projects in Guangzhou(202201011730).
文摘Background The benefits of combining benzoic acid and essential oils(BAO)to mitigate intestinal impairment during the weaning process have been well established,while the detailed underlying mechanism has not been fully elucidated.Previous research has primarily focused on the reparative effects of BAO on intestinal injury,while neglecting its potential in enhancing intestinal stress resistance.Methods In this study,we investigated the pre-protective effect of BAO against LPS-induced stress using a modified experimental procedure.Piglets were pre-supplemented with BAO for 14 d,followed by a challenge with LPS or saline to collect blood and intestinal samples.Results Our findings demonstrated that BAO supplementation led to significant improvements in piglets’final weight,average daily gain,and feed intake/body gain ratio.Additionally,BAO supplementation positively influenced the composition of intestinal microbiota,increasing beneficial Actinobacteriota and Alloprevotella while reducing harmful Desulfobacterota,Prevotella and Oscillospira.Furthermore,BAO supplementation effectively mitigated oxidative disturbances and inflammatory responses induced by acute LPS challenge.This was evidenced by elevated levels of T-AOC,SOD,and GSH,as well as decreased levels of MDA,TNF-α,and IL-6 in the plasma.Moreover,piglets subjected to LPS challenge and pre-supplemented with BAO exhibited significant improvements in intestinal morphological structure and enhanced integrity,as indicated by restored expression levels of Occludin and Claudin-1 compared to the non-supplemented counterparts.Further analysis revealed that BAO supplementation enhanced the jejunal antioxidative capacity by increasing GSH-Px levels and decreasing MDA levels under the LPS challenge and stimulated the activation of the Nrf2 signaling pathway.Additionally,the reduction of TLR4/NF-κB/MAPK signaling pathways activation and proinflammatory factor were also observed in the jejunal of those piglets fed with BAO.Conclusions In summary,our study demonstrates that pre-supplementation of BAO enhances the anti-stress capacity of weaned piglets by improving intestinal microbiota composition,reinforcing the intestinal barrier,and enhancing antioxidative and anti-inflammatory capabilities.These effects are closely associated with the activation of Nrf2 and TLR4/NF-κB/MAPK signaling pathways.
基金the National Centre of Excellence in Analytical Chemistry,University of Sindh,Jamshoro,Pakistan,for providing financial support to carry out this work.
文摘Oil blending is the method of choice used worldwide to improve oxidative stability and nutritional value.There is no such edible oil/fat that meets all the recommendations from the health point of view.The fatty acid composition of vegetable oils decides the fate of the oil.Pure single oil is unable to provide a balanced amount of fatty acids(FAs)required/recommended on a daily intake basis.Blending oils/fats is an appropriate procedure of physically mixing multiple oils in suitable proportions which may provide functional lipids with improved antioxidant potential and desirable physical and chemical properties.This review piled up the accessible data on the blending of diverse oils/fats in the combination of binary,ternary,quaternary,or other types of oils into a single blended oil.Blending can be found very convincing towards appropriate FA profile,enhancement in physicochemical characteristics,and augmented stability for the period of storage or when used as cooking/frying processes which could ultimately serve as an effectual dietary intervention towards the health protectiveness.
基金supported by the National Natural Science Foundation of China (Nos. 82474087, 82274108)the Young Qihuang Scholar Program of Traditional Chinese Medicine of the State (No. 2022256)+1 种基金Jiangxi University of Chinese Medicine Science and Technology Innovation Team Development Program (No.CXTD22006)Jiangxi Province 2023 Graduate Innovation Special Fund Project (No. YC2023-S793)。
文摘Essential oils(EOs) are natural, volatile substances derived from aromatic plants. They exhibit multiple pharmacological effects, including antibacterial, anticancer, anti-inflammatory, and antioxidant properties, with broad application prospects in health care, food, and agriculture. However, the instability of volatile components, which are susceptible to deterioration under light,heat, and oxygen exposure, as well as limited water solubility, have significantly impeded the development and application of EOs.Porous nanoclays are natural clay minerals with a layered structure. They possess unique structural characteristics such as large pore size, regular distribution, and tunable particle size, which are extensively utilized in drug delivery, adsorption separation, reaction catalysis, and other fields. Natural-derived porous nanoclays have garnered considerable attention for the encapsulation and delivery of EOs. This review comprehensively summarizes the structure, types, and properties of natural-derived porous nanoclays, focusing on the structural characteristics of porous nanoclays such as montmorillonite, palygorskite, halloysite, kaolinite, vermiculite, and natural zeolite. It also examines research advances in their delivery of EOs and explores engineering strategies to enhance the delivery of EOs by natural-derived porous nanoclays. Finally, various applications of natural-derived porous nanoclays for EOs in antibacterial, food preservation, repellent, and insecticide aspects are presented, providing a reference for the development and application of EOs.
文摘Vegetable oils are a source of energy, essential fatty acids, antioxidants and fat-soluble vitamins useful for human health care and development. These oils also contribute to organoleptic quality of their products’ derivatives. However, their chemical and physical properties can be modified by the mode of their extraction, storage and distribution. These modifications might negatively affect the nutritional quality of the oils. The goals of this study were to: sample different vegetable oils for cosmetic or dietary use marketed in Cameroon, and verify purity and oxidation states of each kind of oil through determination of its acidity, iodine, peroxide, saponification, refractive indexes and the conformity of the labeling. The carotene content, the level of polar components and specific absorbance were also determined. As the result, six oils namely palm, palm kernel, coconut, black cumin, peanut and shea butter were collected. Apart from labeling, chemicals and physicals parameters analyzed were generally in accordance with the Cameroonian and Codex Alimentarius standard. This study suggests that vegetable oils sampled in the Cameroonian market may not expose consumers to lipid oxidation products generating pathological oxidative stress and inflammation. However, efforts in application of existing standard need to be done as far as labeling are concerned.
基金the support from the Organic Geochemistry Lab of the OU and Oklahoma Geological Survey。
文摘Migration pathways and distances of the oils in reservoir are thought to affect the distribution of pyrrolic compounds such as carbazole,its alkyl derivatives(alkylated carbazoles)and benzocarbazoles,although other factors,including maturity and depositional environments may also affect the distribution of these organic nitrogen compounds.In this study,14 oil samples produced from conventional reservoirs in Pauls Valley,south Oklahoma were investigated using organic geochemical techniques.The sterane and hopane fingerprints suggest that most of the oils were sourced from the Devonian Woodford shale.Maturity parameters consistently indicate that the maturity level of the studied samples are all of similar maturity(Rc=~0.7%),suggesting the distribution of the organic nitrogen organic compounds is possibly reflecting variations in relative migration distances.The distribution of alkylcarbazoles revealed a preferential enrichment during migration,with the nitrogen-shielded alkylcarbazole tending to be enriched relative to the nitrogen-semi-shielded alkylcarbozoles particularly in oils produced close to the Arbuckle uplift to the east.Correspondingly,another family of pyrrolic compounds,benzocarbazoles,whose distributions also indicated that the Pauls Valley Woodford oils came from deeper part of the Anadarko Basin as the benzo-[a]/([a]+[c])-carbazole ratios decrease eastwards.In more specific migration systems,although the pyrrolic compound indicators are potentially disturbed by the structural complexes,the general migration directions suggest that the studied oils in Pauls Valley Hunton uplift were sourced from the deep basin area,and migrate upwards in porous sediments due to the buoyancy.This study investigates the feasibility of using pyrrolic compounds to estimate relative migration distances and will aid in the interpretation of migration history by using the distribution of carbazole,alkylated carbazoles,benzocarbazoles isomers in the Anadarko and Ardmore Basin petroleum systems.
文摘In nature, plant extracts play a crucial role in defending plants against biotic and abiotic stressors. Moreover, the use of plant-based products, such as plant extracts, represents a promising alternative to synthetic fungicides, which pose potential health risks to consumers. In this study, the antifungal activity of the essential oils (EOs) of Lippia multiflora, Eucalyptus camaldulensis and Ocimum americanum was evaluated against two strains of Aspergillus flavus via the agar dilution method. These two Aspergillus flavus fungi was isolated from Bamabra groundnut seeds. Lippia multiflora essential oil (EO) showed the best results compared with the other oils, with a minimum inhibitory concentration (MIC) of 9000 μg∙mL−1. The MIC for Eucalyptus camaldulensis and Ocimum americanum EOs was 10,800 μg∙mL−1. In view of their antifungal properties, these EOs could be used to develop a new, safe antifungal agent for food preservation.
基金supported by the National Key R&D Program of China (2018YFA0702400)the Science Foundation of China University of Petroleum, Beijing (2462023QNXZ017)。
文摘Heavy oil is an important resource in current petroleum exploitation, and the chemical composition information of heavy oil is crucial for revealing its viscosity-inducing mechanism and solving practical exploitation issues. In this study, the techniques of high-temperature gas chromatography and high-resolution mass spectrometry equipped with an electrospray ionization source were applied to reveal the chemical composition of typical heavy oils from western, central, and eastern China. The results indicate that these heavy oils display significant variations in their bulk properties, with initial boiling points all above 200℃. Utilizing pre-treatment and ESI high-resolution mass spectrometry, an analysis of the molecular composition of saturated hydrocarbons, aromatic hydrocarbons, acidic oxygen compounds, sulfur compounds, basic nitrogen compounds, and neutral nitrogen compounds within the heavy oil was conducted. Ultimately, a semi-quantitative analysis of the molecular composition of the heavy oil was achieved by integrating the elemental content. The semi-quantitative analysis results of Shengli-J8 heavy oil and a conventional Shengli crude oil show that Shengli-J8 heavy oil lacks alkanes and low molecular weight aromatic hydrocarbons, which contributes to its high viscosity. Additionally,characteristic molecular sets for different heavy oils were identified based on the semi-quantitative analysis of molecular composition. The semi-quantitative analysis of molecular composition in heavy oils may provide valuable reference data for establishing theoretical models on the viscosity-inducing mechanism in heavy oils and designing viscosity-reducing agents for heavy oil exploitation.
基金supported by the Queensland-Chinese Academy of Sciences Collaborative Science Fund(QCSA-0001)。
文摘Antibiotics in poultry feed to boost growth performance are becoming increasingly contentious due to concerns over antimicrobial resistance development.Essential oils(EOs),as natural,plant-derived compounds,have demonstrated antimicrobial and antioxidant properties.EOs may potentially improve poultry health and growth performance when included in poultry feed.Nevertheless,the incorporation of EOs as nutritional additives is hindered by their high volatility,low water solubility,poor intestinal absorption,and sensitivity to environmental conditions.Recently,nanoencapsulation strategies using nanoformulations have emerged as a potential solution to these challenges,improving the stability and bioavailability of EOs,and enabling targeted delivery in poultry feed.This review provides an overview of the antioxidant and antibacterial properties of EOs,the current limitations of their applications in poultry feed,and the recent advancements in nano-engineering to overcome these limitations.Furthermore,we outline the potential future research direction on EO nanoformulations,emphasizing their promising role in advancing sustainable poultry nutrition.
基金funded by the National Natural Science Foundation of China(No.42272160,No.41502133).
文摘The sensitivity of biodegradation on diamondoids was investigated using a series of biodegraded oil samples from the Ronier tectonic unit of Bongor Basin,Chad.The results suggest that diamondoids,including adamantanes(As)and diamantanes(Ds),are relatively resistant to biodegradation and obvious biodegradation was observed in oils with a Peters-Moldowan(PM)biodegradation rank of 6 or more.Overall,the sensibility of biodegradation on diamondoids is generally similar to hopanes and regular steranes.As biodegradation evolves,the changes in concentration and components of diamondoids show that the biodegradation process is selective and stepwise.The significant increase of MD/MA and DMD/DMA for oils with a PM ranking 6^(+) indicates that diamantanes are generally more resistant to biodegradation than adamantanes.The similar trends of DMA/MA,EA/MA,MD/D,DMD/MD and other relevant indexes,show that higher alkylation homologs are more resistant to biodegradation.The commonly used diamondoid ratios,such as MAI,EAI,MDI and DMID-1,are obviously affected by biodegradation at the stage of high-level biodegradation,which may indicate that these ratios should be used with caution in case of severely degraded oils.
基金supported by a grant from the Vietnam Academy of Science and Technology,Project Code CSCL09.03/23-24.
文摘Our study aimed to compare the essential oil(EO)concentration and composition of several Apiaceae species growing in the Northern region of Vietnam.The yields of EOs from materials ranged from 0.03%(root EO of Angelica acutiloba and aerial parts EO of Heracleum bivittatum)-0.27%(leaf EO of Xyloselinum vietnamense).Gas chromatography-mass spectrometry(GC-MS)allowed the identification of 74 components in the EOs of six Apiaceae species,making up 94.4%–100.0%of the oils.In EO from Angelica acutiloba,(Z)-ligustilide accounted for an extremely large proportion(94.9%).EO of Angelica pubescens was dominated by six character-istic components includingα-pinene(21.5%),β-phellandrene(18.1%),p-cymene(12.2%),3-methylnonane(8.7%),o-cymene(8.1%),and D-sylvestrene(6.2%).The EO from Cryptotaenia japonica was characterized by high amounts ofα-selinene(48.7%),β-selinene(23.7%),and trans-β-farnesene(5.4%).The EOs from leaves and stems of Xyloselinum vietnamense were characterized by high concentrations of sabinene(69.8%and 33.8%),4-terpineol(8.7%and 7.4%)andβ-pinene(4.0%and 6.5%)while EOs from aerial parts and root of Xylo-selinum leonidii comprise four characteristic monoterpenes includingα-pinene(28.2%and 52.8%),β-pinene(7.9%and 10.3%),β-phellandrene(7.6%and 15.3%),and sabinene(3.0%and 4.1%).Additionally,cryptone is also one of the major components in the EO of Xyloselinum leonidii(13.2%in the aerial parts oil and 2.8%in the root oil).In the EOs isolated from the aerial parts and root of Heracleum bivittatum,α-pinene(22.5%and 70.2%)andβ-pinene(43.2%and 20.0%)were the predominant monoterpenes.Sabinene appeared in the EO from aerial parts of Heracleum bivittatum with a relatively high concentration(13.5%)while bornyl acetate(5.1%)was also one of the main components in the EO from its aerial parts but was not detected in other Apiaceae species in the present study.These databases help identify and control the quality of plant material studied from the family Apiaceae growing in Vietnam.