期刊文献+
共找到1,324篇文章
< 1 2 67 >
每页显示 20 50 100
PHUI-GA: GPU-based efficiency evolutionary algorithm for mining high utility itemsets
1
作者 JIANG Haipeng WU Guoqing +3 位作者 SUN Mengdan LI Feng SUN Yunfei FANG Wei 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期965-975,共11页
Evolutionary algorithms(EAs)have been used in high utility itemset mining(HUIM)to address the problem of discover-ing high utility itemsets(HUIs)in the exponential search space.EAs have good running and mining perform... Evolutionary algorithms(EAs)have been used in high utility itemset mining(HUIM)to address the problem of discover-ing high utility itemsets(HUIs)in the exponential search space.EAs have good running and mining performance,but they still require huge computational resource and may miss many HUIs.Due to the good combination of EA and graphics processing unit(GPU),we propose a parallel genetic algorithm(GA)based on the platform of GPU for mining HUIM(PHUI-GA).The evolution steps with improvements are performed in central processing unit(CPU)and the CPU intensive steps are sent to GPU to eva-luate with multi-threaded processors.Experiments show that the mining performance of PHUI-GA outperforms the existing EAs.When mining 90%HUIs,the PHUI-GA is up to 188 times better than the existing EAs and up to 36 times better than the CPU parallel approach. 展开更多
关键词 high utility itemset mining(HUIM) graphics process-ing unit(GPU)parallel genetic algorithm(GA) mining perfor-mance
在线阅读 下载PDF
New algorithm of mining frequent closed itemsets
2
作者 张亮 任永功 付玉 《Journal of Southeast University(English Edition)》 EI CAS 2008年第3期335-338,共4页
A new algorithm based on an FC-tree (frequent closed pattern tree) and a max-FCIA (maximal frequent closed itemsets algorithm) is presented, which is used to mine the frequent closed itemsets for solving memory an... A new algorithm based on an FC-tree (frequent closed pattern tree) and a max-FCIA (maximal frequent closed itemsets algorithm) is presented, which is used to mine the frequent closed itemsets for solving memory and time consuming problems. This algorithm maps the transaction database by using a Hash table,gets the support of all frequent itemsets through operating the Hash table and forms a lexicographic subset tree including the frequent itemsets.Efficient pruning methods are used to get the FC-tree including all the minimum frequent closed itemsets through processing the lexicographic subset tree.Finally,frequent closed itemsets are generated from minimum frequent closed itemsets.The experimental results show that the mapping transaction database is introduced in the algorithm to reduce time consumption and to improve the efficiency of the program.Furthermore,the effective pruning strategy restrains the number of candidates,which saves space.The results show that the algorithm is effective. 展开更多
关键词 frequent itemsets frequent closed itemsets minimum frequent closed itemsets maximal frequent closed itemsets frequent closed pattern tree
在线阅读 下载PDF
Double-layer Bayesian Classifier Ensembles Based on Frequent Itemsets 被引量:3
3
作者 Wei-Guo Yi Jing Duan Ming-Yu Lu 《International Journal of Automation and computing》 EI 2012年第2期215-220,共6页
Numerous models have been proposed to reduce the classification error of Naive Bayes by weakening its attribute independence assumption and some have demonstrated remarkable error performance. Considering that ensembl... Numerous models have been proposed to reduce the classification error of Naive Bayes by weakening its attribute independence assumption and some have demonstrated remarkable error performance. Considering that ensemble learning is an effective method of reducing the classifmation error of the classifier, this paper proposes a double-layer Bayesian classifier ensembles (DLBCE) algorithm based on frequent itemsets. DLBCE constructs a double-layer Bayesian classifier (DLBC) for each frequent itemset the new instance contained and finally ensembles all the classifiers by assigning different weight to different classifier according to the conditional mutual information. The experimental results show that the proposed algorithm outperforms other outstanding algorithms. 展开更多
关键词 Double-layer Bayesian CLASSIFIER frequent itemsets conditional mutual information support.
在线阅读 下载PDF
Mining Frequent Closed Itemsets in Large High Dimensional Data
4
作者 余光柱 曾宪辉 邵世煌 《Journal of Donghua University(English Edition)》 EI CAS 2008年第4期416-424,共9页
Large high-dimensional data have posed great challenges to existing algorithms for frequent itemsets mining.To solve the problem,a hybrid method,consisting of a novel row enumeration algorithm and a column enumeration... Large high-dimensional data have posed great challenges to existing algorithms for frequent itemsets mining.To solve the problem,a hybrid method,consisting of a novel row enumeration algorithm and a column enumeration algorithm,is proposed.The intention of the hybrid method is to decompose the mining task into two subtasks and then choose appropriate algorithms to solve them respectively.The novel algorithm,i.e.,Inter-transaction is based on the characteristic that there are few common items between or among long transactions.In addition,an optimization technique is adopted to improve the performance of the intersection of bit-vectors.Experiments on synthetic data show that our method achieves high performance in large high-dimensional data. 展开更多
关键词 frequent closed itemsets large highdimensional data row enumeration column enumeration hybrid method
在线阅读 下载PDF
基于频繁模式树和深度学习的频繁项集挖掘算法 被引量:1
5
作者 李洋 李华 《黑龙江工业学院学报(综合版)》 2025年第1期94-98,共5页
随着数据量的急剧增长,从海量数据中挖掘有价值的信息变得尤为重要。频繁项集挖掘作为数据挖掘的一个关键领域,旨在识别数据集中频繁出现的项集,这些项集能够揭示数据间的内在联系,并为后续的高级分析提供基础。然而,传统的频繁项集挖... 随着数据量的急剧增长,从海量数据中挖掘有价值的信息变得尤为重要。频繁项集挖掘作为数据挖掘的一个关键领域,旨在识别数据集中频繁出现的项集,这些项集能够揭示数据间的内在联系,并为后续的高级分析提供基础。然而,传统的频繁项集挖掘算法在处理大规模数据集时面临准确性和效率的挑战。为了解决这些问题,本研究提出频繁模式树和深度学习的新型频繁项集挖掘算法。该算法首先利用深度置信网络提取数据的高级特征,然后基于这些特征构建频繁模式树,以高效挖掘频繁项集。实验结果表明,该算法在查全率和查准率方面均表现优异,查全率高达97.56%,查准率高达95.49%,显示出其在实际应用中的高准确性和广泛适用性。 展开更多
关键词 频繁模式树 深度学习 频繁项集 数据挖掘 挖掘算法
在线阅读 下载PDF
基于结合型制图方法的土壤类型推理研究 被引量:2
6
作者 李坤 黄魏 +2 位作者 傅佩红 陈宇昊 王子影 《土壤学报》 北大核心 2025年第2期348-361,共14页
通过数字土壤制图获取更高精度的土壤类型空间分布,对于人们合理利用土地资源具有重要意义。本研究基于实地采样点根据母质类型筛选环境因子,并使用随机森林,土壤景观推理模型方法(Soil-land Inference Model,So LIM)、K邻近算法(K-Near... 通过数字土壤制图获取更高精度的土壤类型空间分布,对于人们合理利用土地资源具有重要意义。本研究基于实地采样点根据母质类型筛选环境因子,并使用随机森林,土壤景观推理模型方法(Soil-land Inference Model,So LIM)、K邻近算法(K-Nearest Neighbor,KNN)等三种不同制图方法分别分区建模,得到制图结果后合并形成全域土壤类型空间分布图,继而,使用FP-Growth算法挖掘环境因子内部关联关系(频繁项集),分别将其与上述三种制图结果结合,再次推理土壤类型空间分布。制图结果显示:(1)按母质类型分开制图的效果和精度均较母质一起制图时好,且土壤类型空间分布的推理也更加合理。(2)随机森林与频繁项集结合制图在本研究中精度最高,为70.73%,且与另外两种结合方法推理的土壤类型空间分布也有一定的相似性,通过对比分析能够确定研究区土种类型的空间分布。(3)与频繁项集结合后,三种方法的制图精度和Kappa系数均有提升,提升最多的为KNN方法(分别提升9.76%,11.70%),最少的为随机森林方法(分别提升4.88%,5.85%),验证了本文设计结合方法的有效性。本研究主要进行了两方面探究,一方面探究了母质对环境因子筛选的影响,为数字土壤制图的因子筛选提供参考;另一方面通过将频繁项集与不同制图方法相结合为数字土壤制图提供了新的方法和思路,同时也为关联关系的信息化应用提供了参考。 展开更多
关键词 环境因子 母质 机器学习 频繁项集 数字土壤制图
在线阅读 下载PDF
一种自适应的数据流近期加权频繁项集挖掘
7
作者 贺慧爱 荀亚玲 +1 位作者 王林青 杨海峰 《太原科技大学学报》 2025年第2期152-159,共8页
针对传统频繁项集挖掘仅考虑项目频率导致的信息损失,以及流式数据所包含知识将随时间推移发生变化的问题,提出一种高效的近期加权频繁项集挖掘算法RWFIM-Neg.RWFIM-Neg引入时间衰减因子,通过设置相似性阈值自适应地调整不同时域数据流... 针对传统频繁项集挖掘仅考虑项目频率导致的信息损失,以及流式数据所包含知识将随时间推移发生变化的问题,提出一种高效的近期加权频繁项集挖掘算法RWFIM-Neg.RWFIM-Neg引入时间衰减因子,通过设置相似性阈值自适应地调整不同时域数据流的衰减程度;在挖掘过程中,通过引入一种更高效的数据结构NegNodeset避免了复杂的建树过程和繁琐的支持度计算,其采用前缀树中的节点集Nodesets,利用位运算来迅速得到没有父子节点关系的负节点集NegNodesets,提高了连接效率,使得其支持度计算的复杂度降低到O(n);同时采用超集等价和父子等价修剪策略,有效地减少了最近加权频繁模式的搜索空间。实验结果表明,其性能优于最新的RWFIM-M算法和传统的WFI挖掘算法。 展开更多
关键词 相似度 时间衰减因子 近期加权频繁项集 位图树 数据流
在线阅读 下载PDF
象群优化的高效用项集挖掘算法
8
作者 何菲菲 韩萌 +2 位作者 张瑞华 李春鹏 孟凡兴 《南京师大学报(自然科学版)》 北大核心 2025年第2期124-138,共15页
启发式高效用项集挖掘是近年数据挖掘领域的一个热点研究课题.为了解决启发式高效用项集挖掘算法过早收敛导致的项集丢失问题,设计了一种新的启发式高效用项集挖掘算法,旨在较少的迭代次数内获取更多的高效用项集.其中,提出的基于母象... 启发式高效用项集挖掘是近年数据挖掘领域的一个热点研究课题.为了解决启发式高效用项集挖掘算法过早收敛导致的项集丢失问题,设计了一种新的启发式高效用项集挖掘算法,旨在较少的迭代次数内获取更多的高效用项集.其中,提出的基于母象因子的位差进化策略,有效缩减了搜索空间,提高了算法的执行效率.为了防止算法收敛过快陷入局部最优,提出两阶段种群多样性维护策略,保持了种群多样性和收敛性间的平衡.在真实数据集上进行的大量实验表明,提出的算法在高效用项集数量、时空效率和算法收敛性方面均优于现有的先进算法. 展开更多
关键词 高效用项集挖掘 启发式算法 象群优化 进化策略 多样性维护策略
在线阅读 下载PDF
关联规则挖掘算法的研究与实现
9
作者 亓文娟 《河西学院学报》 2025年第5期34-40,共7页
关联规则挖掘是数据挖掘的一个重要分支,在众多实际应用中发挥着举足轻重的作用.对关联规则的Apriori算法思想展开了深入剖析,针对该算法存在的不足之处,尝试将形式概念理论引入关联规则挖掘中,通过探讨频繁项集与概念格之间的潜在关系... 关联规则挖掘是数据挖掘的一个重要分支,在众多实际应用中发挥着举足轻重的作用.对关联规则的Apriori算法思想展开了深入剖析,针对该算法存在的不足之处,尝试将形式概念理论引入关联规则挖掘中,通过探讨频繁项集与概念格之间的潜在关系,提出了一种基于概念格的频繁项集生成算法.为了验证算法的有效性和优越性,以某高校大学生心理健康数据作为形式背景,开展了关联分析实验,结果表明在支持度较低的情况下,基于概念格的频繁项集生成算法展现出了显著的优势,能够更为高效、准确地挖掘出隐藏在数据中的有价值信息. 展开更多
关键词 关联规则 概念格 频繁项集
在线阅读 下载PDF
基于关联规则挖掘的机房功率分析研究
10
作者 李海鸥 陈鑫 +3 位作者 谢福 吴磊 雷波 梅红 《电信工程技术与标准化》 2025年第4期52-56,共5页
为加快核心机房绿色低碳化,推动通信机房绿色改造,本文对涉及的网络资源功率设计使用情况进行深度挖掘分析,判断网络资源的功率或者机房规划设计是否满足绿色低碳要求。同时采用机器学习算法对挖掘出的机房下挂空调功率属性数据集进行... 为加快核心机房绿色低碳化,推动通信机房绿色改造,本文对涉及的网络资源功率设计使用情况进行深度挖掘分析,判断网络资源的功率或者机房规划设计是否满足绿色低碳要求。同时采用机器学习算法对挖掘出的机房下挂空调功率属性数据集进行预测训练并生成评估模型,用于实现资源功率数据的准确性诊断,从而为绿色机房改造和规划提供了准确的数据支撑。 展开更多
关键词 深度挖掘 频繁项集 机房功率分析
在线阅读 下载PDF
多数据流协同近期加权频繁项集挖掘
11
作者 史静 贺慧爱 《科技创新与生产力》 2025年第6期18-22,共5页
针对流式数据所包含知识将随时间推移发生变化以及现有的算法不能很好地作用于多数据流频繁项集挖掘的问题,本研究引入时间衰减因子以及基于字典序列的前缀树CP-Tree,提出了多数据流的协同近期加权频繁项集挖掘(Collaborative Recency W... 针对流式数据所包含知识将随时间推移发生变化以及现有的算法不能很好地作用于多数据流频繁项集挖掘的问题,本研究引入时间衰减因子以及基于字典序列的前缀树CP-Tree,提出了多数据流的协同近期加权频繁项集挖掘(Collaborative Recency Weighted Frequent Itemset Mining,CRWFIM)算法。该算法将多个数据流按基准尺度划分为不同的数据流,并根据相似度确定其衰减因子以归为一族,使用位拼接挖掘算法从数据流中产生频繁项集,通过构建基于字典序列的前缀树CP-Tree来保存频繁项集的变化趋势,快速地挖掘出频繁项集。通过挖掘跨多个数据流的协同近期加权频繁项集,可以准确地识别出一组吸引许多用户的对象。相比FIUT-Stream算法、MCMD-Stream算法和FI-BAT算法,CRWFIM算法不仅能够减小内存利用率、缩短挖掘的查询响应时间,而且还可以提高算法的查准率和查全率。实验结果表明CRWFIM算法能够很好地应用于多数据流协同频繁项集挖掘。 展开更多
关键词 多数据流 协同 近期加权频繁项集挖掘
在线阅读 下载PDF
基于频繁项集的主动探测式重合闸故障诊断方法
12
作者 杨洸 周圆 +1 位作者 王超 王向杰 《系统仿真技术》 2025年第1期32-37,共6页
重合闸技术操作逻辑简单,但无法准确判断故障的类型,在重合闸失败时,容易引发更大的故障。针对这一问题,本研究提出基于频繁项集的主动探测式重合闸故障诊断方法。根据重合闸在电力系统的分布情况,设定采样点,利用传感器采集重合闸的运... 重合闸技术操作逻辑简单,但无法准确判断故障的类型,在重合闸失败时,容易引发更大的故障。针对这一问题,本研究提出基于频繁项集的主动探测式重合闸故障诊断方法。根据重合闸在电力系统的分布情况,设定采样点,利用传感器采集重合闸的运行数据,再对其进行滤波处理和转换,并对处理后的数据进行离散化处理。从处理后的数据中提取重合闸故障特征,再计算故障特征的支持度、置信度和提升度,挖掘出重合闸数据故障特征的频繁项集,再计算重合闸运行数据的识别值,识别出重合闸的故障模式。通过计算重合闸故障模式下的状态参数,诊断出重合闸的故障类型,实现对重合闸故障的诊断。实验结果表明,设计的故障诊断方法在实际应用中曲线下面积(AUC)值为0.98,其诊断效果较好。 展开更多
关键词 频繁项集 主动探测式重合闸 重合闸故障 故障诊断 离散化 故障模式 故障类型
在线阅读 下载PDF
基于属性变化的增量式模糊关联规则更新算法
13
作者 杨星星 冯依虎 《许昌学院学报》 2025年第5期117-122,共6页
模糊关联规则算法仅适用于挖掘静态数据库,但生活中数据库是不断更新变化的.基于此,首先,提出一种基于属性变化增量式模糊关联规则的FACA+更新算法:能在已有频繁项集的基础上快速更新规则,大大降低存储项集的空间复杂度和计算项集支持... 模糊关联规则算法仅适用于挖掘静态数据库,但生活中数据库是不断更新变化的.基于此,首先,提出一种基于属性变化增量式模糊关联规则的FACA+更新算法:能在已有频繁项集的基础上快速更新规则,大大降低存储项集的空间复杂度和计算项集支持度的时间复杂度.其次,针对FACA+算法的不足进行改进,提出一种AFACA+优化算法:(1)使用高效的连接方式得到新增候选项集,降低生成候选项集的复杂度;(2)仅需扫描特定事务即可计算项集模糊支持度,大大减少扫描事务的个数,一定程度上减少运行时间,提高挖掘效率. 展开更多
关键词 属性变化 增量式模糊关联规则 候选项集 连接率 模糊支持度
在线阅读 下载PDF
A novel algorithm for frequent itemset mining in data warehouses 被引量:2
14
作者 徐利军 谢康林 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第2期216-224,共9页
Current technology for frequent itemset mining mostly applies to the data stored in a single transaction database. This paper presents a novel algorithm MultiClose for frequent itemset mining in data warehouses. Multi... Current technology for frequent itemset mining mostly applies to the data stored in a single transaction database. This paper presents a novel algorithm MultiClose for frequent itemset mining in data warehouses. MultiClose respectively computes the results in single dimension tables and merges the results with a very efficient approach. Close itemsets technique is used to improve the performance of the algorithm. The authors propose an efficient implementation for star schemas in which their al- gorithm outperforms state-of-the-art single-table algorithms. 展开更多
关键词 Frequent itemset Close itemset Star schema Dimension table Fact table
在线阅读 下载PDF
Frequent Itemset Mining of User’s Multi-Attribute under Local Differential Privacy 被引量:2
15
作者 Haijiang Liu Lianwei Cui +1 位作者 Xuebin Ma Celimuge Wu 《Computers, Materials & Continua》 SCIE EI 2020年第10期369-385,共17页
Frequent itemset mining is an essential problem in data mining and plays a key role in many data mining applications.However,users’personal privacy will be leaked in the mining process.In recent years,application of ... Frequent itemset mining is an essential problem in data mining and plays a key role in many data mining applications.However,users’personal privacy will be leaked in the mining process.In recent years,application of local differential privacy protection models to mine frequent itemsets is a relatively reliable and secure protection method.Local differential privacy means that users first perturb the original data and then send these data to the aggregator,preventing the aggregator from revealing the user’s private information.We propose a novel framework that implements frequent itemset mining under local differential privacy and is applicable to user’s multi-attribute.The main technique has bitmap encoding for converting the user’s original data into a binary string.It also includes how to choose the best perturbation algorithm for varying user attributes,and uses the frequent pattern tree(FP-tree)algorithm to mine frequent itemsets.Finally,we incorporate the threshold random response(TRR)algorithm in the framework and compare it with the existing algorithms,and demonstrate that the TRR algorithm has higher accuracy for mining frequent itemsets. 展开更多
关键词 Local differential privacy frequent itemset mining user’s multi-attribute
在线阅读 下载PDF
FICW: Frequent Itemset Based Text Clustering with Window Constraint
16
作者 ZHOU Chong LU Yansheng ZOU Lei HU Rong 《Wuhan University Journal of Natural Sciences》 CAS 2006年第5期1345-1351,共7页
Most of the existing text clustering algorithms overlook the fact that one document is a word sequence with semantic information. There is some important semantic information existed in the positions of words in the s... Most of the existing text clustering algorithms overlook the fact that one document is a word sequence with semantic information. There is some important semantic information existed in the positions of words in the sequence. In this paper, a novel method named Frequent Itemset-based Clustering with Window (FICW) was proposed, which makes use of the semantic information for text clustering with a window constraint. The experimental results obtained from tests on three (hypertext) text sets show that FICW outperforms the method compared in both clustering accuracy and efficiency. 展开更多
关键词 text clustering frequent itemsets search engine
在线阅读 下载PDF
Mining φ-Frequent Itemset Using FP-Tree
17
作者 李天瑞 《Journal of Modern Transportation》 2001年第1期67-74,共8页
The problem of association rule mining has gained considerable prominence in the data mining community for its use as an important tool of knowledge discovery from large scale databases. And there has been a spurt of... The problem of association rule mining has gained considerable prominence in the data mining community for its use as an important tool of knowledge discovery from large scale databases. And there has been a spurt of research activities around this problem. However, traditional association rule mining may often derive many rules in which people are uninterested. This paper reports a generalization of association rule mining called φ association rule mining. It allows people to have different interests on different itemsets that arethe need of real application. Also, it can help to derive interesting rules and substantially reduce the amount of rules. An algorithm based on FP tree for mining φ frequent itemset is presented. It is shown by experiments that the proposed methodis efficient and scalable over large databases. 展开更多
关键词 data processing DATABASES φ association rule mining φ frequent itemset FP tree data mining
在线阅读 下载PDF
Backward Support Computation Method for Positive and Negative Frequent Itemset Mining
18
作者 Mrinmoy Biswas Akash Indrani Mandal Md. Selim Al Mamun 《Journal of Data Analysis and Information Processing》 2023年第1期37-48,共12页
Association rules mining is a major data mining field that leads to discovery of associations and correlations among items in today’s big data environment. The conventional association rule mining focuses mainly on p... Association rules mining is a major data mining field that leads to discovery of associations and correlations among items in today’s big data environment. The conventional association rule mining focuses mainly on positive itemsets generated from frequently occurring itemsets (PFIS). However, there has been a significant study focused on infrequent itemsets with utilization of negative association rules to mine interesting frequent itemsets (NFIS) from transactions. In this work, we propose an efficient backward calculating negative frequent itemset algorithm namely EBC-NFIS for computing backward supports that can extract both positive and negative frequent itemsets synchronously from dataset. EBC-NFIS algorithm is based on popular e-NFIS algorithm that computes supports of negative itemsets from the supports of positive itemsets. The proposed algorithm makes use of previously computed supports from memory to minimize the computation time. In addition, association rules, i.e. positive and negative association rules (PNARs) are generated from discovered frequent itemsets using EBC-NFIS algorithm. The efficiency of the proposed algorithm is verified by several experiments and comparing results with e-NFIS algorithm. The experimental results confirm that the proposed algorithm successfully discovers NFIS and PNARs and runs significantly faster than conventional e-NFIS algorithm. 展开更多
关键词 Data Mining Positive Frequent itemset Negative Frequent itemset Association Rule Backward Support
在线阅读 下载PDF
A Depth-first Algorithm of Finding All Association Rules Generated by a Frequent Itemset
19
作者 武坤 姜保庆 魏庆 《Journal of Donghua University(English Edition)》 EI CAS 2006年第6期1-4,9,共5页
The classical algorithm of finding association rules generated by a frequent itemset has to generate all non-empty subsets of the frequent itemset as candidate set of consequents. Xiongfei Li aimed at this and propose... The classical algorithm of finding association rules generated by a frequent itemset has to generate all non-empty subsets of the frequent itemset as candidate set of consequents. Xiongfei Li aimed at this and proposed an improved algorithm. The algorithm finds all consequents layer by layer, so it is breadth-first. In this paper, we propose a new algorithm Generate Rules by using Set-Enumeration Tree (GRSET) which uses the structure of Set-Enumeration Tree and depth-first method to find all consequents of the association rules one by one and get all association rules correspond to the consequents. Experiments show GRSET algorithm to be practicable and efficient. 展开更多
关键词 association rule frequent itemset breath-first depth-first consequent.
在线阅读 下载PDF
FPGA-Based Stream Processing for Frequent Itemset Mining with Incremental Multiple Hashes
20
作者 Kasho Yamamoto Masayuki Ikebe +1 位作者 Tetsuya Asai Masato Motomura 《Circuits and Systems》 2016年第10期3299-3309,共11页
With the advent of the IoT era, the amount of real-time data that is processed in data centers has increased explosively. As a result, stream mining, extracting useful knowledge from a huge amount of data in real time... With the advent of the IoT era, the amount of real-time data that is processed in data centers has increased explosively. As a result, stream mining, extracting useful knowledge from a huge amount of data in real time, is attracting more and more attention. It is said, however, that real- time stream processing will become more difficult in the near future, because the performance of processing applications continues to increase at a rate of 10% - 15% each year, while the amount of data to be processed is increasing exponentially. In this study, we focused on identifying a promising stream mining algorithm, specifically a Frequent Itemset Mining (FIsM) algorithm, then we improved its performance using an FPGA. FIsM algorithms are important and are basic data- mining techniques used to discover association rules from transactional databases. We improved on an approximate FIsM algorithm proposed recently so that it would fit onto hardware architecture efficiently. We then ran experiments on an FPGA. As a result, we have been able to achieve a speed 400% faster than the original algorithm implemented on a CPU. Moreover, our FPGA prototype showed a 20 times speed improvement compared to the CPU version. 展开更多
关键词 Data Mining Frequent itemset Mining FPGA Stream Processing
在线阅读 下载PDF
上一页 1 2 67 下一页 到第
使用帮助 返回顶部