The zebrafish embryos were widely employed in genetics,development and drug discovery studies as miniatured animal models.Sorting of two-color fluorescent embryos is often required in large-scale experiments but it is...The zebrafish embryos were widely employed in genetics,development and drug discovery studies as miniatured animal models.Sorting of two-color fluorescent embryos is often required in large-scale experiments but it is challenging to manually sort with high efficiency.Here,we reported a high-throughput sorting system for two-color fluorescent zebraflsh embryos.The embryos can be automatically loaded from a sample pool and sorted based on the average fluorescent intensity.The two-color fluorescent signals were split into two lines and detected by an area array camera.The system achieves the sorting of 100 embryos in less than 10 min with an accuracy of greater than 95%.展开更多
The progress of modern industry has given rise to great requirements for network transmission latency and reliability in domains such as smart grid and intelligent driving.To address these challenges,the concept of Ti...The progress of modern industry has given rise to great requirements for network transmission latency and reliability in domains such as smart grid and intelligent driving.To address these challenges,the concept of Time-sensitive networking(TSN)is proposed by IEEE 802.1TSN working group.In order to achieve low latency,Cyclic queuing and forwarding(CQF)mechanism is introduced to schedule Timetriggered(TT)flows.In this paper,we construct a TSN model based on CQF and formulate the flow scheduling problem as an optimization problem aimed at maximizing the success rate of flow scheduling.The problem is tackled by a novel algorithm that makes full use of the characteristics and the relationship between the flows.Firstly,by K-means algorithm,the flows are initially partitioned into subsets based on their correlations.Subsequently,the flows within each subset are sorted by a new special criteria extracted from multiple features of flow.Finally,a flow offset selecting method based on load balance is used for resource mapping,so as to complete the process of flow scheduling.Experimental results demonstrate that the proposed algorithm exhibits significant advantages in terms of scheduling success rate and time efficiency.展开更多
The somatotopic representation of specific body parts is a well-established spatial organizational principle in the primary somatosensory and motor cortices.
The Chinese express delivery industry processes nearly 110 billion items in 2022,averaging an annual growth rate of 200%.Among the various types of sorting systems used for handling express items,cross-belt sorting sy...The Chinese express delivery industry processes nearly 110 billion items in 2022,averaging an annual growth rate of 200%.Among the various types of sorting systems used for handling express items,cross-belt sorting systems stand out as the most crucial.However,despite their high degree of automation,the workload for operators has intensified owing to the surging volume of express items.In the era of Industry 5.0,it is imperative to adopt new technologies that not only enhance worker welfare but also improve the efficiency of cross-belt systems.Striking a balance between efficiency in handling express items and operator well-being is challenging.Digital twin technology offers a promising solution in this respect.A realization method of a human-machine integrated digital twin is proposed in this study,enabling the interaction of biological human bodies,virtual human bodies,virtual equipment,and logistics equipment in a closed loop,thus setting an operating framework.Key technologies in the proposed framework include a collection of heterogeneous data from multiple sources,construction of the relationship between operator fatigue and operation efficiency based on physiological measurements,virtual model construction,and an online optimization module based on real-time simulation.The feasibility of the proposed method was verified in an express distribution center.展开更多
On-demand droplet sorting is extensively applied for the efficient manipulation and genome-wide analysis of individual cells.However,state-of-the-art microfluidic chips for droplet sorting still suffer from low sortin...On-demand droplet sorting is extensively applied for the efficient manipulation and genome-wide analysis of individual cells.However,state-of-the-art microfluidic chips for droplet sorting still suffer from low sorting speeds,sample loss,and labor-intensive preparation procedures.Here,we demonstrate the development of a novel microfluidic chip that integrates droplet generation,on-demand electrostatic droplet charging,and high-throughput sorting.The charging electrode is a copper wire buried above the nozzle of the microchannel,and the deflecting electrode is the phosphate buffered saline in the microchannel,which greatly simplifies the structure and fabrication process of the chip.Moreover,this chip is capable of high-frequency droplet generation and sorting,with a frequency of 11.757 kHz in the drop state.The chip completes the selective charging process via electrostatic induction during droplet generation.On-demand charged microdroplets can arbitrarilymove to specific exit channels in a three-dimensional(3D)-deflected electric field,which can be controlled according to user requirements,and the flux of droplet deflection is thereby significantly enhanced.Furthermore,a lossless modification strategy is presented to improve the accuracy of droplet deflection or harvest rate from 97.49% to 99.38% by monitoring the frequency of droplet generation in real time and feeding it back to the charging signal.This chip has great potential for quantitative processing and analysis of single cells for elucidating cell-to-cell variations.展开更多
This paper presents an evaluation method for the entropy-weighting of wind power clusters that comprehensively evaluates the allocation problems of wind power clusters by considering the correlation between indicators...This paper presents an evaluation method for the entropy-weighting of wind power clusters that comprehensively evaluates the allocation problems of wind power clusters by considering the correlation between indicators and the dynamic performance of weight changes.A dynamic layered sorting allocation method is also proposed.The proposed evaluation method considers the power-limiting degree of the last cycle,the adjustment margin,and volatility.It uses the theory of weight variation to update the entropy weight coefficients of each indicator in real time,and then performs a fuzzy evaluation based on the membership function to obtain intuitive comprehensive evaluation results.A case study of a large-scale wind power base in Northwest China was conducted.The proposed evaluation method is compared with fixed-weight entropy and principal component analysis methods.The results show that the three scoring trends are the same,and that the proposed evaluation method is closer to the average level of the latter two,demonstrating higher accuracy.The proposed allocation method can reduce the number of adjustments made to wind farms,which is significant for the allocation and evaluation of wind power clusters.展开更多
X-ray fluorescence(XRF)sensor-based ore sorting enables efficient beneficiation of heterogeneous ores,while intraparticle heterogeneity can cause significant grade detection errors,leading to misclassifications and hi...X-ray fluorescence(XRF)sensor-based ore sorting enables efficient beneficiation of heterogeneous ores,while intraparticle heterogeneity can cause significant grade detection errors,leading to misclassifications and hindering widespread technology adoption.Accurate classification models are crucial to determine if actual grade exceeds the sorting threshold using localized XRF signals.Previous studies mainly used linear regression(LR)algorithms including simple linear regression(SLR),multivariable linear regression(MLR),and multivariable linear regression with interaction(MLRI)but often fell short attaining satisfactory results.This study employed the particle swarm optimization support vector machine(PSO-SVM)algorithm for sorting porphyritic copper ore pebble.Lab-scale results showed PSO-SVM out-performed LR and raw data(RD)models and the significant interaction effects among input features was observed.Despite poor input data quality,PSO-SVM demonstrated exceptional capabilities.Lab-scale sorting achieved 93.0%accuracy,0.24%grade increase,84.94%recovery rate,57.02%discard rate,and a remarkable 39.62 yuan/t net smelter return(NSR)increase compared to no sorting.These improvements were achieved by the PSO-SVM model with optimized input combinations and highest data quality(T=10,T is XRF testing times).The unsuitability of LR methods for XRF sensor-based sorting of investigated sample is illustrated.Input element selection and mineral association analysis elucidate element importance and influence mechanisms.展开更多
With the continuous increase of rapid urbanization and population growth,sustainable urban land-use planning is becoming a more complex and challenging task for urban planners and decision-makers.Multi-objective land-...With the continuous increase of rapid urbanization and population growth,sustainable urban land-use planning is becoming a more complex and challenging task for urban planners and decision-makers.Multi-objective land-use allocation can be regarded as a complex spatial optimization problem that aims to achieve the possible trade-offs among multiple and conflicting objectives.This paper proposes an improved Non-dominated Sorting Biogeography-Based Optimization(NSBBO)algorithm for solving the multi-objective land-use allocation problem,in which maximum accessibility,maximum compactness,and maximum spatial integration were formulated as spatial objectives;and space syntax analysis was used to analyze the potential movement patterns in the new urban planning area of the city of Kigali,Rwanda.Efficient Non-dominated Sorting(ENS)algorithm and crossover operator were integrated into classical NSBBO to improve the quality of non-dominated solutions,and local search ability,and to accelerate the convergence speed of the algorithm.The results showed that the proposed NSBBO exhibited good optimal solutions with a high hypervolume index compared to the classical NSBBO.Furthermore,the proposed algorithm could generate optimal land use scenarios according to the preferred objectives,thus having the potential to support the decision-making of urban planners and stockholders in revising and updating the existing detailed master plan of land use.展开更多
Genome-scale data,while promising for illuminating phylogenetic relationships,frequently pose a conundrum by yielding conflicting topologies and highly variable gene tree distributions(Pease et al.,2016).This complexi...Genome-scale data,while promising for illuminating phylogenetic relationships,frequently pose a conundrum by yielding conflicting topologies and highly variable gene tree distributions(Pease et al.,2016).This complexity likely arises from the reticulate evolution observed in many taxa,where genetic information exchange occurs through diverse biological processes.展开更多
The transition of traits between genetically related lineages is a fascinating topic that provides clues to understanding the drivers of speciation and diversification.Much can be learned about this process from phylo...The transition of traits between genetically related lineages is a fascinating topic that provides clues to understanding the drivers of speciation and diversification.Much can be learned about this process from phylogeny-based trait evolution.However,such inference is often plagued by genome-wide gene-tree discordance(GTD),mostly due to incomplete lineage sorting(ILS)and/or introgressive hybridization,especially when the genes underlying the traits appear discordant.Here,by collecting transcriptomes,whole chloroplast genomes(cpDNA),and population genetic datasets,we used the coalescent model to turn GTD into a source of information for ILS and employed hemiplasy to explain specific cases of apparent“phylogenetic discordance”between different morphological traits and probable species phylogeny in the Allium subg.Cyathophora.Both concatenation and coalescence methods consistently showed the same phylogenetic topology for species tree inference based on single-copy genes(SCGs),as supported by the KS distribution.However,GTD was high across the genomes of subg.Cyathophora:~27%e38.9%of the SCG trees were in conflict with the species tree.Plasmid and nuclear incongruence was also present.Our coalescent simulations indicated that such GTD was mainly a product of ILS.Our hemiplasy risk factor calculations supported that random fixation of ancient polymorphisms in different populations during successive speciation events along the subg.Cyathophora phylogeny may have caused the character transition,as well as the anomalous cpDNA tree.Our study exemplifies how phylogenetic noise can be transformed into evolutionary information for understanding character state transitions along species phylogenies.展开更多
This study explores the application of parallel algorithms to enhance large-scale sorting, focusing on the QuickSort method. Implemented in both sequential and parallel forms, the paper provides a detailed comparison ...This study explores the application of parallel algorithms to enhance large-scale sorting, focusing on the QuickSort method. Implemented in both sequential and parallel forms, the paper provides a detailed comparison of their performance. This study investigates the efficacy of both techniques through the lens of array generation and pivot selection to manage datasets of varying sizes. This study meticulously documents the performance metrics, recording 16,499.2 milliseconds for the serial implementation and 16,339 milliseconds for the parallel implementation when sorting an array by using C++ chrono library. These results suggest that while the performance gains of the parallel approach over its serial counterpart are not immediately pronounced for smaller datasets, the benefits are expected to be more substantial as the dataset size increases.展开更多
This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi...This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.展开更多
Droplet microfluidics,which encapsulates individual cells within separate microreactors,has become an essential tool for single-cell phenotypic and genotypic analysis.However,the efficiency of single-cell encapsulatio...Droplet microfluidics,which encapsulates individual cells within separate microreactors,has become an essential tool for single-cell phenotypic and genotypic analysis.However,the efficiency of single-cell encapsulation is limited by the Poisson distribution governing the encapsulation process,resulting in most droplets being either empty or containing multiple cells.Traditional single-cell sorting methods typically rely on fluorescence labeling for identification,but this approach not only increases experimental costs and complexity but can also impact cell viability.Additionally,current label-free sorting methods still encounter difficulties in accurately detecting multicellular droplets and small cellular aggregates.To address these challenges,this paper proposes an intelligent sorting system that combines YOLOv8 object detection and BoTSORT tracking algorithms.This system enables real-time analysis of droplet images,facilitating precise identification,counting,and automated sorting of target droplets.To validate the system’s performance,polystyrene microspheres were used to simulate real cells in sorting tests.The results demonstrated that,under label-free conditions,the system significantly outperformed traditional fluorescence labeling methods in both classification accuracy and sorting efficiency.This system provides an effective,label-free solution for cell sorting,with potential applications in precision medicine,single-cell sequencing,and drug screening.展开更多
In order to save manpower and time costs,and to achieve simultaneous detection of multiple animal-derived components in meat and meat products,this study used multiple nucleotide polymorphism(MNP)marker technology bas...In order to save manpower and time costs,and to achieve simultaneous detection of multiple animal-derived components in meat and meat products,this study used multiple nucleotide polymorphism(MNP)marker technology based on the principle of high-throughput sequencing,and established a multi-locus 10 animalderived components identification method of cattle,goat,sheep,donkey,horse,chicken,duck,goose,pigeon,quail in meat and meat products.The specific loci of each species could be detected and the species could be accurately identified,including 5 loci for cattle and duck,3 loci for sheep,9 loci for chicken and horse,10 loci for goose and pigeon,6 loci for quail and 1 locus for donkey and goat,and an adulteration model was established to simulate commercially available samples.The results showed that the method established in this study had high throughput,good repeatability and accuracy,and was able to identify 10 animalderived components simultaneously with 100%repeatability accuracy.The detection limit was 0.1%(m/m)in simulated samples of chicken,duck and horse.Using the method established in this study to test commercially available samples,4 samples from 14 commercially available samples were detected to be inconsistent with the labels,of which 2 did not contain the target ingredient and 2 were adulterated with small amounts of other ingredients.展开更多
The high porosity and tunable chemical functionality of metal-organic frameworks(MOFs)make it a promising catalyst design platform.High-throughput screening of catalytic performance is feasible since the large MOF str...The high porosity and tunable chemical functionality of metal-organic frameworks(MOFs)make it a promising catalyst design platform.High-throughput screening of catalytic performance is feasible since the large MOF structure database is available.In this study,we report a machine learning model for high-throughput screening of MOF catalysts for the CO_(2) cycloaddition reaction.The descriptors for model training were judiciously chosen according to the reaction mechanism,which leads to high accuracy up to 97%for the 75%quantile of the training set as the classification criterion.The feature contribution was further evaluated with SHAP and PDP analysis to provide a certain physical understanding.12,415 hypothetical MOF structures and 100 reported MOFs were evaluated under 100℃ and 1 bar within one day using the model,and 239 potentially efficient catalysts were discovered.Among them,MOF-76(Y)achieved the top performance experimentally among reported MOFs,in good agreement with the prediction.展开更多
Vector structured beams(VSBs)offer infinite eigenstates and open up new possibilities for highcapacity optical and quantum communications by the multiplexing of the states.Therefore,the sorting and measuring of VSBs a...Vector structured beams(VSBs)offer infinite eigenstates and open up new possibilities for highcapacity optical and quantum communications by the multiplexing of the states.Therefore,the sorting and measuring of VSBs are extremely important.However,the efficient manipulations of a large number of VSBs have simultaneously remained challenging up to now,especially in integrated optical systems.Here,we propose a compact spin-multiplexed diffractive metasurface capable of continuously sorting and detecting arbitrary VSBs through spatial intensity separation.By introducing a diffractive optical neural network with cascaded metasurface systems,we demonstrate arbitrary VSBs sorters that can simultaneously identify Laguerre–Gaussian modes(l=−4 to 4,p=1 to 4),Hermitian–Gaussian modes(m=1 to 4,n=1 to 3),and Bessel–Gaussian modes(l=1 to 12).Such a sorter for arbitrary VSBs could revolutionize applications in integrated and high-dimensional optical communication systems.展开更多
The real-time screening of biomolecules and single cells in biochips is extremely important for disease prediction and diagnosis,cellular analysis,and life science research.Barcode biochip technology,which is integrat...The real-time screening of biomolecules and single cells in biochips is extremely important for disease prediction and diagnosis,cellular analysis,and life science research.Barcode biochip technology,which is integrated with microfluidics,typically comprises barcode array,sample loading,and reaction unit array chips.Here,we present a review of microfluidics barcode biochip analytical approaches for the high-throughput screening of biomolecules and single cells,including protein biomarkers,microRNA(miRNA),circulating tumor DNA(ctDNA),single-cell secreted proteins,single-cell exosomes,and cell interactions.We begin with an overview of current high-throughput detection and analysis approaches.Following this,we outline recent improvements in microfluidic devices for biomolecule and single-cell detection,highlighting the benefits and limitations of these devices.This paper focuses on the research and development of microfluidic barcode biochips,covering their self-assembly substrate materials and their specific applications with biomolecules and single cells.Looking forward,we explore the prospects and challenges of this technology,with the aim of contributing toward the use of microfluidic barcode detection biochips in medical diagnostics and therapies,and their large-scale commercialization.展开更多
基金the National Natural Science Foundation of China(No.62205368)the Suzhou Basic Research Pilot Project(SJC2021013)the Key Research and Development Program of Jiangsu Province(BE2020664).
文摘The zebrafish embryos were widely employed in genetics,development and drug discovery studies as miniatured animal models.Sorting of two-color fluorescent embryos is often required in large-scale experiments but it is challenging to manually sort with high efficiency.Here,we reported a high-throughput sorting system for two-color fluorescent zebraflsh embryos.The embryos can be automatically loaded from a sample pool and sorted based on the average fluorescent intensity.The two-color fluorescent signals were split into two lines and detected by an area array camera.The system achieves the sorting of 100 embryos in less than 10 min with an accuracy of greater than 95%.
基金supported by Science and Technology Project of State Grid Corporation Headquarters under Grant 5108-202218280A-2-170-XG(Development and Application of Power Time-Sensitive Network Switching Chip。
文摘The progress of modern industry has given rise to great requirements for network transmission latency and reliability in domains such as smart grid and intelligent driving.To address these challenges,the concept of Time-sensitive networking(TSN)is proposed by IEEE 802.1TSN working group.In order to achieve low latency,Cyclic queuing and forwarding(CQF)mechanism is introduced to schedule Timetriggered(TT)flows.In this paper,we construct a TSN model based on CQF and formulate the flow scheduling problem as an optimization problem aimed at maximizing the success rate of flow scheduling.The problem is tackled by a novel algorithm that makes full use of the characteristics and the relationship between the flows.Firstly,by K-means algorithm,the flows are initially partitioned into subsets based on their correlations.Subsequently,the flows within each subset are sorted by a new special criteria extracted from multiple features of flow.Finally,a flow offset selecting method based on load balance is used for resource mapping,so as to complete the process of flow scheduling.Experimental results demonstrate that the proposed algorithm exhibits significant advantages in terms of scheduling success rate and time efficiency.
文摘The somatotopic representation of specific body parts is a well-established spatial organizational principle in the primary somatosensory and motor cortices.
基金Supported by National Natural Science Foundation of China(Grant No.52075036)Key Technologies Research and Development Program of China(Grant No.2022YFC3302204).
文摘The Chinese express delivery industry processes nearly 110 billion items in 2022,averaging an annual growth rate of 200%.Among the various types of sorting systems used for handling express items,cross-belt sorting systems stand out as the most crucial.However,despite their high degree of automation,the workload for operators has intensified owing to the surging volume of express items.In the era of Industry 5.0,it is imperative to adopt new technologies that not only enhance worker welfare but also improve the efficiency of cross-belt systems.Striking a balance between efficiency in handling express items and operator well-being is challenging.Digital twin technology offers a promising solution in this respect.A realization method of a human-machine integrated digital twin is proposed in this study,enabling the interaction of biological human bodies,virtual human bodies,virtual equipment,and logistics equipment in a closed loop,thus setting an operating framework.Key technologies in the proposed framework include a collection of heterogeneous data from multiple sources,construction of the relationship between operator fatigue and operation efficiency based on physiological measurements,virtual model construction,and an online optimization module based on real-time simulation.The feasibility of the proposed method was verified in an express distribution center.
基金The authors acknowledge the financial support from the NationalNatural Science Foundation ofChina(No.52275562)the Technology Innovation Fund of Huazhong University of Science and Technology(No.2022JYCXJJ015).
文摘On-demand droplet sorting is extensively applied for the efficient manipulation and genome-wide analysis of individual cells.However,state-of-the-art microfluidic chips for droplet sorting still suffer from low sorting speeds,sample loss,and labor-intensive preparation procedures.Here,we demonstrate the development of a novel microfluidic chip that integrates droplet generation,on-demand electrostatic droplet charging,and high-throughput sorting.The charging electrode is a copper wire buried above the nozzle of the microchannel,and the deflecting electrode is the phosphate buffered saline in the microchannel,which greatly simplifies the structure and fabrication process of the chip.Moreover,this chip is capable of high-frequency droplet generation and sorting,with a frequency of 11.757 kHz in the drop state.The chip completes the selective charging process via electrostatic induction during droplet generation.On-demand charged microdroplets can arbitrarilymove to specific exit channels in a three-dimensional(3D)-deflected electric field,which can be controlled according to user requirements,and the flux of droplet deflection is thereby significantly enhanced.Furthermore,a lossless modification strategy is presented to improve the accuracy of droplet deflection or harvest rate from 97.49% to 99.38% by monitoring the frequency of droplet generation in real time and feeding it back to the charging signal.This chip has great potential for quantitative processing and analysis of single cells for elucidating cell-to-cell variations.
基金supported by the National Natural Science Foundation of China(Grant No.52076038,U22B20112,No.52106238)the Fundamental Research Funds for Central Universities(No.423162,B230201051).
文摘This paper presents an evaluation method for the entropy-weighting of wind power clusters that comprehensively evaluates the allocation problems of wind power clusters by considering the correlation between indicators and the dynamic performance of weight changes.A dynamic layered sorting allocation method is also proposed.The proposed evaluation method considers the power-limiting degree of the last cycle,the adjustment margin,and volatility.It uses the theory of weight variation to update the entropy weight coefficients of each indicator in real time,and then performs a fuzzy evaluation based on the membership function to obtain intuitive comprehensive evaluation results.A case study of a large-scale wind power base in Northwest China was conducted.The proposed evaluation method is compared with fixed-weight entropy and principal component analysis methods.The results show that the three scoring trends are the same,and that the proposed evaluation method is closer to the average level of the latter two,demonstrating higher accuracy.The proposed allocation method can reduce the number of adjustments made to wind farms,which is significant for the allocation and evaluation of wind power clusters.
基金supported by State Key Laboratory of Mineral Processing (No.BGRIMM-KJSKL-2022-16)China Postdoctoral Science Foundation (No.2021M700387)+1 种基金National Natural Science Foundation of China (No.G2021105015L)Ministry of Science and Technology of the People’s Republic of China (No.2022YFC2904502)。
文摘X-ray fluorescence(XRF)sensor-based ore sorting enables efficient beneficiation of heterogeneous ores,while intraparticle heterogeneity can cause significant grade detection errors,leading to misclassifications and hindering widespread technology adoption.Accurate classification models are crucial to determine if actual grade exceeds the sorting threshold using localized XRF signals.Previous studies mainly used linear regression(LR)algorithms including simple linear regression(SLR),multivariable linear regression(MLR),and multivariable linear regression with interaction(MLRI)but often fell short attaining satisfactory results.This study employed the particle swarm optimization support vector machine(PSO-SVM)algorithm for sorting porphyritic copper ore pebble.Lab-scale results showed PSO-SVM out-performed LR and raw data(RD)models and the significant interaction effects among input features was observed.Despite poor input data quality,PSO-SVM demonstrated exceptional capabilities.Lab-scale sorting achieved 93.0%accuracy,0.24%grade increase,84.94%recovery rate,57.02%discard rate,and a remarkable 39.62 yuan/t net smelter return(NSR)increase compared to no sorting.These improvements were achieved by the PSO-SVM model with optimized input combinations and highest data quality(T=10,T is XRF testing times).The unsuitability of LR methods for XRF sensor-based sorting of investigated sample is illustrated.Input element selection and mineral association analysis elucidate element importance and influence mechanisms.
基金supported by the Styrelsen för Internationellt Utvecklingssamarbete.
文摘With the continuous increase of rapid urbanization and population growth,sustainable urban land-use planning is becoming a more complex and challenging task for urban planners and decision-makers.Multi-objective land-use allocation can be regarded as a complex spatial optimization problem that aims to achieve the possible trade-offs among multiple and conflicting objectives.This paper proposes an improved Non-dominated Sorting Biogeography-Based Optimization(NSBBO)algorithm for solving the multi-objective land-use allocation problem,in which maximum accessibility,maximum compactness,and maximum spatial integration were formulated as spatial objectives;and space syntax analysis was used to analyze the potential movement patterns in the new urban planning area of the city of Kigali,Rwanda.Efficient Non-dominated Sorting(ENS)algorithm and crossover operator were integrated into classical NSBBO to improve the quality of non-dominated solutions,and local search ability,and to accelerate the convergence speed of the algorithm.The results showed that the proposed NSBBO exhibited good optimal solutions with a high hypervolume index compared to the classical NSBBO.Furthermore,the proposed algorithm could generate optimal land use scenarios according to the preferred objectives,thus having the potential to support the decision-making of urban planners and stockholders in revising and updating the existing detailed master plan of land use.
基金supported by the National Natural Science Foundation of China (grant no.32001085,31971392,31960319)。
文摘Genome-scale data,while promising for illuminating phylogenetic relationships,frequently pose a conundrum by yielding conflicting topologies and highly variable gene tree distributions(Pease et al.,2016).This complexity likely arises from the reticulate evolution observed in many taxa,where genetic information exchange occurs through diverse biological processes.
基金supported by the Key Science & Technology Project of Gansu Province (22ZD6NA007)the National Key Research and Development Program of China (2021YFD2200202)Computing support was provided by the Supercomputing Center of Lanzhou University
文摘The transition of traits between genetically related lineages is a fascinating topic that provides clues to understanding the drivers of speciation and diversification.Much can be learned about this process from phylogeny-based trait evolution.However,such inference is often plagued by genome-wide gene-tree discordance(GTD),mostly due to incomplete lineage sorting(ILS)and/or introgressive hybridization,especially when the genes underlying the traits appear discordant.Here,by collecting transcriptomes,whole chloroplast genomes(cpDNA),and population genetic datasets,we used the coalescent model to turn GTD into a source of information for ILS and employed hemiplasy to explain specific cases of apparent“phylogenetic discordance”between different morphological traits and probable species phylogeny in the Allium subg.Cyathophora.Both concatenation and coalescence methods consistently showed the same phylogenetic topology for species tree inference based on single-copy genes(SCGs),as supported by the KS distribution.However,GTD was high across the genomes of subg.Cyathophora:~27%e38.9%of the SCG trees were in conflict with the species tree.Plasmid and nuclear incongruence was also present.Our coalescent simulations indicated that such GTD was mainly a product of ILS.Our hemiplasy risk factor calculations supported that random fixation of ancient polymorphisms in different populations during successive speciation events along the subg.Cyathophora phylogeny may have caused the character transition,as well as the anomalous cpDNA tree.Our study exemplifies how phylogenetic noise can be transformed into evolutionary information for understanding character state transitions along species phylogenies.
文摘This study explores the application of parallel algorithms to enhance large-scale sorting, focusing on the QuickSort method. Implemented in both sequential and parallel forms, the paper provides a detailed comparison of their performance. This study investigates the efficacy of both techniques through the lens of array generation and pivot selection to manage datasets of varying sizes. This study meticulously documents the performance metrics, recording 16,499.2 milliseconds for the serial implementation and 16,339 milliseconds for the parallel implementation when sorting an array by using C++ chrono library. These results suggest that while the performance gains of the parallel approach over its serial counterpart are not immediately pronounced for smaller datasets, the benefits are expected to be more substantial as the dataset size increases.
基金the National Natural Science Foundation of China(Grant No.42274119)the Liaoning Revitalization Talents Program(Grant No.XLYC2002082)+1 种基金National Key Research and Development Plan Key Special Projects of Science and Technology Military Civil Integration(Grant No.2022YFF1400500)the Key Project of Science and Technology Commission of the Central Military Commission.
文摘This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.
文摘Droplet microfluidics,which encapsulates individual cells within separate microreactors,has become an essential tool for single-cell phenotypic and genotypic analysis.However,the efficiency of single-cell encapsulation is limited by the Poisson distribution governing the encapsulation process,resulting in most droplets being either empty or containing multiple cells.Traditional single-cell sorting methods typically rely on fluorescence labeling for identification,but this approach not only increases experimental costs and complexity but can also impact cell viability.Additionally,current label-free sorting methods still encounter difficulties in accurately detecting multicellular droplets and small cellular aggregates.To address these challenges,this paper proposes an intelligent sorting system that combines YOLOv8 object detection and BoTSORT tracking algorithms.This system enables real-time analysis of droplet images,facilitating precise identification,counting,and automated sorting of target droplets.To validate the system’s performance,polystyrene microspheres were used to simulate real cells in sorting tests.The results demonstrated that,under label-free conditions,the system significantly outperformed traditional fluorescence labeling methods in both classification accuracy and sorting efficiency.This system provides an effective,label-free solution for cell sorting,with potential applications in precision medicine,single-cell sequencing,and drug screening.
基金financially supported by National Key R&D Program(2021YFF0701905)。
文摘In order to save manpower and time costs,and to achieve simultaneous detection of multiple animal-derived components in meat and meat products,this study used multiple nucleotide polymorphism(MNP)marker technology based on the principle of high-throughput sequencing,and established a multi-locus 10 animalderived components identification method of cattle,goat,sheep,donkey,horse,chicken,duck,goose,pigeon,quail in meat and meat products.The specific loci of each species could be detected and the species could be accurately identified,including 5 loci for cattle and duck,3 loci for sheep,9 loci for chicken and horse,10 loci for goose and pigeon,6 loci for quail and 1 locus for donkey and goat,and an adulteration model was established to simulate commercially available samples.The results showed that the method established in this study had high throughput,good repeatability and accuracy,and was able to identify 10 animalderived components simultaneously with 100%repeatability accuracy.The detection limit was 0.1%(m/m)in simulated samples of chicken,duck and horse.Using the method established in this study to test commercially available samples,4 samples from 14 commercially available samples were detected to be inconsistent with the labels,of which 2 did not contain the target ingredient and 2 were adulterated with small amounts of other ingredients.
基金financial support from the National Key Research and Development Program of China(2021YFB 3501501)the National Natural Science Foundation of China(No.22225803,22038001,22108007 and 22278011)+1 种基金Beijing Natural Science Foundation(No.Z230023)Beijing Science and Technology Commission(No.Z211100004321001).
文摘The high porosity and tunable chemical functionality of metal-organic frameworks(MOFs)make it a promising catalyst design platform.High-throughput screening of catalytic performance is feasible since the large MOF structure database is available.In this study,we report a machine learning model for high-throughput screening of MOF catalysts for the CO_(2) cycloaddition reaction.The descriptors for model training were judiciously chosen according to the reaction mechanism,which leads to high accuracy up to 97%for the 75%quantile of the training set as the classification criterion.The feature contribution was further evaluated with SHAP and PDP analysis to provide a certain physical understanding.12,415 hypothetical MOF structures and 100 reported MOFs were evaluated under 100℃ and 1 bar within one day using the model,and 239 potentially efficient catalysts were discovered.Among them,MOF-76(Y)achieved the top performance experimentally among reported MOFs,in good agreement with the prediction.
基金supported by the National Natural Science Foundation of China(Grant No.12274105)the Heilongjiang Natural Science Funds for Distinguished Young Scholars(Grant No.JQ2022A001)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.HIT.OCEF.2021020)the Joint Guidance Project of the Natural Science Foundation of Heilongjiang Province(Grant No.LH2023A006).
文摘Vector structured beams(VSBs)offer infinite eigenstates and open up new possibilities for highcapacity optical and quantum communications by the multiplexing of the states.Therefore,the sorting and measuring of VSBs are extremely important.However,the efficient manipulations of a large number of VSBs have simultaneously remained challenging up to now,especially in integrated optical systems.Here,we propose a compact spin-multiplexed diffractive metasurface capable of continuously sorting and detecting arbitrary VSBs through spatial intensity separation.By introducing a diffractive optical neural network with cascaded metasurface systems,we demonstrate arbitrary VSBs sorters that can simultaneously identify Laguerre–Gaussian modes(l=−4 to 4,p=1 to 4),Hermitian–Gaussian modes(m=1 to 4,n=1 to 3),and Bessel–Gaussian modes(l=1 to 12).Such a sorter for arbitrary VSBs could revolutionize applications in integrated and high-dimensional optical communication systems.
基金supported by the National Key Research and Development Plan of China(2023YFB3210400)the Natural Science Innovation Group Foundation of China(T2321004)+3 种基金the National Natural Science Foundation of China(62174101)Shandong University Integrated Research and Cultivation Project(2022JC001)Key Research and Development Plan of Shandong Province(Major Science and Technology Innovation Project2022CXGC020501).
文摘The real-time screening of biomolecules and single cells in biochips is extremely important for disease prediction and diagnosis,cellular analysis,and life science research.Barcode biochip technology,which is integrated with microfluidics,typically comprises barcode array,sample loading,and reaction unit array chips.Here,we present a review of microfluidics barcode biochip analytical approaches for the high-throughput screening of biomolecules and single cells,including protein biomarkers,microRNA(miRNA),circulating tumor DNA(ctDNA),single-cell secreted proteins,single-cell exosomes,and cell interactions.We begin with an overview of current high-throughput detection and analysis approaches.Following this,we outline recent improvements in microfluidic devices for biomolecule and single-cell detection,highlighting the benefits and limitations of these devices.This paper focuses on the research and development of microfluidic barcode biochips,covering their self-assembly substrate materials and their specific applications with biomolecules and single cells.Looking forward,we explore the prospects and challenges of this technology,with the aim of contributing toward the use of microfluidic barcode detection biochips in medical diagnostics and therapies,and their large-scale commercialization.