The integration of artificial intelligence (AI) with high-throughput experimentation (HTE) techniques is revolutionizing catalyst design, addressing challenges in efficiency, cost, and scalability. This review explore...The integration of artificial intelligence (AI) with high-throughput experimentation (HTE) techniques is revolutionizing catalyst design, addressing challenges in efficiency, cost, and scalability. This review explores the synergistic application of AI and HTE, highlighting their role in accelerating catalyst discovery, optimizing reaction parameters, and understanding structure-performance relationships. HTE facilitates the rapid preparation, characterization, and evaluation of diverse catalyst formulations, generating large datasets essential for AI model training. Machine learning algorithms, including regression models, neural networks, and active learning frameworks, analyze these datasets to uncover the underlying relationships between the data, predict performance, and optimize experimental workflows in real-time. Case studies across heterogeneous, homogeneous, and electrocatalysis demonstrate significant advancements, including improved reaction selectivity, enhanced material stability, and shorten discovery cycles. The integration of AI with HTE has significantly accelerated discovery cycles, enabling the optimization of catalyst formulations and reaction conditions. Despite these achievements, challenges remain, including reliance on researcher expertise, real-time adaptability, and the complexity of large-scale data analysis. Addressing these limitations through refined experimental protocols, standardized datasets, and interpretable AI models will unlock the full potential of AI-HTE integration.展开更多
Sm–Co-based films play an irreplaceable role in special applications due to their high curie temperature and magnetocrystalline anisotropic energy,especially in heat-assisted magnetic recording(HAMR),but the complex ...Sm–Co-based films play an irreplaceable role in special applications due to their high curie temperature and magnetocrystalline anisotropic energy,especially in heat-assisted magnetic recording(HAMR),but the complex composition of Sm–Co phase and unclear synergistic coupling mechanisms of multi-elemental doping become the challenges to enhance the properties.In this work,a novel strategy combining magnetron sputtering and a high-throughput experiment method is applied to solve the above-mentioned problems.Fe/Cu co-doping highly increases the remanence while maintaining a coercivity larger than 26 kOe,leading to an enhancement of the magnetic energy product to 18.1 MGOe.X-ray diffraction(XRD)and high-resolution transmission electron microscope(HRTEM)reveals that SmCo_(5) phase occupies the major fraction,with Co atoms partially substituted by Fe and Cu atoms.In situ Lorentz transmission electron microscopy(LTEM)observations show that the Sm(Co,Cu)5 phase effectively prohibits domain wall motions,leading to an increase of coercivity(H_(c)).Fe doping increases the low saturation magnetization(M_(s))and low remanence(Mr)due to the Fe atom having a higher saturation magnetic moment.The magnetization reversal behaviors are further verified by micromagnetic simulations.Our results suggest that Sm–Co-based films prepared via Fe/Cu co-doping could be a promising candidate for high-performed HAMR in the future.展开更多
Ti alloys,as leading lightweight and high-strength metallic materials,exhibit significant application potential in aerospace,marine engineering,biomedical,and other industries.However,the lack of fundamental understan...Ti alloys,as leading lightweight and high-strength metallic materials,exhibit significant application potential in aerospace,marine engineering,biomedical,and other industries.However,the lack of fundamental understanding of the microstructure−property relationship results in prolonged research and development(R&D)cycles,hindering the optimization of the performance of Ti alloys.Recently,the advent of high-throughput experimental(HTE)technology has shown promise in facilitating the efficient and demand-driven development of next-generation Ti alloys.This work reviews the latest advancements in HTE technology for Ti alloys.The high-throughput preparation(HTP)techniques commonly used in the fabrication of Ti alloys are addressed,including diffusion multiple,additive manufacturing(AM),vapor deposition and others.The current applications of high-throughput characterization(HTC)techniques in Ti alloys are shown.Finally,the research achievements in HTE technology for Ti alloys are summarized and the challenges faced in their industrial application are discussed.展开更多
A combinatorial high-throughput experiment(HTE)was used to optimize composition and process of nickel-saving cryogenic steel.A gradient temperature heat treatment method with a high linear distribution of heat treatme...A combinatorial high-throughput experiment(HTE)was used to optimize composition and process of nickel-saving cryogenic steel.A gradient temperature heat treatment method with a high linear distribution of heat treatment temperature using customized graphite sleeve direct current heating was used in the combinatorial HTE,which enhanced the richness of the sample library for the single preparation of the 10^(2) level component process variables.Cryogenic steel with excellent mechanical properties was optimized using this combinatorial HTE,and the Ni content was reduced from the traditional 9 to 5.6 wt.%by using Mn instead of Ni.The heterogeneous structure architecture strategy and strengthening and toughening mechanism of the harmonic structure induced by intrinsic heat treatment of additive manufacturing were revealed.Taking the composition process optimization of Ni-saving cryogenic steel as an example,the boosting ability of combinatorial HTE in the research and development of new metal materials was proposed.展开更多
Herein,we report a novel and highly efficient method for the synthesis ofα-phosphoryloxy carbonyl compounds via Rucatalyzed P(O)O–H insertion reactions of sulfoxonium ylides and phosphinic acids,with the assistance ...Herein,we report a novel and highly efficient method for the synthesis ofα-phosphoryloxy carbonyl compounds via Rucatalyzed P(O)O–H insertion reactions of sulfoxonium ylides and phosphinic acids,with the assistance of high-throughput experimentation(HTE)and machine learning(ML).A variety of P(O)O−H derivatives,including diarylphosphates,alkyl phosphates,and alkoxyphosphates,are competent candidates to react with sulfoxonium ylides in this transformation,and variousα-phosphoryloxy carbonyls and propylene phosphates are directly constructed.This approach utilizes readily available sulfoxonium ylide as a carbene precursor,and features mild conditions,operational simplicity,and broad functional groups tolerance,and could be used for late-stage functionalization of structurally complex bioactive molecules.Moreover,a conducive exploration of the reaction space is also conducted(756 reactions)and a machine learning model for reaction yield prediction has been developed and applied,showcasing the practical application of this newly workflow(HTE-ML)in the field of synthetic chemistry.展开更多
Polymer crystallization,an everlasting subject in polymeric materials,holds great significance not only as a fundamental theoretical issue but also as a pivotal basis for directing polymer processing.Given its multist...Polymer crystallization,an everlasting subject in polymeric materials,holds great significance not only as a fundamental theoretical issue but also as a pivotal basis for directing polymer processing.Given its multistep,rapid,and thermodynamic nature,tracing and comprehending polymer crystallization pose a formidable challenge,particularly when it encounters practical processing scenarios that involve complex coupledfields(such as temperature,flow,and pressure).The advent of high-time and spatially resolved experiments paves the way for in situ investigations of polymer crystallization.In this review,we delve into the strides in studying polymer crystallization under the effects of coupled externalfields via state-of-the-art high-throughput experiments.We highlight the intricate setup of these high-throughput experimental devices,spanning from the laboratory and pilot levels to the industrial level.The individual and combined effects of externalfields on polymer crystallization are discussed.By breaking away from the conventional“black box”research approach,special interest is paid to the in situ crystalline behavior of polymers during realistic processing.Finally,we underscore the advancements in polymer crystallization via high-throughput experiments and outline its promising development.展开更多
The development of new engineering alloy chemistries and heat treatments is a time-consuming and iterative process.Here,a hybrid approach of the high-throughput precipitation simulations and decisive experiments is de...The development of new engineering alloy chemistries and heat treatments is a time-consuming and iterative process.Here,a hybrid approach of the high-throughput precipitation simulations and decisive experiments is developed to optimize the composition and manipulate the microstructure of Al-Zn-Mg-Cu alloys to achieve the expected yield strength and elongation.For that purpose,a multi-class Kampmann-Wagner numerical(KWN)framework is established and the contributions to precipitation kinetics and strength from primary phases and precipitates formed before age hardening are introduced for the first time.The composition/process-structure-property relationship of Al-Zn-Mg-Cu alloys is pre-sented and discussed in detail.Coupled with thermodynamic calculations,two concentration-optimized Al-Zn-Mg-Cu alloys with expected high yield strength and long elongation are designed,prepared,and characterized.The excellent strength and elongation of the designed alloys and the good agreement between the measured and model-predicted mechanical properties for these two alloys underscores the remarkable predictive power of the presently developed material design strategy.This work establishes a novel material design strategy for rapidly exploring the compositional space and investigating the effects of composition and heat treatment on the microstructure and performance of ultrahigh strength Al alloys and other materials.展开更多
Based on simplified calculations of one-dimensional wave systems,loading pressure platform curves of Al-Cu gradient materials(GMs)impactor were designed.The Al-Cu GMs were prepared using tape-pressing sintering,and th...Based on simplified calculations of one-dimensional wave systems,loading pressure platform curves of Al-Cu gradient materials(GMs)impactor were designed.The Al-Cu GMs were prepared using tape-pressing sintering,and their acoustic properties were characterized to match the design path.The parallelism of the Al-Cu GM was confirmed using a three-dimensional surface profilometry machine.A one-stage light-gas gun was used to launch the Al-Cu GM,impacting an Al-LiF target at a velocity of 400 m/s.The results of the experimental strain rate demonstrate that the Al-Cu GMs can realize the precise control of the strain rate within the range of 10^(4)‒10^(5)/s in the high-speed impact experiments.展开更多
A spice formulation study in Burkina Faso was carried out using local ingredients for the benefit of households. The objective of this study was to propose some spice formulations based on local ingredients in order t...A spice formulation study in Burkina Faso was carried out using local ingredients for the benefit of households. The objective of this study was to propose some spice formulations based on local ingredients in order to reduce the use of chemical spices in the preparation of different dishes. The Design of Experiments (DOE) methodology was used for the formulation of the spices and their physicochemical, nutritional and sensory characteristics were evaluated by standardized and standard methods. The results obtained showed lipid contents (g/100 g DM) ranging from 10.41 ± 0.26 to 15.64 ± 0.68, total sugars from 4.39 ± 0.32 to 5.46 ± 0.31, protein from 3.65 ± 0.17 to 12.04 ± 0.35 and ash from 5.83 ± 0.01 to 7.02 ± 0.01. The polyphenol content ranged from 9.09 ± 1.60 to 11.33 ± 0.90, and the flavonoid content ranged from 0.65 ± 0.03 to 1.08 ± 0.13. The sensory analysis carried out showed that the spices have generally satisfactory organoleptic characteristics. These results constitute new information in the diet of populations and are an alternative to the chemical spices used in their cooking.展开更多
Photocatalysis,a critical strategy for harvesting sunlight to address energy demand and environmental concerns,is underpinned by the discovery of high-performance photocatalysts,thereby how to design photocatalysts is...Photocatalysis,a critical strategy for harvesting sunlight to address energy demand and environmental concerns,is underpinned by the discovery of high-performance photocatalysts,thereby how to design photocatalysts is now generating widespread interest in boosting the conversion effi-ciency of solar energy.In the past decade,computational technologies and theoretical simulations have led to a major leap in the development of high-throughput computational screening strategies for novel high-efficiency photocatalysts.In this viewpoint,we started with introducing the challenges of photocatalysis from the view of experimental practice,especially the inefficiency of the traditional“trial and error”method.Sub-sequently,a cross-sectional comparison between experimental and high-throughput computational screening for photocatalysis is presented and discussed in detail.On the basis of the current experimental progress in photocatalysis,we also exemplified the various challenges associated with high-throughput computational screening strategies.Finally,we offered a preferred high-throughput computational screening procedure for pho-tocatalysts from an experimental practice perspective(model construction and screening,standardized experiments,assessment and revision),with the aim of a better correlation of high-throughput simulations and experimental practices,motivating to search for better descriptors.展开更多
In this work,the selected icebreaker model experiment is performed in a towing tank.We focus on the influence of seawater salinity on ship ice resistance in the ice floe field and the innovative ice model and ship mod...In this work,the selected icebreaker model experiment is performed in a towing tank.We focus on the influence of seawater salinity on ship ice resistance in the ice floe field and the innovative ice model and ship model test technology,including the similitude rule of ship model tests,test principles,and validation with full-scale ship data.A formula for calculating the relationship between the temperature and salinity of the water is constructed,which can be used to simulate the role of seawater in freshwater ice pools.On this basis,the effect of salinity on the resistance of ships sailing in broken ice fields is studied.A technique in which artificial ice made of polyethylene spheres is used to simulate ice resistance is proposed.With a series of ship model experiments in spherical and triangular ice fields,the effects of salinity and velocity on the ice resistance test of the ship model are analyzed.A relationship of the ice resistance of the ship model to the spherical ice field and the triangular ice field is proposed.The conversion results are consistent with onsite data of the full-size ship,which verifies the method of converting the test results of the ship model to the prototype.展开更多
In the development framework of engineering colleges,the cultivation of students’practical ability has received unprecedented attention.Based on the actual situation of the experimental teaching of the bridge directi...In the development framework of engineering colleges,the cultivation of students’practical ability has received unprecedented attention.Based on the actual situation of the experimental teaching of the bridge direction of the road and bridge specialty in our school,the targeted teaching experiment reform was carried out,and the comprehensive experiment of the positioning of the crack observation grade steel bar of the reinforced concrete beam was customized,so that the students were fully trained in the application of professional software,experimental hands-on skills,information data analysis and processing,and bridge detection ability.It broadens students’practical ability and professional vision,and lays a good foundation for future work and employment.展开更多
A series of scaled model aircraft ditching tests are performed by launch facility system in Hydraulics Laboratory.According to the measured pitch angle,acceleration and pressure history,research on the impact characte...A series of scaled model aircraft ditching tests are performed by launch facility system in Hydraulics Laboratory.According to the measured pitch angle,acceleration and pressure history,research on the impact characteristic of ditching is conducted.To solve the problem of cavitation effect which may occur in full scale aircraft,the action mechanism and effect of cavitation are studied,and an innovative experimental simulation measure is taken.It is shown that the cavitation bar directly and effectively separates aircraft bottom from water surface and therefore reduces negative pressure,thus enhancing the authenticity of the test results.The dynamic responses including stability and overload after impacting water at different initial pitch angles are analyzed to find the optimum one,which turns out to be heavily dependent on the bottom curvature of fuselage,and rebound phenomenon occurs when pitch angle exceeds a certain value because of the huge positive pressure acting at the spray root on rear fuselage.In addition,the influences of descent rate and horizontal velocity are analyzed.The results show that the descent rate mainly affects the overall load,which is of higher level of importance,while the horizontal velocity mainly affects the load of local structure.展开更多
Cavitation is an unavoidable phenomenon in the operation of centrifugal pumps.Prolonged cavitation can cause significant damage to the components of the flow channel,and in severe cases,it may even interfere with the ...Cavitation is an unavoidable phenomenon in the operation of centrifugal pumps.Prolonged cavitation can cause significant damage to the components of the flow channel,and in severe cases,it may even interfere with the normal energy exchange processes within the pump.Therefore,effective monitoring of cavitation in centrifugal pumps is crucial.This article presents a study that approaches the issue from an acoustic perspective,using experimental methods to gather and analyze acoustic data at the inlet and outlet of centrifugal pumps across various flow rates,with hydrophones as the primary measuring instruments.Results show that flow rate significantly affects noise levels in both non-cavitation and mild cavitation stages,with noise increasing as the flow rate rises.As the cavitation margin(NPSHa)decreases,inlet and outlet noise trends diverge:inlet noise drops sharply,while outlet noise initially increases before sharply decreasing.Both exhibit a distinct zone of abrupt change,where NPSHa values offer earlier cavitation detection than traditional methods.The noise at the pump’s inlet and outlet primarily consists of discrete and broadband noise,with most energy concentrated at discrete frequencies—shaft frequency(24 Hz),blade frequency(144 Hz),and their harmonics.As NPSHa decreases,the inlet’s discrete and broadband noise frequencies decline,while they increase at the outlet.Monitoring changes in these spectrum characteristics provides an additional means of predicting cavitation onset.展开更多
Thermal conductivity is an important physical parameter in thermal equipment,in the blast furnace,rotary kiln and other equipment,multi-layer cylindrical wall is extremely important in industrial production of a therm...Thermal conductivity is an important physical parameter in thermal equipment,in the blast furnace,rotary kiln and other equipment,multi-layer cylindrical wall is extremely important in industrial production of a thermal conductivity model,its thermal conductivity coefficient determines the ability of the cylindrical wall,which results in the existence of a large number of multi-layer cylinder thermal conductivity problems of the pitfalls.This paper focuses on the establishment of a mathematical model of the multi-layer cylinder thermal conductivity problem,by applying different voltages to the multi-layer cylinder wall,study the temperature distribution of the multi-layer cylinder wall under the conditions of natural convection and forced convection,and draw the line graphs under the conditions of natural convection and forced convection by Origin software,and finally conclude that:under the same conditions,the forced convection is significantly stronger than the natural convection;under the conditions of different voltages,the multi-layer cylinder wall under the conditions of steady state convection,the forced convection is much stronger than natural convection.Under different voltage conditions,the temperature of the multilayer cylinder wall under steady state conditions increases with the increase of voltage,which provides a strong support for the related research.展开更多
This study investigates the vibration characteristics of bolted-flange-joined conical-cylindrical shells(BFJCCSs)through both theoretical analysis and experimental testing.The proposed model incorporates the pressure ...This study investigates the vibration characteristics of bolted-flange-joined conical-cylindrical shells(BFJCCSs)through both theoretical analysis and experimental testing.The proposed model incorporates the pressure distribution within the bolted joint and accounts for the flange effect.The energy expressions for the conical and cylindrical shells are derived from Donnell's shell theory,while those for the flanges are obtained from the Euler-Bernoulli beam theory.The Lagrange equation is used to derive the dynamic equation,and the experimental studies on the BFJCCS are conducted to validate the accuracy of the model.Subsequently,the comprehensive effects of bolt loosening and bolt number on the frequency parameters are analyzed.Additionally,the effects of the flange dimensions and cone angle on the vibration behavior of the BFJCCS are discussed.In particular,the dynamic differences between the welded conical-cylindrical shell(WCCS)and BFJCCS are investigated.It is found that compared with the WCCS,the fundamental frequency of the BFJCCS is reduced by 7.6%,and the corresponding modal damping ratio is reduced by 21.0%.However,the high-order frequencies of the BFJCCS are higher than those of the WCCS,accompanied by a higher modal damping ratio.Compared with the bolt loosening degree,the bolt number has a more significant effect on frequencies.As the bolt number decreases,the impact of the bolt loosening degree diminishes gradually.展开更多
The solid electrolyte interphase(SEI)layer,formed on the electrode through electrolyte decomposition,has garnered significant attention over the past several decades.Numerous characterization studies have shown that t...The solid electrolyte interphase(SEI)layer,formed on the electrode through electrolyte decomposition,has garnered significant attention over the past several decades.Numerous characterization studies have shown that the SEI enhances the stability of both the electrolyte and electrode,particularly by mitigating the well-known cation-solvent co-intercalation in graphite electrodes in lithium-ion batteries.However,recent electrolyte exchange experiments have revealed that variations in electrolyte solvation structure and the resulting desolvation behaviors play a more dominant role than the SEI in influencing electrolyte and electrode stability,which in turn critically impacts battery performance.In addition to contributing to the ongoing debate,electrolyte exchange experiments have proven to be a valuable tool for analyzing failures in electrolytes,electrodes,and batteries.This review highlights the application of electrolyte exchange experiments across various metal-ion batteries,incorporating diverse combinations of electrolytes and electrodes.It examines the influence of electrolyte solvation structures and desolvation behaviors on the stability of both electrolytes and electrodes.The aim is to enhance the methodology of electrolyte exchange experiments to deepen the understanding of the molecular interactions among metal ions,anions,and solvents within the electrolyte.This approach complements existing insights into SEI effects,providing a more thorough and accurate framework for battery failure analysis.展开更多
Correction:J Cotton Res 8,27(2025)https://doi.org/10.1186/s42397-025-00228-y During the publication process of the original article(Soltani Toularoud et al.2025),the article title has been wrongly captured.Te article ...Correction:J Cotton Res 8,27(2025)https://doi.org/10.1186/s42397-025-00228-y During the publication process of the original article(Soltani Toularoud et al.2025),the article title has been wrongly captured.Te article title should be corrected from:of butisanstar and clopyralid herbicides on Gos-sypium hirsutum L.growth:insights from a pot experiment to:Residual efects of butisanstar and clopyralid herbi-cides on Gossypium hirsutum L.growth:insights from a pot experiment Te original article(Soltani Toularoud et al.2025)has been updated.Te publisher apologizes to the authors and readers for the inconvenience caused.展开更多
With the deep advancement of modern educational informatization,the micro-video teaching model has gradually become an effective approach for promoting the innovation and reform of experimental teaching,owing to its a...With the deep advancement of modern educational informatization,the micro-video teaching model has gradually become an effective approach for promoting the innovation and reform of experimental teaching,owing to its advantages such as intuitive visualization,repeatability,and flexible learning.This paper addressed the limitations of the traditional zoology experiment teaching model,which include insufficiently clear teacher demonstrations,limited class time,and the difficulty of accommodating individual student differences.Accordingly,we systematically analyzed the main characteristics,implementation models,and effectiveness of the micro-video teaching model in the Zoology Experiment course.We also discussed the primary challenges encountered during its teaching practice and proposed corresponding recommendations for improvement.This analysis aimed to provide a theoretical reference for the teaching reform of Zoology Experiment in normal universities.展开更多
Objective This study explored the job choice preferences of Center for Disease Prevention and Control(CDC)workers to provide CDC management information and recommendations for optimizing employee retention and motivat...Objective This study explored the job choice preferences of Center for Disease Prevention and Control(CDC)workers to provide CDC management information and recommendations for optimizing employee retention and motivation policies.Methods A discrete choice experiment was conducted in nine provinces across China.Seven key attributes were identified to analyze the job preferences of CDC workers.Mixed logit models,latent class models,and policy simulation tools were used.Results A valid sample of 5,944 cases was included in the analysis.All seven attributes significantly influenced the job choices of CDC workers.Heterogeneity analyses identified two main groups based on different levels of preference for attribute utility.Income-prioritizers were concerned with income and opportunities for career development,whereas bianzhi-prioritizers were concerned with bianzhi and welfare benefits.The policy simulation analysis revealed that income-prioritizers had a relatively higher sensitivity to multiple job preference incentives.Conclusion Income and bianzhi were the two key attributes influencing the job choices and retention preferences of CDC workers.Heterogeneity in job preferences was also identified.Based on the preference characteristics of different subgroups,policy content should be skewed to differentiate the importance of incentives.展开更多
基金supported by the Special Project of National Natural Science Foundation(42341204)the the National Natural Science Foundation of China(W2411009).
文摘The integration of artificial intelligence (AI) with high-throughput experimentation (HTE) techniques is revolutionizing catalyst design, addressing challenges in efficiency, cost, and scalability. This review explores the synergistic application of AI and HTE, highlighting their role in accelerating catalyst discovery, optimizing reaction parameters, and understanding structure-performance relationships. HTE facilitates the rapid preparation, characterization, and evaluation of diverse catalyst formulations, generating large datasets essential for AI model training. Machine learning algorithms, including regression models, neural networks, and active learning frameworks, analyze these datasets to uncover the underlying relationships between the data, predict performance, and optimize experimental workflows in real-time. Case studies across heterogeneous, homogeneous, and electrocatalysis demonstrate significant advancements, including improved reaction selectivity, enhanced material stability, and shorten discovery cycles. The integration of AI with HTE has significantly accelerated discovery cycles, enabling the optimization of catalyst formulations and reaction conditions. Despite these achievements, challenges remain, including reliance on researcher expertise, real-time adaptability, and the complexity of large-scale data analysis. Addressing these limitations through refined experimental protocols, standardized datasets, and interpretable AI models will unlock the full potential of AI-HTE integration.
基金supported by the National Key R&D Program of China(No.2022YFB3505700)the National Natural Science Foundation of China(No.51901079)+4 种基金Guangdong Science and Technology Program(No.2023A0505050145)the Natural Science Foundation of Guangdong Province(Nos.2024A1515030178,2020A1515010736 and 2021A1515010451)Guangzhou Municipal Science and Technology Program(No.202007020008)the Fundamental Research Funds for the Central Universities,the Opening Project of National Engineering Research Center for Powder Metallurgy of Titanium&Rare Metals,the Fundamental Research Funds for the Central Universities and Zhongshan Municipal Science and Technology Program(No.191007102629094)Zhongshan Collaborative Innovation Fund(No.2018C1001).
文摘Sm–Co-based films play an irreplaceable role in special applications due to their high curie temperature and magnetocrystalline anisotropic energy,especially in heat-assisted magnetic recording(HAMR),but the complex composition of Sm–Co phase and unclear synergistic coupling mechanisms of multi-elemental doping become the challenges to enhance the properties.In this work,a novel strategy combining magnetron sputtering and a high-throughput experiment method is applied to solve the above-mentioned problems.Fe/Cu co-doping highly increases the remanence while maintaining a coercivity larger than 26 kOe,leading to an enhancement of the magnetic energy product to 18.1 MGOe.X-ray diffraction(XRD)and high-resolution transmission electron microscope(HRTEM)reveals that SmCo_(5) phase occupies the major fraction,with Co atoms partially substituted by Fe and Cu atoms.In situ Lorentz transmission electron microscopy(LTEM)observations show that the Sm(Co,Cu)5 phase effectively prohibits domain wall motions,leading to an increase of coercivity(H_(c)).Fe doping increases the low saturation magnetization(M_(s))and low remanence(Mr)due to the Fe atom having a higher saturation magnetic moment.The magnetization reversal behaviors are further verified by micromagnetic simulations.Our results suggest that Sm–Co-based films prepared via Fe/Cu co-doping could be a promising candidate for high-performed HAMR in the future.
基金financial supports from the National Key R&D Program of China (No.2023YFB3712400)National Natural Science Foundation of China (No.52371040)Joint Fund for Regional Innovation of Hunan Provincial Natural Science Foundation,China (No.2023JJ50333)。
文摘Ti alloys,as leading lightweight and high-strength metallic materials,exhibit significant application potential in aerospace,marine engineering,biomedical,and other industries.However,the lack of fundamental understanding of the microstructure−property relationship results in prolonged research and development(R&D)cycles,hindering the optimization of the performance of Ti alloys.Recently,the advent of high-throughput experimental(HTE)technology has shown promise in facilitating the efficient and demand-driven development of next-generation Ti alloys.This work reviews the latest advancements in HTE technology for Ti alloys.The high-throughput preparation(HTP)techniques commonly used in the fabrication of Ti alloys are addressed,including diffusion multiple,additive manufacturing(AM),vapor deposition and others.The current applications of high-throughput characterization(HTC)techniques in Ti alloys are shown.Finally,the research achievements in HTE technology for Ti alloys are summarized and the challenges faced in their industrial application are discussed.
基金the financial support of the National KeyR&DProgram of China(No.2021YFB3702401)Major Program of the National Natural Science Foundation of China(No.52293394)the National Natural Science Foundation of China(No.51831002).
文摘A combinatorial high-throughput experiment(HTE)was used to optimize composition and process of nickel-saving cryogenic steel.A gradient temperature heat treatment method with a high linear distribution of heat treatment temperature using customized graphite sleeve direct current heating was used in the combinatorial HTE,which enhanced the richness of the sample library for the single preparation of the 10^(2) level component process variables.Cryogenic steel with excellent mechanical properties was optimized using this combinatorial HTE,and the Ni content was reduced from the traditional 9 to 5.6 wt.%by using Mn instead of Ni.The heterogeneous structure architecture strategy and strengthening and toughening mechanism of the harmonic structure induced by intrinsic heat treatment of additive manufacturing were revealed.Taking the composition process optimization of Ni-saving cryogenic steel as an example,the boosting ability of combinatorial HTE in the research and development of new metal materials was proposed.
基金supported by the National Natural Science Foundation of China(22372044,22393892,22002169,22071249)the Guangdong Basic and Applied Basic Research Foundation(2024A1515012583,2019A1515111111)the Major Program of Guangzhou National Laboratory(GZNL2023A02012)。
文摘Herein,we report a novel and highly efficient method for the synthesis ofα-phosphoryloxy carbonyl compounds via Rucatalyzed P(O)O–H insertion reactions of sulfoxonium ylides and phosphinic acids,with the assistance of high-throughput experimentation(HTE)and machine learning(ML).A variety of P(O)O−H derivatives,including diarylphosphates,alkyl phosphates,and alkoxyphosphates,are competent candidates to react with sulfoxonium ylides in this transformation,and variousα-phosphoryloxy carbonyls and propylene phosphates are directly constructed.This approach utilizes readily available sulfoxonium ylide as a carbene precursor,and features mild conditions,operational simplicity,and broad functional groups tolerance,and could be used for late-stage functionalization of structurally complex bioactive molecules.Moreover,a conducive exploration of the reaction space is also conducted(756 reactions)and a machine learning model for reaction yield prediction has been developed and applied,showcasing the practical application of this newly workflow(HTE-ML)in the field of synthetic chemistry.
基金supported by the National Key Research and Development Program of China(2023YFB3712500)the National Natural Science Foundation of China(52273142,52033005,U23A20583)the Science and Technology Department of Sichuan Province(2024NSFTD0003).
文摘Polymer crystallization,an everlasting subject in polymeric materials,holds great significance not only as a fundamental theoretical issue but also as a pivotal basis for directing polymer processing.Given its multistep,rapid,and thermodynamic nature,tracing and comprehending polymer crystallization pose a formidable challenge,particularly when it encounters practical processing scenarios that involve complex coupledfields(such as temperature,flow,and pressure).The advent of high-time and spatially resolved experiments paves the way for in situ investigations of polymer crystallization.In this review,we delve into the strides in studying polymer crystallization under the effects of coupled externalfields via state-of-the-art high-throughput experiments.We highlight the intricate setup of these high-throughput experimental devices,spanning from the laboratory and pilot levels to the industrial level.The individual and combined effects of externalfields on polymer crystallization are discussed.By breaking away from the conventional“black box”research approach,special interest is paid to the in situ crystalline behavior of polymers during realistic processing.Finally,we underscore the advancements in polymer crystallization via high-throughput experiments and outline its promising development.
基金supported by the National Key Research and Development Program of China(No.2018YFB0704003)the Funds for International Cooperation and Exchange of the National Natural Science Foundation of China(No.51820105001).
文摘The development of new engineering alloy chemistries and heat treatments is a time-consuming and iterative process.Here,a hybrid approach of the high-throughput precipitation simulations and decisive experiments is developed to optimize the composition and manipulate the microstructure of Al-Zn-Mg-Cu alloys to achieve the expected yield strength and elongation.For that purpose,a multi-class Kampmann-Wagner numerical(KWN)framework is established and the contributions to precipitation kinetics and strength from primary phases and precipitates formed before age hardening are introduced for the first time.The composition/process-structure-property relationship of Al-Zn-Mg-Cu alloys is pre-sented and discussed in detail.Coupled with thermodynamic calculations,two concentration-optimized Al-Zn-Mg-Cu alloys with expected high yield strength and long elongation are designed,prepared,and characterized.The excellent strength and elongation of the designed alloys and the good agreement between the measured and model-predicted mechanical properties for these two alloys underscores the remarkable predictive power of the presently developed material design strategy.This work establishes a novel material design strategy for rapidly exploring the compositional space and investigating the effects of composition and heat treatment on the microstructure and performance of ultrahigh strength Al alloys and other materials.
基金Natural Science Foundation of Hubei Province(2024AFB432)National Natural Science Foundation of China(52171045,12302436,52302095)Research Fund of Jianghan University(2023JCYJ05)。
文摘Based on simplified calculations of one-dimensional wave systems,loading pressure platform curves of Al-Cu gradient materials(GMs)impactor were designed.The Al-Cu GMs were prepared using tape-pressing sintering,and their acoustic properties were characterized to match the design path.The parallelism of the Al-Cu GM was confirmed using a three-dimensional surface profilometry machine.A one-stage light-gas gun was used to launch the Al-Cu GM,impacting an Al-LiF target at a velocity of 400 m/s.The results of the experimental strain rate demonstrate that the Al-Cu GMs can realize the precise control of the strain rate within the range of 10^(4)‒10^(5)/s in the high-speed impact experiments.
文摘A spice formulation study in Burkina Faso was carried out using local ingredients for the benefit of households. The objective of this study was to propose some spice formulations based on local ingredients in order to reduce the use of chemical spices in the preparation of different dishes. The Design of Experiments (DOE) methodology was used for the formulation of the spices and their physicochemical, nutritional and sensory characteristics were evaluated by standardized and standard methods. The results obtained showed lipid contents (g/100 g DM) ranging from 10.41 ± 0.26 to 15.64 ± 0.68, total sugars from 4.39 ± 0.32 to 5.46 ± 0.31, protein from 3.65 ± 0.17 to 12.04 ± 0.35 and ash from 5.83 ± 0.01 to 7.02 ± 0.01. The polyphenol content ranged from 9.09 ± 1.60 to 11.33 ± 0.90, and the flavonoid content ranged from 0.65 ± 0.03 to 1.08 ± 0.13. The sensory analysis carried out showed that the spices have generally satisfactory organoleptic characteristics. These results constitute new information in the diet of populations and are an alternative to the chemical spices used in their cooking.
基金The authors are grateful for financial support from the National Key Projects for Fundamental Research and Development of China(2021YFA1500803)the National Natural Science Foundation of China(51825205,52120105002,22102202,22088102,U22A20391)+1 种基金the DNL Cooperation Fund,CAS(DNL202016)the CAS Project for Young Scientists in Basic Research(YSBR-004).
文摘Photocatalysis,a critical strategy for harvesting sunlight to address energy demand and environmental concerns,is underpinned by the discovery of high-performance photocatalysts,thereby how to design photocatalysts is now generating widespread interest in boosting the conversion effi-ciency of solar energy.In the past decade,computational technologies and theoretical simulations have led to a major leap in the development of high-throughput computational screening strategies for novel high-efficiency photocatalysts.In this viewpoint,we started with introducing the challenges of photocatalysis from the view of experimental practice,especially the inefficiency of the traditional“trial and error”method.Sub-sequently,a cross-sectional comparison between experimental and high-throughput computational screening for photocatalysis is presented and discussed in detail.On the basis of the current experimental progress in photocatalysis,we also exemplified the various challenges associated with high-throughput computational screening strategies.Finally,we offered a preferred high-throughput computational screening procedure for pho-tocatalysts from an experimental practice perspective(model construction and screening,standardized experiments,assessment and revision),with the aim of a better correlation of high-throughput simulations and experimental practices,motivating to search for better descriptors.
基金financially supported by Jiangsu Province University(High Tech Ship)Collaborative Innovation Center(Grant No.XTCXKY20230008).
文摘In this work,the selected icebreaker model experiment is performed in a towing tank.We focus on the influence of seawater salinity on ship ice resistance in the ice floe field and the innovative ice model and ship model test technology,including the similitude rule of ship model tests,test principles,and validation with full-scale ship data.A formula for calculating the relationship between the temperature and salinity of the water is constructed,which can be used to simulate the role of seawater in freshwater ice pools.On this basis,the effect of salinity on the resistance of ships sailing in broken ice fields is studied.A technique in which artificial ice made of polyethylene spheres is used to simulate ice resistance is proposed.With a series of ship model experiments in spherical and triangular ice fields,the effects of salinity and velocity on the ice resistance test of the ship model are analyzed.A relationship of the ice resistance of the ship model to the spherical ice field and the triangular ice field is proposed.The conversion results are consistent with onsite data of the full-size ship,which verifies the method of converting the test results of the ship model to the prototype.
基金Experimental Teaching Reform Project of Liaoning University of Science and Technology,Experimental Teaching Reform of Concrete Member Crack Observation and Reinforcement Location(Project No.:SYJG202419)。
文摘In the development framework of engineering colleges,the cultivation of students’practical ability has received unprecedented attention.Based on the actual situation of the experimental teaching of the bridge direction of the road and bridge specialty in our school,the targeted teaching experiment reform was carried out,and the comprehensive experiment of the positioning of the crack observation grade steel bar of the reinforced concrete beam was customized,so that the students were fully trained in the application of professional software,experimental hands-on skills,information data analysis and processing,and bridge detection ability.It broadens students’practical ability and professional vision,and lays a good foundation for future work and employment.
基金supported by the National Project for Large Aircraft of China。
文摘A series of scaled model aircraft ditching tests are performed by launch facility system in Hydraulics Laboratory.According to the measured pitch angle,acceleration and pressure history,research on the impact characteristic of ditching is conducted.To solve the problem of cavitation effect which may occur in full scale aircraft,the action mechanism and effect of cavitation are studied,and an innovative experimental simulation measure is taken.It is shown that the cavitation bar directly and effectively separates aircraft bottom from water surface and therefore reduces negative pressure,thus enhancing the authenticity of the test results.The dynamic responses including stability and overload after impacting water at different initial pitch angles are analyzed to find the optimum one,which turns out to be heavily dependent on the bottom curvature of fuselage,and rebound phenomenon occurs when pitch angle exceeds a certain value because of the huge positive pressure acting at the spray root on rear fuselage.In addition,the influences of descent rate and horizontal velocity are analyzed.The results show that the descent rate mainly affects the overall load,which is of higher level of importance,while the horizontal velocity mainly affects the load of local structure.
基金supported by the National Natural Science Foundation of China(Research Project No.52169018).
文摘Cavitation is an unavoidable phenomenon in the operation of centrifugal pumps.Prolonged cavitation can cause significant damage to the components of the flow channel,and in severe cases,it may even interfere with the normal energy exchange processes within the pump.Therefore,effective monitoring of cavitation in centrifugal pumps is crucial.This article presents a study that approaches the issue from an acoustic perspective,using experimental methods to gather and analyze acoustic data at the inlet and outlet of centrifugal pumps across various flow rates,with hydrophones as the primary measuring instruments.Results show that flow rate significantly affects noise levels in both non-cavitation and mild cavitation stages,with noise increasing as the flow rate rises.As the cavitation margin(NPSHa)decreases,inlet and outlet noise trends diverge:inlet noise drops sharply,while outlet noise initially increases before sharply decreasing.Both exhibit a distinct zone of abrupt change,where NPSHa values offer earlier cavitation detection than traditional methods.The noise at the pump’s inlet and outlet primarily consists of discrete and broadband noise,with most energy concentrated at discrete frequencies—shaft frequency(24 Hz),blade frequency(144 Hz),and their harmonics.As NPSHa decreases,the inlet’s discrete and broadband noise frequencies decline,while they increase at the outlet.Monitoring changes in these spectrum characteristics provides an additional means of predicting cavitation onset.
基金The Natural Science Foundation of Liaoning Province of China(Grant No.2023-MSLH-314)he 2024 Yingkou Institute of Technology Campus level Scientific Research Project(FDL202408)+1 种基金The Foundation of Liaoning Provincial Key Laboratoryof Energy Storageand Utilization(GrantNo.CNNK202406)Yingkou Instituteof Technology campus level research project-Development of food additive supercriticalextraction equipment and fluid transmission systemresearch(Grant No.HX202427).
文摘Thermal conductivity is an important physical parameter in thermal equipment,in the blast furnace,rotary kiln and other equipment,multi-layer cylindrical wall is extremely important in industrial production of a thermal conductivity model,its thermal conductivity coefficient determines the ability of the cylindrical wall,which results in the existence of a large number of multi-layer cylinder thermal conductivity problems of the pitfalls.This paper focuses on the establishment of a mathematical model of the multi-layer cylinder thermal conductivity problem,by applying different voltages to the multi-layer cylinder wall,study the temperature distribution of the multi-layer cylinder wall under the conditions of natural convection and forced convection,and draw the line graphs under the conditions of natural convection and forced convection by Origin software,and finally conclude that:under the same conditions,the forced convection is significantly stronger than the natural convection;under the conditions of different voltages,the multi-layer cylinder wall under the conditions of steady state convection,the forced convection is much stronger than natural convection.Under different voltage conditions,the temperature of the multilayer cylinder wall under steady state conditions increases with the increase of voltage,which provides a strong support for the related research.
基金supported by the National Natural Science Foundation of China(No.12272088)the Out-standing Youth Science Foundation of Liaoning Province of China(No.2024JH3/50100013)。
文摘This study investigates the vibration characteristics of bolted-flange-joined conical-cylindrical shells(BFJCCSs)through both theoretical analysis and experimental testing.The proposed model incorporates the pressure distribution within the bolted joint and accounts for the flange effect.The energy expressions for the conical and cylindrical shells are derived from Donnell's shell theory,while those for the flanges are obtained from the Euler-Bernoulli beam theory.The Lagrange equation is used to derive the dynamic equation,and the experimental studies on the BFJCCS are conducted to validate the accuracy of the model.Subsequently,the comprehensive effects of bolt loosening and bolt number on the frequency parameters are analyzed.Additionally,the effects of the flange dimensions and cone angle on the vibration behavior of the BFJCCS are discussed.In particular,the dynamic differences between the welded conical-cylindrical shell(WCCS)and BFJCCS are investigated.It is found that compared with the WCCS,the fundamental frequency of the BFJCCS is reduced by 7.6%,and the corresponding modal damping ratio is reduced by 21.0%.However,the high-order frequencies of the BFJCCS are higher than those of the WCCS,accompanied by a higher modal damping ratio.Compared with the bolt loosening degree,the bolt number has a more significant effect on frequencies.As the bolt number decreases,the impact of the bolt loosening degree diminishes gradually.
基金supported by the Jilin Provincial Scientific and Technological Development Program(YDZJ202401572ZYTS)the Overseas Expertise Introduction Project for Discipline Innovation of China(D18012)+1 种基金Education Department of Jilin Province(JJKH20240678KJ)the National Natural Science Foundation of China(22122904,22109155,22379136)。
文摘The solid electrolyte interphase(SEI)layer,formed on the electrode through electrolyte decomposition,has garnered significant attention over the past several decades.Numerous characterization studies have shown that the SEI enhances the stability of both the electrolyte and electrode,particularly by mitigating the well-known cation-solvent co-intercalation in graphite electrodes in lithium-ion batteries.However,recent electrolyte exchange experiments have revealed that variations in electrolyte solvation structure and the resulting desolvation behaviors play a more dominant role than the SEI in influencing electrolyte and electrode stability,which in turn critically impacts battery performance.In addition to contributing to the ongoing debate,electrolyte exchange experiments have proven to be a valuable tool for analyzing failures in electrolytes,electrodes,and batteries.This review highlights the application of electrolyte exchange experiments across various metal-ion batteries,incorporating diverse combinations of electrolytes and electrodes.It examines the influence of electrolyte solvation structures and desolvation behaviors on the stability of both electrolytes and electrodes.The aim is to enhance the methodology of electrolyte exchange experiments to deepen the understanding of the molecular interactions among metal ions,anions,and solvents within the electrolyte.This approach complements existing insights into SEI effects,providing a more thorough and accurate framework for battery failure analysis.
文摘Correction:J Cotton Res 8,27(2025)https://doi.org/10.1186/s42397-025-00228-y During the publication process of the original article(Soltani Toularoud et al.2025),the article title has been wrongly captured.Te article title should be corrected from:of butisanstar and clopyralid herbicides on Gos-sypium hirsutum L.growth:insights from a pot experiment to:Residual efects of butisanstar and clopyralid herbi-cides on Gossypium hirsutum L.growth:insights from a pot experiment Te original article(Soltani Toularoud et al.2025)has been updated.Te publisher apologizes to the authors and readers for the inconvenience caused.
基金Supported by Undergraduate Higher Education Teaching Quality and Reform Projects of Guangdong Province(Yuejiao Gao Han[2024]No.9)Yuejiao Gao Han[2024]No.30)+5 种基金Curriculum Ideological and Political Reform Demonstration Project of Zhaoqing University(Zhao Xue Yuan[2024]No.83)Key Research Project of Zhaoqing University(ZD202407)Quality Engineering and Teaching Reform Projects of Zhaoqing University(zlgc202207zlgc2024005zlgc202239zlgc2024038).
文摘With the deep advancement of modern educational informatization,the micro-video teaching model has gradually become an effective approach for promoting the innovation and reform of experimental teaching,owing to its advantages such as intuitive visualization,repeatability,and flexible learning.This paper addressed the limitations of the traditional zoology experiment teaching model,which include insufficiently clear teacher demonstrations,limited class time,and the difficulty of accommodating individual student differences.Accordingly,we systematically analyzed the main characteristics,implementation models,and effectiveness of the micro-video teaching model in the Zoology Experiment course.We also discussed the primary challenges encountered during its teaching practice and proposed corresponding recommendations for improvement.This analysis aimed to provide a theoretical reference for the teaching reform of Zoology Experiment in normal universities.
基金supported by the Major Program of the National Social Science Foundation of China(no.2022YFC3600801)the Operation of Public Health Emergency Response Mechanisms of the Chinese Center for Disease Control and Prevention(no.102393220020010000017)。
文摘Objective This study explored the job choice preferences of Center for Disease Prevention and Control(CDC)workers to provide CDC management information and recommendations for optimizing employee retention and motivation policies.Methods A discrete choice experiment was conducted in nine provinces across China.Seven key attributes were identified to analyze the job preferences of CDC workers.Mixed logit models,latent class models,and policy simulation tools were used.Results A valid sample of 5,944 cases was included in the analysis.All seven attributes significantly influenced the job choices of CDC workers.Heterogeneity analyses identified two main groups based on different levels of preference for attribute utility.Income-prioritizers were concerned with income and opportunities for career development,whereas bianzhi-prioritizers were concerned with bianzhi and welfare benefits.The policy simulation analysis revealed that income-prioritizers had a relatively higher sensitivity to multiple job preference incentives.Conclusion Income and bianzhi were the two key attributes influencing the job choices and retention preferences of CDC workers.Heterogeneity in job preferences was also identified.Based on the preference characteristics of different subgroups,policy content should be skewed to differentiate the importance of incentives.