Dynamic structuralcolors can change in response todifferent environmental stimuli.This ability remains effectiveeven when the size of the speciesresponsible for the structural coloris reduced to a few micrometers,prov...Dynamic structuralcolors can change in response todifferent environmental stimuli.This ability remains effectiveeven when the size of the speciesresponsible for the structural coloris reduced to a few micrometers,providing a promising sensingmechanism for solving microenvironmentalsensing problems inmicro-robotics and microfluidics.However, the lack of dynamicstructural colors that can encoderapidly, easily integrate, and accuratelyreflect changes in physical quantities hinders their use in microscale sensing applications. Herein, we present a 2.5-dimensionaldynamic structural color based on nanogratings of heterogeneous materials, which were obtained by interweaving a pH-responsive hydrogelwith an IP-L photoresist. Transverse gratings printed with pH-responsive hydrogels elongated the period of longitudinal grating in the swollenstate, resulting in pH-tuned structural colors at a 45° incidence. Moreover, the patterned encoding and array printing of dynamic structuralcolors were achieved using grayscale stripe images to accurately encode the periods and heights of the nanogrid structures. Overall, dynamicstructural color networks exhibit promising potential for applications in information encryption and in situ sensing for microfluidic chips.展开更多
The development of flexible supercapacitors(FSCs) capable of operating at high temperatures is crucial for expanding the application areas and operating conditions of supercapacitors. Gel polymer electrolytes and elec...The development of flexible supercapacitors(FSCs) capable of operating at high temperatures is crucial for expanding the application areas and operating conditions of supercapacitors. Gel polymer electrolytes and electrode materials stand as two key components that significantly impact the efficacy of hightemperature-tolerant FSCs(HT-FSCs). They should not only exhibit high electrochemical performance and excellent flexibility, but also withstand intense thermal stress. Considerable efforts have been devoted to enhancing their thermal stability while maintaining high electrochemical and mechanical performance. In this review, the fundamentals of HT-FSCs are outlined. A comprehensive overview of state-of-the-art progress and achievements in HT-FSCs, with a focus on thermally stable gel polymer electrolytes and electrode materials is provided. Finally, challenges and future perspectives regarding HT-FSCs are discussed, alongside strategies for elevating operational temperatures and performance.This review offers both theoretical foundations and practical guidelines for designing and manufacturing HT-FSCs, further promoting their widespread adoption across diverse fields.展开更多
Rechargeable magnesium batteries(RMBs)are a cutting-edge energy storage solution,with several advantages over the state-of-art lithiumion batteries(LIBs).The use of magnesium(Mg)metal as an anode material provides a m...Rechargeable magnesium batteries(RMBs)are a cutting-edge energy storage solution,with several advantages over the state-of-art lithiumion batteries(LIBs).The use of magnesium(Mg)metal as an anode material provides a much higher gravimetric capacity compared to graphite,which is currently used as the anode material in LIBs.Despite the significant advances in electrolyte,the development of cathode material is limited to materials that operate at low average discharge voltage(<1.0 V vs.Mg/Mg^(2+)),and developing high voltage cathodes remains challenging.Only a few materials have been shown to intercalate Mg^(2+)ions reversibly at high voltage.This review focuses on the structural aspects of cathode material that can operate at high voltage,including the Mg^(2+)intercalation mechanism in relation to its electrochemical properties.The materials are categorized into transition metal oxides and polyanions and subcategorized by the intrinsic Mg^(2+)diffusion path.This review also provides insights into the future development of each material,aiming to stimulate and guide researchers working in this field towards further advancements in high voltage cathodes.展开更多
Polyvinyl chloride is the most widely used general-purpose plastic and plays a vital role in various industries.Mercury-based catalysts severely limit the green sustainability of industry.Non-metallic carbon materials...Polyvinyl chloride is the most widely used general-purpose plastic and plays a vital role in various industries.Mercury-based catalysts severely limit the green sustainability of industry.Non-metallic carbon materials are very promising alternatives in acetylene hydrochlorination,but their stability remains a challenge of major concern at present.Based on the principle of green chemistry,structurally tunable and defect-rich carbon materials were synthesized by hydrothermal carbonization and pyrolysis using glucose as carbon source and m-phenylenediamine as nitrogen source and cross-linking agent.Experimental characterization and density functional theory confirmed that pyridinic N was the main active site.The introduction of N not only regulated the formation of the hierarchically porous structure of the carbon material,but also increased the adsorption of HCl and decreased the adsorption strength of C_(2)H_(2).The synergistic effect of high N content and porous structure significantly enhanced the catalytic performance of the catalysts in acetylene hydrochlorination.The C_(2)H_(2)conversion was maintained at around98%after 100 h under the reaction conditions(T=220°C,GHSV(C_(2)H_(2))=30 h^(-1),V_(HCl)/VC_(2)H_(2)=1.15).Thus,the one-pot synthesis process used here is a good benchmark for future catalyst research.展开更多
High entropy materials(HEMs)are the promising electrocatalysts for anion exchange membrane electrolyser(AEMs)and proton exchange membrane fuel cells(PEMFCs)due to the intriguing cocktail effect,wide design space,tailo...High entropy materials(HEMs)are the promising electrocatalysts for anion exchange membrane electrolyser(AEMs)and proton exchange membrane fuel cells(PEMFCs)due to the intriguing cocktail effect,wide design space,tailorable electronic structure,and entropy stabilization effect.The precise fabrication of HEMs with functional nanostructures provides a crucial avenue to optimize the adsorption strength and catalytic activity for electrocatalysis.This review comprehensively summarizes the development of HEMs,focusing on the principles and strategies of structural design,and the catalytic mechanism towards hydrogen evolution reaction,oxygen evolution reaction and oxygen reduction reaction for the development of high-performance electrocatalysts.The complexity inherent in the interactions between different elements,the changes in the d-band center and the Gibbs free energies during the catalytic progress,as well as the coordination environment of the active sites associated with the unique crystal structure to improve the catalytic performance are discussed.We also provide a perspective on the challenges and future development direction of HEMs in electrocatalysis.This review will contribute to the design and development of HEMs-based catalysts for the next generation of electrochemical applications.展开更多
Thanks to its abundant reserves,relatively high energy density,and low reduction potential,potassium ion batteries(PIBs)have a high potential for large-scale energy storage applications.Due to the large radius of pota...Thanks to its abundant reserves,relatively high energy density,and low reduction potential,potassium ion batteries(PIBs)have a high potential for large-scale energy storage applications.Due to the large radius of potassium ions,most conventional anode materials undergo severe volume expansion,making it difficult to achieve stable and reversible energy storage.Therefore,developing high-performance anode materials is one of the critical factors in developing PIBs.In this sense,antimony(Sb)-based anode materials with high theoretical capacity and safe reaction potentials have a broad potential for application in PIBs.However,overcoming the rapid capacity decay induced by the large radius of potassium ions is still an issue that needs to be focused on.This paper reviews the latest research on different types of Sb-based anode materials and provides an in-depth analysis of their optimization strategies.We focus on material selection,structural design,and storage mechanisms to develop a detailed description of the material.In addition,the current challenges still faced by Sb-based anode materials are summarized,and some further optimization strategies have been added.We hope to provide some insights for researchers developing Sb-based anode materials for next-generation advanced PIBs.展开更多
Magnesium and its related materials have potential applications in the automotive sector for weight reduction,in energy storage technologies such as batteries and hydrogen storage,and in biomedical field due to their ...Magnesium and its related materials have potential applications in the automotive sector for weight reduction,in energy storage technologies such as batteries and hydrogen storage,and in biomedical field due to their biodegradability.In comparison,the researches on the latter ones are currently receiving more and more interests.This paper explores recent research advancements in Mg-based materials in these fields especially within recent 4 years in Germany.展开更多
To explore high value-added utilization pathways of fly ash,the mesoporous structure of silicon dioxide extracted from fly ash(FA-SiO_(2))was utilized to restrict the dicyandiamide(DCDA)thermal degradation process.Thi...To explore high value-added utilization pathways of fly ash,the mesoporous structure of silicon dioxide extracted from fly ash(FA-SiO_(2))was utilized to restrict the dicyandiamide(DCDA)thermal degradation process.This produced chemically bonded interacting composite photocatalysts of FA-SiO,and graphitic-phase carbon nitride(g-C_(3)N_(4)).Compared with the spherical silicon dioxide prepared using tetraethyl orthosilicate(TEOS-SiO_(2)),the mesoporous structure of FA-SiO_(2),allowed DCDA to react in a smaller space,which facilitated the transformation of DCDA to melamine by the thermal degradation kinetics of FA-C_(3)N_(4)/DCDA.This ultimately boosted the formation of an N-atom-removed triazine ring structure and a multistage structure combining lumps and rods in the composite photocatalysts of g-C_(3)N_(4),and FA-SiO_(2),which led to a higher visible-light utilization efficiency,a suitable valence-band position,and the photocatalytic activity for methylene blue reaching 3.56 times that of g-C_(3)N_(4).The findings indicate that mesoporous FA-SiO,has the potential to improve the structural and photocatalytic properties of g-C_(3)N_(4),-based materials.展开更多
Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and...Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.展开更多
As the second most important solid waste produced by coal-fired power plants,the improper management of coal-fired slag has the potential to result in environmental pollution.It is therefore imperative that high-value...As the second most important solid waste produced by coal-fired power plants,the improper management of coal-fired slag has the potential to result in environmental pollution.It is therefore imperative that high-value utilization pathways for coal-fired slag should be developed.In this study,modified magnesium slag(MMS),produced by a magnesium smelter,was selected as the alkali activator.The activated silica-aluminum solid wastes,namely coal-fired slag(CFS)and mineral powder(MP),were employed as pozzolanic materials in the preparation of alkali-activated cementitious materials.The alkali-activated cementitious materials prepared with 50 wt%MMS,40 wt%CFS and 10 wt%MP exhibited favorable mechanical properties,with a compressive strength of 32.804 MPa in the paste sample cured for 28 d.Then,the activated silica-aluminum solid waste consisting of CFS-MP generated a significant amount of C-S(A)-H gels,AFt,and other products,which were observed to occupy the pore structure of the specimen.In addition,the secondary hydration reaction of CFS-MP occurs in high alkalinity environments,resulting in the formation of a mutually stimulated and promoted reaction system between CFS-MP and MMS,this will subsequently accelerate the hydrolysis reaction of MMS.It is important to emphasize that the amount of MMS in alkali-activated cementitious materials must be strictly regulated to avert the potential issue of incomplete depolymerization-repolymerization of active silica-aluminum solid waste containing CFS-MP.This in turn could have a deleterious impact on the late strength of the cementitious materials.The aim of this work is to improve the joint disposal of MMS,CFS and MP and thereby provide a scientific basis for the development of environmentally friendly and low-carbon modified magnesium slag alkali-activated coal-fired slag based cementitious materials for mine backfilling.展开更多
With the continuously increasing awareness of energy conservation and the intensifying impacts of global warming, Personal Thermal Management (PTM) technologies are increasingly recognized for their potential to ensur...With the continuously increasing awareness of energy conservation and the intensifying impacts of global warming, Personal Thermal Management (PTM) technologies are increasingly recognized for their potential to ensure human thermal comfort in extreme environments. Biomimetic structures have emerged as a novel source of inspiration for PTM applications. This review systematically summarizes the biomimetic structures, phase change materials, manufacturing methods, and the performance of multifunctional PTM wearables. Firstly, it analyzes the biomimetic structures with thermal regulation and encapsulated phase change material functionalities from different dimensions, highlighting their applications in PTM. Subsequently, it outlines the conventional manufacturing methods incorporating various biomimetic structures, offering strategies for the production of PTM wearables. The review also discusses the typical performance characteristics of multifunctional PTM wearables, addressing the current demands in thermal management. Finally, opportunities and challenges in PTM field are proposed, proposing new directions for future research.展开更多
Perovskite solar cells(PSC)are considered as a promising photovoltaic technology due to their low cost and high efficiency exceeding 26.8%.Ultra-lightweight flexible perovskite solar cells(FPSCs)can be applied to many...Perovskite solar cells(PSC)are considered as a promising photovoltaic technology due to their low cost and high efficiency exceeding 26.8%.Ultra-lightweight flexible perovskite solar cells(FPSCs)can be applied to many fields such as architecture and portable devices.Although the photovoltaic conversion efficiency(PCE)of FPSC has exceeded 24%in the past few years,further application of FPSC is constrained by the challenges posed by limitation of critical material components.Here,we discussed recent research progress of key FPSC materials,mechanical endurance,low-temperature fabrication,etc.With the advantages of high brightness,collimation and resolution,we specially introduced the application of synchrotron radiation grazing incidence wide-angle X-ray scattering(GIWAXS)to directly observe the perovskite buried interface structure and corresponding mechanical stability of FPSCs without any damage.Finally,we summarize the challenges and propose an outlook about the large-scale preparation of efficient and stable FPSC modules.展开更多
This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-...This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-oped using the material point method.To reduce the computational cost of Monte Carlo simulations,response surface models are created as surrogate models for the material point system to approximate its dynamic behavior.An adaptive randomized greedy algorithm is employed to construct a sparse polynomial chaos expansion model with a fixed order,effectively balancing the accuracy and computational efficiency of the surrogate model.Based on the sparse polynomial chaos expansion,sensitivity analysis is conducted using the global finite difference and Sobol methods.Several examples of structural dynamics are provided to demonstrate the effectiveness of the proposed method in addressing structural dynamics problems.展开更多
Damage evolution characterization and performance evaluation under realistic conditions are essential to ensure reliable operation of critical safety components.However,previous studies focus on the surface detection ...Damage evolution characterization and performance evaluation under realistic conditions are essential to ensure reliable operation of critical safety components.However,previous studies focus on the surface detection because of very limited penetration capacity of nondestructive testing facilities.Here,we review the recent progress of material damage mechanism by various in situ testing rigs that are compat-ible with laboratory and synchrotron radiation X-ray facilities.Then,taking metallic alloys and composites as model materials,we demonstrate the unique advantages of in situ X-ray three-dimensional tomography in unveiling complex failure mechanisms,quantifying crack growth driving forces and crack closure phenomena,and elucidating the strengthening/degrading effects from microstructure and environment on structural material degradation.Finally,we also discuss the ongoing direction of in situ multi-scale visualization and characterization with the development of advanced high-energy X-ray facilities,the improvement of in situ devices and sample environments,the demand of high-throughput tests,and the processing and application of massive test data.展开更多
Lithium-sulfur batteries(LSBs)boasting remarkable energy density have garnered significant attention within academic and industrial spheres.Nevertheless,the progression of LSBs remains constrained by the languid redox...Lithium-sulfur batteries(LSBs)boasting remarkable energy density have garnered significant attention within academic and industrial spheres.Nevertheless,the progression of LSBs remains constrained by the languid redox kinetics intrinsic to sulfur and the pronounced shuttle effect induced by lithium polysulfides(Li PSs),which seriously affecting the energy density,cycling life and rate capacity.The conceptualization and implementation of catalytic materials stand acknowledged as a propitious stratagem for orchestrating kinetic modulation,particularly in excavating the conversion of LiPSs and has evolved into a focal point for disposing.Among them,chalcogenide catalytic materials(CCMs)have shown satisfactory catalytic effects ascribe to the unique physicochemical properties,and have been extensively developed in recent years.Considering the lack of systematic summary regarding the development of CCMs and corresponding performance optimization strategies,herein,we initiate a comprehensive review regarding the recent progress of CCMs for effective collaborative immobilization and accelerated transformation kinetics of Li PSs.Following that,the modulation strategies to improve the catalytic activity of CCMs are summarized,including structural engineering(morphology engineering,surface/interface engineering,crystal engineering)and electronic engineering(doping and vacancy,etc.).Finally,the application prospect of CCMs in LSBs is clarified,and some enlightenment is provided for the reasonable design of CCMs serving practical LSBs.展开更多
With the increasing spotlight in electric vehicles,there is a growing demand for high-energy-density batteries to enhance driving range.Consequently,several studies have been conducted on high-energy-density LiNi_(x)C...With the increasing spotlight in electric vehicles,there is a growing demand for high-energy-density batteries to enhance driving range.Consequently,several studies have been conducted on high-energy-density LiNi_(x)Co_(y)Mn_(z)O_(2)cathodes.However,there is a limit to permanent performance deterioration because of side reactions caused by moisture in the atmosphere and continuous microcracks during cycling as the Ni content to express high energy increases and the content of Mn and Co that maintain structural and electrochemical stabilization decreases.The direct modification of the surface and bulk regions aims to enhance the capacity and long-term performance of high-Ni cathode materials.Therefore,an efficient modification requires a study based on a thorough understanding of the degradation mechanisms in the surface and bulk region.In this review,a comprehensive analysis of various modifications,including doping,coating,concentration gradient,and single crystals,is conducted to solve degradation issues along with an analysis of the overall degradation mechanism occurring in high-Ni cathode materials.It also summarizes recent research developments related to the following modifications,aims to provide notable points and directions for post-studies,and provides valuable references for the commercialization of stable high-energy-density cathode materials.展开更多
Refractory materials,as the crucial foundational materials in high-temperature industrial processes such as metallurgy and construction,are inevitably subjected to corrosion and penetration from high-temperature media...Refractory materials,as the crucial foundational materials in high-temperature industrial processes such as metallurgy and construction,are inevitably subjected to corrosion and penetration from high-temperature media during their service.Traditionally,observing the in-situ degradation process of refractory materials in complex high-temperature environments has presented challenges.Post-corrosion analysis are commonly employed to assess the slag resistance of refractory materials and understand the corrosion mechanisms.However,these methods often lack information on the process under the conditions of thermal-chemical-mechanical coupling,leading to potential biases in the analysis results.In this work,we developed a non-contact high-temperature machine vision technology by the integrating Digital Image Correlation(DIC)with a high-temperature visualization system to explore the corrosion behavior of Al2O3-SiO2 refractories against molten glass and Al2O3-MgO dry ramming refractories against molten slag at different temperatures.This technology enables realtime monitoring of the 2D or 3D overall strain and average strain curves of the refractory materials and provides continuous feedback on the progressive corrosion of the materials under the coupling conditions of thermal,chemical,and mechanical factors.Therefore,it is an innovative approach for evaluating the service behavior and performance of refractory materials,and is expected to promote the digitization and intelligence of the refractory industry,contributing to the optimization and upgrading of product performance.展开更多
Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effecti...Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effective energy storage systems.Ad-vances in materials science have led to the develop-ment of hybrid nanomaterials,such as combining fil-amentous carbon forms with inorganic nanoparticles,to create new charge and energy transfer processes.Notable materials for electrochemical energy-stor-age applications include MXenes,2D transition met-al carbides,and nitrides,carbon black,carbon aerogels,activated carbon,carbon nanotubes,conducting polymers,carbon fibers,and nanofibers,and graphene,because of their thermal,electrical,and mechanical properties.Carbon materials mixed with conducting polymers,ceramics,metal oxides,transition metal oxides,metal hydroxides,transition metal sulfides,trans-ition metal dichalcogenide,metal sulfides,carbides,nitrides,and biomass materials have received widespread attention due to their remarkable performance,eco-friendliness,cost-effectiveness,and renewability.This article explores the development of carbon-based hybrid materials for future supercapacitors,including electric double-layer capacitors,pseudocapacitors,and hy-brid supercapacitors.It investigates the difficulties that influence structural design,manufacturing(electrospinning,hydro-thermal/solvothermal,template-assisted synthesis,electrodeposition,electrospray,3D printing)techniques and the latest car-bon-based hybrid materials research offer practical solutions for producing high-performance,next-generation supercapacitors.展开更多
High-temperature microwave absorbing materials(MAMs)and structures are increasingly appealing due to their critical role in stealth applications under harsh environments.However,the impedance mismatch caused by increa...High-temperature microwave absorbing materials(MAMs)and structures are increasingly appealing due to their critical role in stealth applications under harsh environments.However,the impedance mismatch caused by increased conduction loss often leads to a significant decline in electromagnetic wave absorp-tion(EMWA)performance at elevated temperatures,which severely restricts their practical application.In this study,we propose a novel approach for efficient electromagnetic wave absorption across a wide temperature range using reduced graphene oxide(RGO)/epoxy resin(EP)metacomposites that integrate both electromagnetic parameters and metamaterial design concepts.Due to the discrete distribution of the units,electromagnetic waves can more easily penetrate the interior of materials,thereby exhibiting stable microwave absorption(MA)performance and impedance-matching characteristics suitable across a wide temperature range.Consequently,exceptional MA properties can be achieved within the tem-perature range from 298 to 473 K.Furthermore,by carefully controlling the structural parameters in RGO metacomposites,both the resonant frequency and effective absorption bandwidth(EAB)can be optimized based on precise manipulation of equivalent electromagnetic parameters.This study not only provides an effective approach for the rational design of MA performance but also offers novel insights into achieving super metamaterials with outstanding performance across a wide temperature spectrum.展开更多
In recent years,sodium-ion batteries(SIBs)have become one of the hot discussions and have gradually moved toward industrialization.However,there are still some shortcomings in their performance that have not been well...In recent years,sodium-ion batteries(SIBs)have become one of the hot discussions and have gradually moved toward industrialization.However,there are still some shortcomings in their performance that have not been well addressed,including phase transition,structural degradation,and voltage platform.High entropy materials have recently gained significant attention from researchers due to their effects on thermodynamics,dynamics,structure,and performance.Researchers have attempted to use these materials in sodium-ion batteries to overcome their problems,making it a modification method.This paper aims to discuss the research status of high-entropy cathode materials for sodium-ion batteries and summarize their effects on sodium-ion batteries from three perspectives:Layered oxide,polyanion,and Prussian blue.The infiuence on material structure,the inhibition of phase transition,and the improvement of ion diffusivity are described.Finally,the advantages and disadvantages of high-entropy cathode materials for sodium-ion batteries are summarized,and their future development has prospected.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.61925307).
文摘Dynamic structuralcolors can change in response todifferent environmental stimuli.This ability remains effectiveeven when the size of the speciesresponsible for the structural coloris reduced to a few micrometers,providing a promising sensingmechanism for solving microenvironmentalsensing problems inmicro-robotics and microfluidics.However, the lack of dynamicstructural colors that can encoderapidly, easily integrate, and accuratelyreflect changes in physical quantities hinders their use in microscale sensing applications. Herein, we present a 2.5-dimensionaldynamic structural color based on nanogratings of heterogeneous materials, which were obtained by interweaving a pH-responsive hydrogelwith an IP-L photoresist. Transverse gratings printed with pH-responsive hydrogels elongated the period of longitudinal grating in the swollenstate, resulting in pH-tuned structural colors at a 45° incidence. Moreover, the patterned encoding and array printing of dynamic structuralcolors were achieved using grayscale stripe images to accurately encode the periods and heights of the nanogrid structures. Overall, dynamicstructural color networks exhibit promising potential for applications in information encryption and in situ sensing for microfluidic chips.
基金Fundamental Research Funds for the Central Universities of China(Grant No. SWU-KT22030)Scientific and Technological Research Program of Chongqing Municipal Education Commission of China (No.KJQN202300205)financial support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under the project of 457444676。
文摘The development of flexible supercapacitors(FSCs) capable of operating at high temperatures is crucial for expanding the application areas and operating conditions of supercapacitors. Gel polymer electrolytes and electrode materials stand as two key components that significantly impact the efficacy of hightemperature-tolerant FSCs(HT-FSCs). They should not only exhibit high electrochemical performance and excellent flexibility, but also withstand intense thermal stress. Considerable efforts have been devoted to enhancing their thermal stability while maintaining high electrochemical and mechanical performance. In this review, the fundamentals of HT-FSCs are outlined. A comprehensive overview of state-of-the-art progress and achievements in HT-FSCs, with a focus on thermally stable gel polymer electrolytes and electrode materials is provided. Finally, challenges and future perspectives regarding HT-FSCs are discussed, alongside strategies for elevating operational temperatures and performance.This review offers both theoretical foundations and practical guidelines for designing and manufacturing HT-FSCs, further promoting their widespread adoption across diverse fields.
基金supported by the Nano&Material Technology Development Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(RS-2024-00446825)by the Technology Innovation Program(RS-2024-00418815)funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea).
文摘Rechargeable magnesium batteries(RMBs)are a cutting-edge energy storage solution,with several advantages over the state-of-art lithiumion batteries(LIBs).The use of magnesium(Mg)metal as an anode material provides a much higher gravimetric capacity compared to graphite,which is currently used as the anode material in LIBs.Despite the significant advances in electrolyte,the development of cathode material is limited to materials that operate at low average discharge voltage(<1.0 V vs.Mg/Mg^(2+)),and developing high voltage cathodes remains challenging.Only a few materials have been shown to intercalate Mg^(2+)ions reversibly at high voltage.This review focuses on the structural aspects of cathode material that can operate at high voltage,including the Mg^(2+)intercalation mechanism in relation to its electrochemical properties.The materials are categorized into transition metal oxides and polyanions and subcategorized by the intrinsic Mg^(2+)diffusion path.This review also provides insights into the future development of each material,aiming to stimulate and guide researchers working in this field towards further advancements in high voltage cathodes.
基金supported by the Tianchi Innovation Leading Talent Development Fund(No.CZ002710)in Xinjiangthe Taishan Scholars Program of Shandong Province(No.tsqn202103051)+4 种基金the Project of Science and Technology Development of Yantai City(No.2023JCYJ073)Natural science foundation of Shandong province(No.ZR2023MB064)special funds for over provincial level leading talent of Yantai citythe Start-Up Foundation for High-level Professionals of Shihezi University(No.RCZK201932)Tianshan Talents Training Program of Xinjiang(Science and Technology Innovation Team,No.2022TSYCTD0021)。
文摘Polyvinyl chloride is the most widely used general-purpose plastic and plays a vital role in various industries.Mercury-based catalysts severely limit the green sustainability of industry.Non-metallic carbon materials are very promising alternatives in acetylene hydrochlorination,but their stability remains a challenge of major concern at present.Based on the principle of green chemistry,structurally tunable and defect-rich carbon materials were synthesized by hydrothermal carbonization and pyrolysis using glucose as carbon source and m-phenylenediamine as nitrogen source and cross-linking agent.Experimental characterization and density functional theory confirmed that pyridinic N was the main active site.The introduction of N not only regulated the formation of the hierarchically porous structure of the carbon material,but also increased the adsorption of HCl and decreased the adsorption strength of C_(2)H_(2).The synergistic effect of high N content and porous structure significantly enhanced the catalytic performance of the catalysts in acetylene hydrochlorination.The C_(2)H_(2)conversion was maintained at around98%after 100 h under the reaction conditions(T=220°C,GHSV(C_(2)H_(2))=30 h^(-1),V_(HCl)/VC_(2)H_(2)=1.15).Thus,the one-pot synthesis process used here is a good benchmark for future catalyst research.
基金supported by the Guangdong Basic and Applied Basic Research Fund Project(2022A1515140061,No.11000-2344014)Startup Foundation for Postdoctor by Dongguan University of Technology(No.11000-221110149)the High-level Talents Program(contract number 2023JC10L014)of the Department of Science and Technology of Guangdong Province。
文摘High entropy materials(HEMs)are the promising electrocatalysts for anion exchange membrane electrolyser(AEMs)and proton exchange membrane fuel cells(PEMFCs)due to the intriguing cocktail effect,wide design space,tailorable electronic structure,and entropy stabilization effect.The precise fabrication of HEMs with functional nanostructures provides a crucial avenue to optimize the adsorption strength and catalytic activity for electrocatalysis.This review comprehensively summarizes the development of HEMs,focusing on the principles and strategies of structural design,and the catalytic mechanism towards hydrogen evolution reaction,oxygen evolution reaction and oxygen reduction reaction for the development of high-performance electrocatalysts.The complexity inherent in the interactions between different elements,the changes in the d-band center and the Gibbs free energies during the catalytic progress,as well as the coordination environment of the active sites associated with the unique crystal structure to improve the catalytic performance are discussed.We also provide a perspective on the challenges and future development direction of HEMs in electrocatalysis.This review will contribute to the design and development of HEMs-based catalysts for the next generation of electrochemical applications.
基金financially supported by the National Natural Science Foundation of China(No.22209057)the Guangzhou Basic and Applied Basic Research Foundation(No.2024A04J0839)。
文摘Thanks to its abundant reserves,relatively high energy density,and low reduction potential,potassium ion batteries(PIBs)have a high potential for large-scale energy storage applications.Due to the large radius of potassium ions,most conventional anode materials undergo severe volume expansion,making it difficult to achieve stable and reversible energy storage.Therefore,developing high-performance anode materials is one of the critical factors in developing PIBs.In this sense,antimony(Sb)-based anode materials with high theoretical capacity and safe reaction potentials have a broad potential for application in PIBs.However,overcoming the rapid capacity decay induced by the large radius of potassium ions is still an issue that needs to be focused on.This paper reviews the latest research on different types of Sb-based anode materials and provides an in-depth analysis of their optimization strategies.We focus on material selection,structural design,and storage mechanisms to develop a detailed description of the material.In addition,the current challenges still faced by Sb-based anode materials are summarized,and some further optimization strategies have been added.We hope to provide some insights for researchers developing Sb-based anode materials for next-generation advanced PIBs.
文摘Magnesium and its related materials have potential applications in the automotive sector for weight reduction,in energy storage technologies such as batteries and hydrogen storage,and in biomedical field due to their biodegradability.In comparison,the researches on the latter ones are currently receiving more and more interests.This paper explores recent research advancements in Mg-based materials in these fields especially within recent 4 years in Germany.
基金supported by the Medical Special Cultivation Project of Anhui University of Science and Technology(Nos.YZ2023H2B013 and YZ2023H2B012),China.
文摘To explore high value-added utilization pathways of fly ash,the mesoporous structure of silicon dioxide extracted from fly ash(FA-SiO_(2))was utilized to restrict the dicyandiamide(DCDA)thermal degradation process.This produced chemically bonded interacting composite photocatalysts of FA-SiO,and graphitic-phase carbon nitride(g-C_(3)N_(4)).Compared with the spherical silicon dioxide prepared using tetraethyl orthosilicate(TEOS-SiO_(2)),the mesoporous structure of FA-SiO_(2),allowed DCDA to react in a smaller space,which facilitated the transformation of DCDA to melamine by the thermal degradation kinetics of FA-C_(3)N_(4)/DCDA.This ultimately boosted the formation of an N-atom-removed triazine ring structure and a multistage structure combining lumps and rods in the composite photocatalysts of g-C_(3)N_(4),and FA-SiO_(2),which led to a higher visible-light utilization efficiency,a suitable valence-band position,and the photocatalytic activity for methylene blue reaching 3.56 times that of g-C_(3)N_(4).The findings indicate that mesoporous FA-SiO,has the potential to improve the structural and photocatalytic properties of g-C_(3)N_(4),-based materials.
基金National Natural Science Foundation of China(32201491)Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FPEJ-2024-1101-02”.
文摘Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.
基金Projects(52222404,52074212)supported by the National Natural Science Foundation of ChinaProject(2023-LL-QY-07)supported by the Two-chain Integration Key Projects in Shaanxi Province,China。
文摘As the second most important solid waste produced by coal-fired power plants,the improper management of coal-fired slag has the potential to result in environmental pollution.It is therefore imperative that high-value utilization pathways for coal-fired slag should be developed.In this study,modified magnesium slag(MMS),produced by a magnesium smelter,was selected as the alkali activator.The activated silica-aluminum solid wastes,namely coal-fired slag(CFS)and mineral powder(MP),were employed as pozzolanic materials in the preparation of alkali-activated cementitious materials.The alkali-activated cementitious materials prepared with 50 wt%MMS,40 wt%CFS and 10 wt%MP exhibited favorable mechanical properties,with a compressive strength of 32.804 MPa in the paste sample cured for 28 d.Then,the activated silica-aluminum solid waste consisting of CFS-MP generated a significant amount of C-S(A)-H gels,AFt,and other products,which were observed to occupy the pore structure of the specimen.In addition,the secondary hydration reaction of CFS-MP occurs in high alkalinity environments,resulting in the formation of a mutually stimulated and promoted reaction system between CFS-MP and MMS,this will subsequently accelerate the hydrolysis reaction of MMS.It is important to emphasize that the amount of MMS in alkali-activated cementitious materials must be strictly regulated to avert the potential issue of incomplete depolymerization-repolymerization of active silica-aluminum solid waste containing CFS-MP.This in turn could have a deleterious impact on the late strength of the cementitious materials.The aim of this work is to improve the joint disposal of MMS,CFS and MP and thereby provide a scientific basis for the development of environmentally friendly and low-carbon modified magnesium slag alkali-activated coal-fired slag based cementitious materials for mine backfilling.
基金supported by Basic and Applied Basic Research Foundation of Guangdong Province(No.2024A1515010772)State Key Laboratory of Massive Personalized Customization System and Technology,No.H&C-MPC-2023-02-06(Q)+2 种基金“CUG scholar”Scientific Research Funds at China University of Geosciences,Wuhan(No.CUG2022185)Guangzhou Youth Top Talent ProgramChina College Student Innovation and Entrepreneurship Training Program(No.S202410491063).
文摘With the continuously increasing awareness of energy conservation and the intensifying impacts of global warming, Personal Thermal Management (PTM) technologies are increasingly recognized for their potential to ensure human thermal comfort in extreme environments. Biomimetic structures have emerged as a novel source of inspiration for PTM applications. This review systematically summarizes the biomimetic structures, phase change materials, manufacturing methods, and the performance of multifunctional PTM wearables. Firstly, it analyzes the biomimetic structures with thermal regulation and encapsulated phase change material functionalities from different dimensions, highlighting their applications in PTM. Subsequently, it outlines the conventional manufacturing methods incorporating various biomimetic structures, offering strategies for the production of PTM wearables. The review also discusses the typical performance characteristics of multifunctional PTM wearables, addressing the current demands in thermal management. Finally, opportunities and challenges in PTM field are proposed, proposing new directions for future research.
基金supported by Photon Science Research Center For Carbon Dioxide,Project of the National Natural Science Foundation of China(22332003)supported by the National Natural Science Foundation of China(12175298,12075309)+10 种基金the National Natural Science Foundation of China(62404176)Shanghai Science and Technology Innovation Action Plan(22JC1403800)Shanghai Municipal Science and Technology Commission(23JC1403300)2022 Self Deployed Instrument Design Project of Shanghai Advanced Research Institutethe Research Grant from the Shanghai Sailing Program(17YF1423700)Shanghai Municipal Commission for Science and Technology(20ZR1464100)Youth Innovation Promotion Association CAS(2021284)Fudan University Talent Introduction Projectthe support from the China Postdoctoral Science Foundation(2023M742732)the Postdoctoral Fellowship Program of CPSF(GZC20241303)the Fundamental Research Funds for the Central Universities(XJSJ24100)。
文摘Perovskite solar cells(PSC)are considered as a promising photovoltaic technology due to their low cost and high efficiency exceeding 26.8%.Ultra-lightweight flexible perovskite solar cells(FPSCs)can be applied to many fields such as architecture and portable devices.Although the photovoltaic conversion efficiency(PCE)of FPSC has exceeded 24%in the past few years,further application of FPSC is constrained by the challenges posed by limitation of critical material components.Here,we discussed recent research progress of key FPSC materials,mechanical endurance,low-temperature fabrication,etc.With the advantages of high brightness,collimation and resolution,we specially introduced the application of synchrotron radiation grazing incidence wide-angle X-ray scattering(GIWAXS)to directly observe the perovskite buried interface structure and corresponding mechanical stability of FPSCs without any damage.Finally,we summarize the challenges and propose an outlook about the large-scale preparation of efficient and stable FPSC modules.
基金support from the National Natural Science Foundation of China(Grant Nos.52174123&52274222).
文摘This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-oped using the material point method.To reduce the computational cost of Monte Carlo simulations,response surface models are created as surrogate models for the material point system to approximate its dynamic behavior.An adaptive randomized greedy algorithm is employed to construct a sparse polynomial chaos expansion model with a fixed order,effectively balancing the accuracy and computational efficiency of the surrogate model.Based on the sparse polynomial chaos expansion,sensitivity analysis is conducted using the global finite difference and Sobol methods.Several examples of structural dynamics are provided to demonstrate the effectiveness of the proposed method in addressing structural dynamics problems.
基金supported by the National Natural Science Foundation of China(Nos.U2032121,12192212,and 52325407).
文摘Damage evolution characterization and performance evaluation under realistic conditions are essential to ensure reliable operation of critical safety components.However,previous studies focus on the surface detection because of very limited penetration capacity of nondestructive testing facilities.Here,we review the recent progress of material damage mechanism by various in situ testing rigs that are compat-ible with laboratory and synchrotron radiation X-ray facilities.Then,taking metallic alloys and composites as model materials,we demonstrate the unique advantages of in situ X-ray three-dimensional tomography in unveiling complex failure mechanisms,quantifying crack growth driving forces and crack closure phenomena,and elucidating the strengthening/degrading effects from microstructure and environment on structural material degradation.Finally,we also discuss the ongoing direction of in situ multi-scale visualization and characterization with the development of advanced high-energy X-ray facilities,the improvement of in situ devices and sample environments,the demand of high-throughput tests,and the processing and application of massive test data.
基金financially supported by the National Natural Science Foundation of China(No.U21A2077)the Taishan Scholar Project Foundation of Shandong Province(No.ts20190908)+1 种基金the Natural Science Foundation of Shandong Province(No.ZR2021ZD05)the China Postdoctoral Science Foundation(Nos.2023TQ0192,2023M742065)。
文摘Lithium-sulfur batteries(LSBs)boasting remarkable energy density have garnered significant attention within academic and industrial spheres.Nevertheless,the progression of LSBs remains constrained by the languid redox kinetics intrinsic to sulfur and the pronounced shuttle effect induced by lithium polysulfides(Li PSs),which seriously affecting the energy density,cycling life and rate capacity.The conceptualization and implementation of catalytic materials stand acknowledged as a propitious stratagem for orchestrating kinetic modulation,particularly in excavating the conversion of LiPSs and has evolved into a focal point for disposing.Among them,chalcogenide catalytic materials(CCMs)have shown satisfactory catalytic effects ascribe to the unique physicochemical properties,and have been extensively developed in recent years.Considering the lack of systematic summary regarding the development of CCMs and corresponding performance optimization strategies,herein,we initiate a comprehensive review regarding the recent progress of CCMs for effective collaborative immobilization and accelerated transformation kinetics of Li PSs.Following that,the modulation strategies to improve the catalytic activity of CCMs are summarized,including structural engineering(morphology engineering,surface/interface engineering,crystal engineering)and electronic engineering(doping and vacancy,etc.).Finally,the application prospect of CCMs in LSBs is clarified,and some enlightenment is provided for the reasonable design of CCMs serving practical LSBs.
文摘With the increasing spotlight in electric vehicles,there is a growing demand for high-energy-density batteries to enhance driving range.Consequently,several studies have been conducted on high-energy-density LiNi_(x)Co_(y)Mn_(z)O_(2)cathodes.However,there is a limit to permanent performance deterioration because of side reactions caused by moisture in the atmosphere and continuous microcracks during cycling as the Ni content to express high energy increases and the content of Mn and Co that maintain structural and electrochemical stabilization decreases.The direct modification of the surface and bulk regions aims to enhance the capacity and long-term performance of high-Ni cathode materials.Therefore,an efficient modification requires a study based on a thorough understanding of the degradation mechanisms in the surface and bulk region.In this review,a comprehensive analysis of various modifications,including doping,coating,concentration gradient,and single crystals,is conducted to solve degradation issues along with an analysis of the overall degradation mechanism occurring in high-Ni cathode materials.It also summarizes recent research developments related to the following modifications,aims to provide notable points and directions for post-studies,and provides valuable references for the commercialization of stable high-energy-density cathode materials.
基金supported by the National Natural Science Foundation of China(52272022)Key Program of Natural Science Foundation of Hubei Province(2021CFA071).
文摘Refractory materials,as the crucial foundational materials in high-temperature industrial processes such as metallurgy and construction,are inevitably subjected to corrosion and penetration from high-temperature media during their service.Traditionally,observing the in-situ degradation process of refractory materials in complex high-temperature environments has presented challenges.Post-corrosion analysis are commonly employed to assess the slag resistance of refractory materials and understand the corrosion mechanisms.However,these methods often lack information on the process under the conditions of thermal-chemical-mechanical coupling,leading to potential biases in the analysis results.In this work,we developed a non-contact high-temperature machine vision technology by the integrating Digital Image Correlation(DIC)with a high-temperature visualization system to explore the corrosion behavior of Al2O3-SiO2 refractories against molten glass and Al2O3-MgO dry ramming refractories against molten slag at different temperatures.This technology enables realtime monitoring of the 2D or 3D overall strain and average strain curves of the refractory materials and provides continuous feedback on the progressive corrosion of the materials under the coupling conditions of thermal,chemical,and mechanical factors.Therefore,it is an innovative approach for evaluating the service behavior and performance of refractory materials,and is expected to promote the digitization and intelligence of the refractory industry,contributing to the optimization and upgrading of product performance.
文摘Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effective energy storage systems.Ad-vances in materials science have led to the develop-ment of hybrid nanomaterials,such as combining fil-amentous carbon forms with inorganic nanoparticles,to create new charge and energy transfer processes.Notable materials for electrochemical energy-stor-age applications include MXenes,2D transition met-al carbides,and nitrides,carbon black,carbon aerogels,activated carbon,carbon nanotubes,conducting polymers,carbon fibers,and nanofibers,and graphene,because of their thermal,electrical,and mechanical properties.Carbon materials mixed with conducting polymers,ceramics,metal oxides,transition metal oxides,metal hydroxides,transition metal sulfides,trans-ition metal dichalcogenide,metal sulfides,carbides,nitrides,and biomass materials have received widespread attention due to their remarkable performance,eco-friendliness,cost-effectiveness,and renewability.This article explores the development of carbon-based hybrid materials for future supercapacitors,including electric double-layer capacitors,pseudocapacitors,and hy-brid supercapacitors.It investigates the difficulties that influence structural design,manufacturing(electrospinning,hydro-thermal/solvothermal,template-assisted synthesis,electrodeposition,electrospray,3D printing)techniques and the latest car-bon-based hybrid materials research offer practical solutions for producing high-performance,next-generation supercapacitors.
基金supported by the National Nature Science Foundation of China(Nos.22305066 and 52372041).
文摘High-temperature microwave absorbing materials(MAMs)and structures are increasingly appealing due to their critical role in stealth applications under harsh environments.However,the impedance mismatch caused by increased conduction loss often leads to a significant decline in electromagnetic wave absorp-tion(EMWA)performance at elevated temperatures,which severely restricts their practical application.In this study,we propose a novel approach for efficient electromagnetic wave absorption across a wide temperature range using reduced graphene oxide(RGO)/epoxy resin(EP)metacomposites that integrate both electromagnetic parameters and metamaterial design concepts.Due to the discrete distribution of the units,electromagnetic waves can more easily penetrate the interior of materials,thereby exhibiting stable microwave absorption(MA)performance and impedance-matching characteristics suitable across a wide temperature range.Consequently,exceptional MA properties can be achieved within the tem-perature range from 298 to 473 K.Furthermore,by carefully controlling the structural parameters in RGO metacomposites,both the resonant frequency and effective absorption bandwidth(EAB)can be optimized based on precise manipulation of equivalent electromagnetic parameters.This study not only provides an effective approach for the rational design of MA performance but also offers novel insights into achieving super metamaterials with outstanding performance across a wide temperature spectrum.
基金the National Natural Science Foundation of China Key Program(No.U22A20420)Changzhou Leading Innovative Talents Introduction and Cultivation Project(No.CQ20230109)for supporting our work。
文摘In recent years,sodium-ion batteries(SIBs)have become one of the hot discussions and have gradually moved toward industrialization.However,there are still some shortcomings in their performance that have not been well addressed,including phase transition,structural degradation,and voltage platform.High entropy materials have recently gained significant attention from researchers due to their effects on thermodynamics,dynamics,structure,and performance.Researchers have attempted to use these materials in sodium-ion batteries to overcome their problems,making it a modification method.This paper aims to discuss the research status of high-entropy cathode materials for sodium-ion batteries and summarize their effects on sodium-ion batteries from three perspectives:Layered oxide,polyanion,and Prussian blue.The infiuence on material structure,the inhibition of phase transition,and the improvement of ion diffusivity are described.Finally,the advantages and disadvantages of high-entropy cathode materials for sodium-ion batteries are summarized,and their future development has prospected.