To mitigate the impact of interdiffusion reactions between the silicide slurry and Ta12W alloy substrate during vacuum sintering process on the oxidation resistance of the silicide coating,a micro-arc oxidation pretre...To mitigate the impact of interdiffusion reactions between the silicide slurry and Ta12W alloy substrate during vacuum sintering process on the oxidation resistance of the silicide coating,a micro-arc oxidation pretreatment was employed to construct a Ta_(2)O_(5)ceramic layer on the Ta12W alloy surface.Subsequently,a slurry spraying-vacuum sintering method was used to prepare a Si-Cr-Ti-Zr coating on the pretreated substrate.Comparative studies were conducted on the microstructure,phase composition,and isothermal oxidation resistance(at 1600℃)of the as-prepared coatings with and without the micro-arc oxidation ceramic layer.The results show that the Ta_(2)O_(5)layer prepared at 400 V is more continuous and has smaller pores than that prepared at 350 V.After microarc oxidation pretreatment,the Si-Cr-Ti-Zr coating on Ta12W alloy consists of three distinct layers:an upper layer dominated by Ti_(5)Si_(3),Ta_(5)Si_(3),and ZrSi;a middle layer dominated by TaSi_(2);a coating/substrate interfacial reaction layer dominated by Ta_(5)Si_(3).Both the Si-Cr-Ti-Zr coatings with and without the Ta_(2)O_(5)ceramic layer do not fail after isothermal oxidation at 1600℃for 5 h.Notably,the addition of the Ta2O5 ceramic layer reduces the high-temperature oxidation rate of the coating.展开更多
TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing Ti...TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing TiB_(2)coatings have disadvantages such as high equipment costs,complicated processes,and highly toxic gas emissions.This paper proposes an environmentally friendly method,which requires inexpensive equipment and simple processing,for preparing TiB_(2)coating on molybdenum via electrophoretic deposition within Na3AlF6-based molten salts.The produced TiB_(2)layer had an approximate thickness of 60μm and exhibited high density,outstanding hardness(38.2 GPa)and robust adhesion strength(51 N).Additionally,high-temperature oxidation experiments revealed that,at900℃,the TiB_(2)coating provided effective protection to the molybdenum substrate against oxidation for 3 h.This result indicates that the TiB_(2)coating prepared on molybdenum using molten salt electrophoretic deposition possesses good high-temperature oxidation resistance.展开更多
Co-based alloy coating was prepared on Zr alloy using laser melting and cladding technique to study the difference in the high-temperature oxidation behavior between pure metal Co coatings and Co-T800 alloy coatings,a...Co-based alloy coating was prepared on Zr alloy using laser melting and cladding technique to study the difference in the high-temperature oxidation behavior between pure metal Co coatings and Co-T800 alloy coatings,as well as the wear resistance of the coatings.Besides,the effect of changing the laser melting process on the coatings was also investigated.The oxidation mass gain at 800–1200℃and the high-temperature oxidation behavior during high-temperature treatment for 1 h of two coated Zr alloy samples were studied.Results show that the Co coating and the Co-T800 coating have better resistance against high-temperature oxidation.After oxidizing at 1000℃for 1 h,the thickness of the oxide layer of the uncoated sample was 241.0μm,whereas that of the sample with Co-based coating is only 11.8–35.5μm.The friction wear test shows that the depth of the abrasion mark of the coated sample is only 1/2 of that of the substrate,indicating that the hardness and wear resistance of the Zr substrate are greatly improved.The disadvantage of Co-based coatings is the inferior corrosion resistance in 3.5wt%NaCl solution.展开更多
Powder metallurgy was used to fabricate TiC-NiCr cermets and the oxidation behavior at 900℃ was investigated.Results reveal that TiC-NiCr cermets have uniform structures with excellent mechanical properties,whose har...Powder metallurgy was used to fabricate TiC-NiCr cermets and the oxidation behavior at 900℃ was investigated.Results reveal that TiC-NiCr cermets have uniform structures with excellent mechanical properties,whose hardness is 65 HRC and flexural strength is 1450 MPa.The high-temperature oxidation mechanism of TiC-based cermets was investigated through an X-ray diffractometer and scanning electron microscope.The added elements Ni and Cr along with their solid solutions not only bond with the hard phase TiC to ensure the physical performance of the cermet,but also impede the internal diffusion during oxidation by forming a dense composite oxide layer,thereby enhancing the oxidation resistance.The TiC-NiCr cermet exhibits a dense protective oxide layer at 900℃ and can endure continuous oxidation for approximately 1000 h.A methodology for fabricating TiC-NiCr metal matrix composites is proposed,and their oxidation resistance is evaluated,providing a theoretical and practical basis for simultaneously enhancing the mechanical properties and oxidation resistance and reducing production costs.展开更多
To improve the high-temperature oxidation resistance of TiAlNb9 alloy,a Cr-Al-Y co-deposition coating was prepared on the alloy surface by the pack cementation method.The microstructure of the coating was analyzed by ...To improve the high-temperature oxidation resistance of TiAlNb9 alloy,a Cr-Al-Y co-deposition coating was prepared on the alloy surface by the pack cementation method.The microstructure of the coating was analyzed by scanning electron microscope,energy dispersive spectrometer,and X-ray diffractometer,and the high-temperature oxidation properties of the substrate and coating at 1273 K were compared and studied.The results show that the Cr-Al-Y coating is about 30μm in thickness,and it has a dense structure and good film-substrate bonding.The coating includes an outer layer composed of TiCr_(2),TiCr,Ti_(4)Cr,and(Ti,Nb)Cr_(4) phases as well as an inner layer composed of Ti_(2)Al,and Nb-richγ-TiAl interdiffusion zone.The TiAlNb9 substrate forms an oxide layer composed of TiO_(2) and Al_(2)O_(3) at 1273 K.Due to its loose and porous structure,TiO_(2) oxide film cannot effectively isolate the internal diffusion of element O,resulting in continuous oxidation damage to the substrate.The Cr-Al-Y co-deposition coating forms a dense Cr_(2)O_(3) and Al_(2)O_(3) oxide layer during oxidation,effectively preventing the internal diffusion of element O and significantly improving the high-temperature oxidation resistance of the substrate alloy.展开更多
The high-temperature oxidation resistance of AISI 321 stainless steel used in solar thermal power heat exchangers determines its service life.In this study,aluminizing and subsequent laser shock peening(LSP)treatments...The high-temperature oxidation resistance of AISI 321 stainless steel used in solar thermal power heat exchangers determines its service life.In this study,aluminizing and subsequent laser shock peening(LSP)treatments were employed to improve the high-temperature oxidation resistance of AISI 321 stainless steel at 620°C.These two treatments decreased the oxidation rate of AISI 321 steel.Specifically,the optimal oxidation resistance was observed in aluminized steel before oxidation for 144 h owing to the increased entropy of the LSP-treated specimen.After 144 h,LSP-treated steel achieved the best oxidation resistance because of the formation of a protectiveα-Al2O3film.Moreover,the large amount of subgrain boundaries formed on the aluminized layer of the LSP-treated samples could act as short-circuit paths for the outward diffusion of Al,facilitating the rapid nucleation ofα-Al2O3.Meanwhile,the aluminized layer could isolate the contact between the oxidation environment and matrix,thereby decreasing the oxidation rate.Furthermore,the minimum oxidation parabolic constant was calculated for LSP-treated steel(6.45787×10^(-14)),which was 69.18%and 36.36%that of aluminized and 321 steel,respectively,during the entire oxidation process.Therefore,the combination of aluminizing and LSP treatments can improve the high-temperature oxidation resistance of 321 stainless steel,providing a new idea for its surface treatment to achieve a long service life at high temperatures.展开更多
To improve the high-temperature service properties of coppery tuyere,Co06 coating with a Ni60A interlayer was prepared on copper by plasma cladding.Ni60A interlayer acted as a bridge to promote the element diffusion,t...To improve the high-temperature service properties of coppery tuyere,Co06 coating with a Ni60A interlayer was prepared on copper by plasma cladding.Ni60A interlayer acted as a bridge to promote the element diffusion,thus achieving metallurgical bonding.Due to the strengthening effect ofγ-Co,Cr_(23)C_(6)and Cr_(7)C_(3)phases,the wear resistance of Co06–Ni60A coating was much higher than that of copper substrate.As the temperature increased,the wear resistance of coating decreased first and then increased.The coating exhibited better wear resistance at 600℃ due to the oxidation wear mechanism.Compared with copper substrate and Ni60A,the oxidation resistance of Co06 was increased by 6.0 and 1.9 times,respectively.For melting loss resistance,Co06–Ni60A coating was superior to Ni60A single-layer coating,but the molten iron can still form a micro-metallurgical bonding with the coating surface.展开更多
The oxidation behavior of alloy 690 exposed to high-temperature and high-pressure steam and water at 280℃ for 1 h was investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray ph...The oxidation behavior of alloy 690 exposed to high-temperature and high-pressure steam and water at 280℃ for 1 h was investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). In high-temperature and high-pressure steam, the oxide film is composed of an outermost Ni-rich hydroxides layer, an intermediate layer of hydroxides and oxides enriched in Cr, an inner oxide layer. The film formed in high-temperature water is similar to that in steam, except for missing the Ni-rich hydroxides layer. Samples with different surface finishes (electropolished, mechanically polished, ground, and as-received) were prepared for comparison. A general increase of the oxide thickness with the degree of surface roughness is observed. The equivalent oxide thicknesses lie in the range of 100-200 nm for the as-received samples, 150-250 nm for the samples ground to 400# and 10-20 nm for the samples ground to 1500#, mechanically polished, and electropolished.展开更多
For steam tubes used in thermal power plant,the inner and outer walls were operated in high-temperature steam and flue gas environments respectively.In this study,structure,microstructure and chemical composition of o...For steam tubes used in thermal power plant,the inner and outer walls were operated in high-temperature steam and flue gas environments respectively.In this study,structure,microstructure and chemical composition of oxide films on inner and outer walls of exservice low Cr ferritic steel G102 tube and exservice high Cr ferritic steel T91 tube were analyzed.The oxide film was composed of outer oxide layer,inner oxide layer and internal oxidation zone.The outer oxide layer on the original surface of tube had a porous structure containing Fe oxides formed by diffusion and oxidation of Fe.More specially,the outer oxide layer formed in flue gas environment would mix with coal combustion products during the growth process.The inner oxide layer below the original surface of tube was made of Fe–Cr spinel.The internal oxidation zone was believed to be the precursor stage of inner oxide layer.The formation of internal oxidation zone was due to O diffusing along grain boundaries to form oxide.There were Fe–Cr–Si oxides discontinuously distributed along grain boundaries in the internal oxidation zone of G102,while there were Fe–Cr oxides continuously distributed along grain boundaries in that of T91.展开更多
Ni-La2O3/CeO2 composite films were prepared by electrodeposition from a nickel sulfate bath containing certain content of micrometer and nanometer La2O3/CeO2 particles. The effect of La2O3 or CeO2 particle size on the...Ni-La2O3/CeO2 composite films were prepared by electrodeposition from a nickel sulfate bath containing certain content of micrometer and nanometer La2O3/CeO2 particles. The effect of La2O3 or CeO2 particle size on the oxidation resistance of the electrodeposited Ni-La2O3/CeO2 composites in air at 1000 °C was studied. The results indicate that, compared with the electrodeposited Ni-film, Ni-La2O3/CeO2 composites exhibit a superior oxidation resistance due to the codeposited La2O3 or CeO2 particles blocking the outward diffusion of nickel. Moreover, compared with nanoparticles, La2O3 or CeO2 microparticles have stronger effect because La2O3 or CeO2 microparticles also act as a diffusion barrier layer at the onset of oxidation.展开更多
The oxidation behavior and mechanism of as-received and 30 % cold-rolled alumina-forming austenitic(AFA) steel were investigated in dry air at 700℃.The results show that the mass gain per unit area curves of as-recei...The oxidation behavior and mechanism of as-received and 30 % cold-rolled alumina-forming austenitic(AFA) steel were investigated in dry air at 700℃.The results show that the mass gain per unit area curves of as-received and 30 % cold-rolled steels subject to near-parabolic law before 100 h oxidation time.Two samples both show higher high-temperature oxidation resistance due to the formation of dense Al_(2)O_(3) oxide scale.Gradual spallation of outer scale results in the formation of continuous and dense alumina scale.Dislocations can act as short-circuit diffusion channel for the diffusion of Al from alloy matrix to surface,and also provide nucleation sites for B2-NiAl phase,which ensure the continuous formation of Al_(2)O_(3) scale.展开更多
High-temperature oxidation is a common failure in high-temperature environments,which widely occur in aircraft engines and aerospace thrusters;as a result,the development of anti-high-temperature oxidation materials h...High-temperature oxidation is a common failure in high-temperature environments,which widely occur in aircraft engines and aerospace thrusters;as a result,the development of anti-high-temperature oxidation materials has been pursued.Ni-based alloys are a common high-temperature material;however,they are too expensive.High-entropy alloys are alternatives for the anti-oxidation property at high temperatures because of their special structure and properties.The recent achievements of high-temperature oxidation are reviewed in this paper.The high-temperature oxidation environment,temperature,phase structure,alloy elements,and preparation methods of high-entropy alloys are summarized.The reason why high-entropy alloys have anti-oxidation ability at high temperatures is illuminated.Current research,material selection,and application prospects of high-temperature oxidation are introduced.展开更多
The effect of superheated steam(SHS)treatment on the quality characteristics of rape bee pollen were studied,and the efficiency of inactivation and inhibition of lipid oxidation were analyzed to investigate the differ...The effect of superheated steam(SHS)treatment on the quality characteristics of rape bee pollen were studied,and the efficiency of inactivation and inhibition of lipid oxidation were analyzed to investigate the differences between SHS and cobalt-60 isotope(^(60)Co)radiation treatment.The number of total plate count(TPC)and mold colonies(MC)remained within the limits of the standards after SHS treatment at 140℃for 2 min.Neither TPC nor MC were detected after^(60)Co irradiation.Peroxidase(POD)and polyphenol oxidase(PPO)activities significantly decreased with increasing temperature and duration of SHS,while^(60)Co radiation completely inactivated PPO.Compared to^(60)Co radiation,SHS treatment inhibited the deterioration of rape bee pollen by avoiding hydroperoxide production and lipid oxidation due to lack of oxygen.These results suggested SHS under 140℃for 2 min was the most suitable to inactivate the microorganisms and enzymes in rape bee pollen with minimal lipid oxidation.展开更多
The kinetic curve of the high-temperature oxidation of austenitie stainless steel Crl8Ni11 Cu3Al3MnNb at different temperatures was measured by weighting method. It is showed that the oxidation curves at 700 and 800 ...The kinetic curve of the high-temperature oxidation of austenitie stainless steel Crl8Ni11 Cu3Al3MnNb at different temperatures was measured by weighting method. It is showed that the oxidation curves at 700 and 800 ℃ followed the parabolic law, and the steel presented an excellent anti-oxidation. The surface morphology and structure of the oxide film were studied by scanning electron microscopy and X-ray diffraction methods. A dense oxide film was attained at 700 and 800 ℃, mainly composed of the hexagonal Al2 O3, Fe2 O3, and a small amount oxide of Cr at 700 ℃. At 900 ℃ the oxide film started to delaminate, and was composed of (Cr,Fe)2O3 and the spinel CuCrMnO4 and Fe(Cr, Al) 2O3.展开更多
A study was conducted to examine the isothermal oxidation behavior of a new Ni-Cr-W-AI alloy in air at 1250℃ with different time. Oxidation kinetics was determined from weight-change measurements. The microstructure ...A study was conducted to examine the isothermal oxidation behavior of a new Ni-Cr-W-AI alloy in air at 1250℃ with different time. Oxidation kinetics was determined from weight-change measurements. The microstructure and composition of the oxide scale were investigated by means of scanning electron microcopy and X-ray diffraction. The results showed that the oxide scales of the alloy were a compact and continuous outer Cr2O3 and NiCr2O4 layer and an inner Al2O3 layer that was in dendrite shape. Oxides scales with good adherence were formed on the surface of the alloy, which made the alloy perform excellent high-temperature oxidation resistance.展开更多
This research presents a thorough assessment of the cyclic oxidation characteristics of Y-and Hf-doped NiCoCrAlTaRe superalloy bond coatings in a pure steam atmosphere,emphasizing the distinct influences of reactive e...This research presents a thorough assessment of the cyclic oxidation characteristics of Y-and Hf-doped NiCoCrAlTaRe superalloy bond coatings in a pure steam atmosphere,emphasizing the distinct influences of reactive elements (Y and Hf) and refractory elements (Ta and Re)on the growth mechanisms of thermally grown oxide(TGO).The findings indicate that,in contrast to air conditions,elevated levels of water vapor significantly diminish the oxidation resistance of the bond coatings,leading to considerable porosity defects in both the central and lower regions of the TGO.Furthermore,this environment hinders the development of the"peg"structure at the TGO/metal interface,thereby accelerating the premature delamination of the coating.Additionally,the presence of doped elements such as Hf,Ta,and Y leads to their segregation at the Al_(2)O_(3)grain boundaries within the TGO,creating grain boundary structures characterized by a high density of defects.This defective architecture promotes the inward diffusion of water molecules at elevatedtemperatures,causing hydrogen atoms generated from oxidation and reduction reactions at the TGO/metal interface to become entrapped within the Al_(2)O_(3)lattice at the base of the TGO,rather than escaping efficiently.Ultimately,this phenomenon contributes to the formation of internal porosity defects during the oxidation of TGO in a steam environment.展开更多
An environmental barrier coating(EBC) consisting of a silicon bond coat and an Yb2-SiO5 top-coat was sprayed on a carbon fibers reinforced SiC ceramic matrix composite(CMC) by atmospheric plasma spray(APS). The micros...An environmental barrier coating(EBC) consisting of a silicon bond coat and an Yb2-SiO5 top-coat was sprayed on a carbon fibers reinforced SiC ceramic matrix composite(CMC) by atmospheric plasma spray(APS). The microstructure of the coating annealed at 1300 ℃ and its high-temperature oxidation behavior at 1350 ℃ were investigated. The significant mass loss of silica during the plasma spray process led to the formation of Yb2SiO5 and Yb2O3 binary phases in the top-coat. Eutectics of Yb2SiO5 and Yb2O3 were precipitated in the top-coat, and channel cracks were formed in the top-coat after 20 h annealing because of the mismatch between the coefficients of thermal expansion(CTEs) of Yb2SiO5 and the SiC substrate. The EBC effectively improved the oxidation resistance of the CMC substrate. The channel cracks in the Yb2SiO5 top-coat provided inward diffusion channels for oxygen and led to the formation of oxidation delamination cracks in the bond coat, finally resulting in spallation failure of the coating after 80 h oxidation.展开更多
In this paper, a Fe-Mn-Al-C austenitic steel with certain addition of Cr and N alloy was used as experimental material. By using the SETSYS Evolution synchronous differential thermal analysis apparatus, the scanning e...In this paper, a Fe-Mn-Al-C austenitic steel with certain addition of Cr and N alloy was used as experimental material. By using the SETSYS Evolution synchronous differential thermal analysis apparatus, the scanning electron microscope (SEM), the electron microprobe (EPMA) and the X-ray diffraction (XRD), the high-temperature oxidation behavior microstructure and the phase compositions of this steel in air at 600-1,000 ℃ for 8 h have been studied. The results show that in the whole oxidation temperature range, there are three distinct stages in the mass gain curves at temperature higher than 800 ℃ and the oxidation process can be divided into two stages at temperature lower than 800 ℃. At the earlier stage the gain rate of the weight oxidized in temperature range of 850 ℃ to 1,000 ℃ are extremely lower. The oxidation products having different surface microstructures and phase compositions were produced in oxidation reaction at different temperatures. The phase compositions of oxide scale formed at 1,000 ℃ are composed of Fe and Mn oxide without Cr. However, protective film of Cr oxide with complicated structure can be formed when the oxidation temperature is lower than 800 ℃.展开更多
Aiming to develop materials for construction of the set-up and electrode of high-temperature molten salt reactors, the effect of Al and Y on the high-temperature oxidation behavior of Ni-11Fe-10Cu at 750 and 950 °...Aiming to develop materials for construction of the set-up and electrode of high-temperature molten salt reactors, the effect of Al and Y on the high-temperature oxidation behavior of Ni-11Fe-10Cu at 750 and 950 °C in air were investigated. The oxidation kinetics of Ni-11Fe-10Cu alloy followed parabolic law at 750 °C without spallation and linear law at 950 °C with severe spallation, while that of Ni-11Fe-10Cu-6Al-3Y alloy followed parabolic law at 750 and 950 °C without spallation. The parabolic rate constant (kp) of Ni-11Fe-10Cu was smaller than that of Ni-11Fe-10Cu-6Al-3Y at 750 °C. The oxide scale formed on Ni-11Fe-10Cu at 750 °C was composed of a CuO outer layer, a NiFe2O4 middle layer and a NiO inner layer. The oxide scale formed on Ni-11Fe-10Cu-6Al-3Y at 750 °C was also composed of the similar triplex layers in addition to an internal oxidation zone containing Al, Ni and Cu oxide and the microstructure of the scale changed with increasing temperature. Although the doping Al and Y could improve the adherence of oxide scale, it could aggravate the extent of internal oxidation. Based on the combination of X-ray diffraction (XRD), scanning electron mi-croscopy/energy dispersive spectroscopy (SEM/EDX) analysis, the microstructure and growth mechanism of the multi-layer oxide scale was studied and the effect of doping Al and Y on the oxidation behavior of Ni-11Fe-10Cu alloy was also discussed.展开更多
To further improve the oxidation-resistance of materials and reduce the cost of grid plates in grate-kiln, a new kind of heat-resistant grid plate was developed. The microstructure of this grid plate with a life more ...To further improve the oxidation-resistance of materials and reduce the cost of grid plates in grate-kiln, a new kind of heat-resistant grid plate was developed. The microstructure of this grid plate with a life more than 18 months was studied by XRD, SEM and EDS techniques. The results show that high hardness, high intensity and good impact property make the new kind of heat-resistant grid plate and its oxide film have a higher resistance to deformation and abrasion at 900-1000℃ Besides, small grain size is beneficial to form a complete protective oxide film. The oxide film composed of SiO2 layer, Cr2O3 layer and Fe2O3 layer is rather thin and bonds closely with the backing. The forming of the chemical stable nickel-rich layer increases the density of Cr2O3 layer.展开更多
基金National Natural Science Foundation of China(52071274)Key Research and Development Projects of Shaanxi Province(2023-YBGY-442)Science and Technology Nova Project-Innovative Talent Promotion Program of Shaanxi Province(2020KJXX-062)。
文摘To mitigate the impact of interdiffusion reactions between the silicide slurry and Ta12W alloy substrate during vacuum sintering process on the oxidation resistance of the silicide coating,a micro-arc oxidation pretreatment was employed to construct a Ta_(2)O_(5)ceramic layer on the Ta12W alloy surface.Subsequently,a slurry spraying-vacuum sintering method was used to prepare a Si-Cr-Ti-Zr coating on the pretreated substrate.Comparative studies were conducted on the microstructure,phase composition,and isothermal oxidation resistance(at 1600℃)of the as-prepared coatings with and without the micro-arc oxidation ceramic layer.The results show that the Ta_(2)O_(5)layer prepared at 400 V is more continuous and has smaller pores than that prepared at 350 V.After microarc oxidation pretreatment,the Si-Cr-Ti-Zr coating on Ta12W alloy consists of three distinct layers:an upper layer dominated by Ti_(5)Si_(3),Ta_(5)Si_(3),and ZrSi;a middle layer dominated by TaSi_(2);a coating/substrate interfacial reaction layer dominated by Ta_(5)Si_(3).Both the Si-Cr-Ti-Zr coatings with and without the Ta_(2)O_(5)ceramic layer do not fail after isothermal oxidation at 1600℃for 5 h.Notably,the addition of the Ta2O5 ceramic layer reduces the high-temperature oxidation rate of the coating.
基金supported by the Original Exploratory Program of the National Natural Science Foundation of China(No.52450012)。
文摘TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing TiB_(2)coatings have disadvantages such as high equipment costs,complicated processes,and highly toxic gas emissions.This paper proposes an environmentally friendly method,which requires inexpensive equipment and simple processing,for preparing TiB_(2)coating on molybdenum via electrophoretic deposition within Na3AlF6-based molten salts.The produced TiB_(2)layer had an approximate thickness of 60μm and exhibited high density,outstanding hardness(38.2 GPa)and robust adhesion strength(51 N).Additionally,high-temperature oxidation experiments revealed that,at900℃,the TiB_(2)coating provided effective protection to the molybdenum substrate against oxidation for 3 h.This result indicates that the TiB_(2)coating prepared on molybdenum using molten salt electrophoretic deposition possesses good high-temperature oxidation resistance.
基金National Natural Science Foundation of China(52071126)Natural Science Foundation of Tianjin City,China(22JCQNJC01240)+2 种基金Central Guidance on Local Science and Technology Development Fund of Hebei Province(226Z1009G)Special Funds for Science and Technology Innovation in Hebei(2022X19)Anhui Provincial Natural Science Foundation(2308085ME135)。
文摘Co-based alloy coating was prepared on Zr alloy using laser melting and cladding technique to study the difference in the high-temperature oxidation behavior between pure metal Co coatings and Co-T800 alloy coatings,as well as the wear resistance of the coatings.Besides,the effect of changing the laser melting process on the coatings was also investigated.The oxidation mass gain at 800–1200℃and the high-temperature oxidation behavior during high-temperature treatment for 1 h of two coated Zr alloy samples were studied.Results show that the Co coating and the Co-T800 coating have better resistance against high-temperature oxidation.After oxidizing at 1000℃for 1 h,the thickness of the oxide layer of the uncoated sample was 241.0μm,whereas that of the sample with Co-based coating is only 11.8–35.5μm.The friction wear test shows that the depth of the abrasion mark of the coated sample is only 1/2 of that of the substrate,indicating that the hardness and wear resistance of the Zr substrate are greatly improved.The disadvantage of Co-based coatings is the inferior corrosion resistance in 3.5wt%NaCl solution.
基金National Natural Science Foundation of China(52376076)Open Fund of Material Corrosion and Protection Key Laboratory of Sichuan Province(2023CL13)Laiwu Vocational and Technical College Teachers Research Fund(2023jsky05)。
文摘Powder metallurgy was used to fabricate TiC-NiCr cermets and the oxidation behavior at 900℃ was investigated.Results reveal that TiC-NiCr cermets have uniform structures with excellent mechanical properties,whose hardness is 65 HRC and flexural strength is 1450 MPa.The high-temperature oxidation mechanism of TiC-based cermets was investigated through an X-ray diffractometer and scanning electron microscope.The added elements Ni and Cr along with their solid solutions not only bond with the hard phase TiC to ensure the physical performance of the cermet,but also impede the internal diffusion during oxidation by forming a dense composite oxide layer,thereby enhancing the oxidation resistance.The TiC-NiCr cermet exhibits a dense protective oxide layer at 900℃ and can endure continuous oxidation for approximately 1000 h.A methodology for fabricating TiC-NiCr metal matrix composites is proposed,and their oxidation resistance is evaluated,providing a theoretical and practical basis for simultaneously enhancing the mechanical properties and oxidation resistance and reducing production costs.
基金National Natural Science Foundation of China(52161009)Innovation Project of Postgraduate Students in North Minzu University(YCX24104)。
文摘To improve the high-temperature oxidation resistance of TiAlNb9 alloy,a Cr-Al-Y co-deposition coating was prepared on the alloy surface by the pack cementation method.The microstructure of the coating was analyzed by scanning electron microscope,energy dispersive spectrometer,and X-ray diffractometer,and the high-temperature oxidation properties of the substrate and coating at 1273 K were compared and studied.The results show that the Cr-Al-Y coating is about 30μm in thickness,and it has a dense structure and good film-substrate bonding.The coating includes an outer layer composed of TiCr_(2),TiCr,Ti_(4)Cr,and(Ti,Nb)Cr_(4) phases as well as an inner layer composed of Ti_(2)Al,and Nb-richγ-TiAl interdiffusion zone.The TiAlNb9 substrate forms an oxide layer composed of TiO_(2) and Al_(2)O_(3) at 1273 K.Due to its loose and porous structure,TiO_(2) oxide film cannot effectively isolate the internal diffusion of element O,resulting in continuous oxidation damage to the substrate.The Cr-Al-Y co-deposition coating forms a dense Cr_(2)O_(3) and Al_(2)O_(3) oxide layer during oxidation,effectively preventing the internal diffusion of element O and significantly improving the high-temperature oxidation resistance of the substrate alloy.
基金Supported by National Natural Science Foundation of China(Grant Nos.52075048,51675058,12232004)Hunan Provincial Excellent Youth Project of the Education Department(Grant No.21B0304)+2 种基金Natural Science Foundation of Hunan Province(Grant No.2023JJ30025)Science and Technology Innovation Program of Hunan Province(Grant No.2023RC1058)Scientific Research Innovation Project for Graduate Student of Changsha University of Science and Technology(Grant No.CLSJCX22096)。
文摘The high-temperature oxidation resistance of AISI 321 stainless steel used in solar thermal power heat exchangers determines its service life.In this study,aluminizing and subsequent laser shock peening(LSP)treatments were employed to improve the high-temperature oxidation resistance of AISI 321 stainless steel at 620°C.These two treatments decreased the oxidation rate of AISI 321 steel.Specifically,the optimal oxidation resistance was observed in aluminized steel before oxidation for 144 h owing to the increased entropy of the LSP-treated specimen.After 144 h,LSP-treated steel achieved the best oxidation resistance because of the formation of a protectiveα-Al2O3film.Moreover,the large amount of subgrain boundaries formed on the aluminized layer of the LSP-treated samples could act as short-circuit paths for the outward diffusion of Al,facilitating the rapid nucleation ofα-Al2O3.Meanwhile,the aluminized layer could isolate the contact between the oxidation environment and matrix,thereby decreasing the oxidation rate.Furthermore,the minimum oxidation parabolic constant was calculated for LSP-treated steel(6.45787×10^(-14)),which was 69.18%and 36.36%that of aluminized and 321 steel,respectively,during the entire oxidation process.Therefore,the combination of aluminizing and LSP treatments can improve the high-temperature oxidation resistance of 321 stainless steel,providing a new idea for its surface treatment to achieve a long service life at high temperatures.
基金supported by the University Synergy Innovation Program of Anhui Province(Grant Nos.GXXT-2023-025 and GXXT-2023-026)Natural Science Foundation of Anhui Province(Grant Nos.2008085ME149,2308085QE132 and 2308065ME171)Anhui University Scientific Research Project(Grant Nos.2022AH040247,2023AH051660,2023AH051670 and 2023AH051671).
文摘To improve the high-temperature service properties of coppery tuyere,Co06 coating with a Ni60A interlayer was prepared on copper by plasma cladding.Ni60A interlayer acted as a bridge to promote the element diffusion,thus achieving metallurgical bonding.Due to the strengthening effect ofγ-Co,Cr_(23)C_(6)and Cr_(7)C_(3)phases,the wear resistance of Co06–Ni60A coating was much higher than that of copper substrate.As the temperature increased,the wear resistance of coating decreased first and then increased.The coating exhibited better wear resistance at 600℃ due to the oxidation wear mechanism.Compared with copper substrate and Ni60A,the oxidation resistance of Co06 was increased by 6.0 and 1.9 times,respectively.For melting loss resistance,Co06–Ni60A coating was superior to Ni60A single-layer coating,but the molten iron can still form a micro-metallurgical bonding with the coating surface.
基金supported by the Special Funds for the Major State Basic Research Projects(G2011CB610502)the National Natural Science Foundation of China (No.51025104)
文摘The oxidation behavior of alloy 690 exposed to high-temperature and high-pressure steam and water at 280℃ for 1 h was investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). In high-temperature and high-pressure steam, the oxide film is composed of an outermost Ni-rich hydroxides layer, an intermediate layer of hydroxides and oxides enriched in Cr, an inner oxide layer. The film formed in high-temperature water is similar to that in steam, except for missing the Ni-rich hydroxides layer. Samples with different surface finishes (electropolished, mechanically polished, ground, and as-received) were prepared for comparison. A general increase of the oxide thickness with the degree of surface roughness is observed. The equivalent oxide thicknesses lie in the range of 100-200 nm for the as-received samples, 150-250 nm for the samples ground to 400# and 10-20 nm for the samples ground to 1500#, mechanically polished, and electropolished.
基金supported by the National Natural Science Foundation of China (Nos.51901113 and 51775300)the State Key Laboratory of Tribology in Tsinghua University, and the State Key Lab of Advanced Welding and Joining in Harbin Institute of Technology (No.AWJ-21M03)。
文摘For steam tubes used in thermal power plant,the inner and outer walls were operated in high-temperature steam and flue gas environments respectively.In this study,structure,microstructure and chemical composition of oxide films on inner and outer walls of exservice low Cr ferritic steel G102 tube and exservice high Cr ferritic steel T91 tube were analyzed.The oxide film was composed of outer oxide layer,inner oxide layer and internal oxidation zone.The outer oxide layer on the original surface of tube had a porous structure containing Fe oxides formed by diffusion and oxidation of Fe.More specially,the outer oxide layer formed in flue gas environment would mix with coal combustion products during the growth process.The inner oxide layer below the original surface of tube was made of Fe–Cr spinel.The internal oxidation zone was believed to be the precursor stage of inner oxide layer.The formation of internal oxidation zone was due to O diffusing along grain boundaries to form oxide.There were Fe–Cr–Si oxides discontinuously distributed along grain boundaries in the internal oxidation zone of G102,while there were Fe–Cr oxides continuously distributed along grain boundaries in that of T91.
基金Project(GC13A113)supported by the Technology Research and Development Program of Heilongjiang Provincial Science and Technology DepartmentProject(12511469)supported by Heilongjiang Provincial Science and Technology Department
文摘Ni-La2O3/CeO2 composite films were prepared by electrodeposition from a nickel sulfate bath containing certain content of micrometer and nanometer La2O3/CeO2 particles. The effect of La2O3 or CeO2 particle size on the oxidation resistance of the electrodeposited Ni-La2O3/CeO2 composites in air at 1000 °C was studied. The results indicate that, compared with the electrodeposited Ni-film, Ni-La2O3/CeO2 composites exhibit a superior oxidation resistance due to the codeposited La2O3 or CeO2 particles blocking the outward diffusion of nickel. Moreover, compared with nanoparticles, La2O3 or CeO2 microparticles have stronger effect because La2O3 or CeO2 microparticles also act as a diffusion barrier layer at the onset of oxidation.
基金financially supported by the National Natural Science Foundation of China and Shanghai Baosteel Group Company(No. U1960204)the National Natural Science Foundation of China(Nos. 51871042 and 51501034)the Fundamental Research Funds for the Central Universities (No. N2023026)。
文摘The oxidation behavior and mechanism of as-received and 30 % cold-rolled alumina-forming austenitic(AFA) steel were investigated in dry air at 700℃.The results show that the mass gain per unit area curves of as-received and 30 % cold-rolled steels subject to near-parabolic law before 100 h oxidation time.Two samples both show higher high-temperature oxidation resistance due to the formation of dense Al_(2)O_(3) oxide scale.Gradual spallation of outer scale results in the formation of continuous and dense alumina scale.Dislocations can act as short-circuit diffusion channel for the diffusion of Al from alloy matrix to surface,and also provide nucleation sites for B2-NiAl phase,which ensure the continuous formation of Al_(2)O_(3) scale.
基金This work was financially supported by the National Natural Science Foundation of China(No.52071014)the Fundamental Research Funds for the Central Universities(No.FRF-GF-19-033BZ)the National Key Research and Development Program of China(No.2020YFB0704501).
文摘High-temperature oxidation is a common failure in high-temperature environments,which widely occur in aircraft engines and aerospace thrusters;as a result,the development of anti-high-temperature oxidation materials has been pursued.Ni-based alloys are a common high-temperature material;however,they are too expensive.High-entropy alloys are alternatives for the anti-oxidation property at high temperatures because of their special structure and properties.The recent achievements of high-temperature oxidation are reviewed in this paper.The high-temperature oxidation environment,temperature,phase structure,alloy elements,and preparation methods of high-entropy alloys are summarized.The reason why high-entropy alloys have anti-oxidation ability at high temperatures is illuminated.Current research,material selection,and application prospects of high-temperature oxidation are introduced.
基金supported by National Natural Science Foundations of China(32472396,31871861 and 31501548)The Apicultural Industry Technology System(NCYTI-43-KXJ17)The Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2015-IAR)。
文摘The effect of superheated steam(SHS)treatment on the quality characteristics of rape bee pollen were studied,and the efficiency of inactivation and inhibition of lipid oxidation were analyzed to investigate the differences between SHS and cobalt-60 isotope(^(60)Co)radiation treatment.The number of total plate count(TPC)and mold colonies(MC)remained within the limits of the standards after SHS treatment at 140℃for 2 min.Neither TPC nor MC were detected after^(60)Co irradiation.Peroxidase(POD)and polyphenol oxidase(PPO)activities significantly decreased with increasing temperature and duration of SHS,while^(60)Co radiation completely inactivated PPO.Compared to^(60)Co radiation,SHS treatment inhibited the deterioration of rape bee pollen by avoiding hydroperoxide production and lipid oxidation due to lack of oxygen.These results suggested SHS under 140℃for 2 min was the most suitable to inactivate the microorganisms and enzymes in rape bee pollen with minimal lipid oxidation.
基金Item Sponsored by Special Fund of Jiangsu Province of China for Transformation of Scientific and Technological Achievements (BA2010053)
文摘The kinetic curve of the high-temperature oxidation of austenitie stainless steel Crl8Ni11 Cu3Al3MnNb at different temperatures was measured by weighting method. It is showed that the oxidation curves at 700 and 800 ℃ followed the parabolic law, and the steel presented an excellent anti-oxidation. The surface morphology and structure of the oxide film were studied by scanning electron microscopy and X-ray diffraction methods. A dense oxide film was attained at 700 and 800 ℃, mainly composed of the hexagonal Al2 O3, Fe2 O3, and a small amount oxide of Cr at 700 ℃. At 900 ℃ the oxide film started to delaminate, and was composed of (Cr,Fe)2O3 and the spinel CuCrMnO4 and Fe(Cr, Al) 2O3.
文摘A study was conducted to examine the isothermal oxidation behavior of a new Ni-Cr-W-AI alloy in air at 1250℃ with different time. Oxidation kinetics was determined from weight-change measurements. The microstructure and composition of the oxide scale were investigated by means of scanning electron microcopy and X-ray diffraction. The results showed that the oxide scales of the alloy were a compact and continuous outer Cr2O3 and NiCr2O4 layer and an inner Al2O3 layer that was in dendrite shape. Oxides scales with good adherence were formed on the surface of the alloy, which made the alloy perform excellent high-temperature oxidation resistance.
基金financially supported by the National Key R&D Program of China(No.2023YFB3711200)the National Natural Science Foundation of China(No.U21A2044)the Science Center for Gas Turbine Project(No.P2022-B-IV-008-001)
文摘This research presents a thorough assessment of the cyclic oxidation characteristics of Y-and Hf-doped NiCoCrAlTaRe superalloy bond coatings in a pure steam atmosphere,emphasizing the distinct influences of reactive elements (Y and Hf) and refractory elements (Ta and Re)on the growth mechanisms of thermally grown oxide(TGO).The findings indicate that,in contrast to air conditions,elevated levels of water vapor significantly diminish the oxidation resistance of the bond coatings,leading to considerable porosity defects in both the central and lower regions of the TGO.Furthermore,this environment hinders the development of the"peg"structure at the TGO/metal interface,thereby accelerating the premature delamination of the coating.Additionally,the presence of doped elements such as Hf,Ta,and Y leads to their segregation at the Al_(2)O_(3)grain boundaries within the TGO,creating grain boundary structures characterized by a high density of defects.This defective architecture promotes the inward diffusion of water molecules at elevatedtemperatures,causing hydrogen atoms generated from oxidation and reduction reactions at the TGO/metal interface to become entrapped within the Al_(2)O_(3)lattice at the base of the TGO,rather than escaping efficiently.Ultimately,this phenomenon contributes to the formation of internal porosity defects during the oxidation of TGO in a steam environment.
基金sponsored by the National Natural Science Foundation of China (NSFC) under grant Nos. 51590894, 51425102, and 51231001
文摘An environmental barrier coating(EBC) consisting of a silicon bond coat and an Yb2-SiO5 top-coat was sprayed on a carbon fibers reinforced SiC ceramic matrix composite(CMC) by atmospheric plasma spray(APS). The microstructure of the coating annealed at 1300 ℃ and its high-temperature oxidation behavior at 1350 ℃ were investigated. The significant mass loss of silica during the plasma spray process led to the formation of Yb2SiO5 and Yb2O3 binary phases in the top-coat. Eutectics of Yb2SiO5 and Yb2O3 were precipitated in the top-coat, and channel cracks were formed in the top-coat after 20 h annealing because of the mismatch between the coefficients of thermal expansion(CTEs) of Yb2SiO5 and the SiC substrate. The EBC effectively improved the oxidation resistance of the CMC substrate. The channel cracks in the Yb2SiO5 top-coat provided inward diffusion channels for oxygen and led to the formation of oxidation delamination cracks in the bond coat, finally resulting in spallation failure of the coating after 80 h oxidation.
基金supported by the National High Technology Research and Development Program of China (No. 2012AA03A508)the National Natural Science Foundation of China (No. 51271051)
文摘In this paper, a Fe-Mn-Al-C austenitic steel with certain addition of Cr and N alloy was used as experimental material. By using the SETSYS Evolution synchronous differential thermal analysis apparatus, the scanning electron microscope (SEM), the electron microprobe (EPMA) and the X-ray diffraction (XRD), the high-temperature oxidation behavior microstructure and the phase compositions of this steel in air at 600-1,000 ℃ for 8 h have been studied. The results show that in the whole oxidation temperature range, there are three distinct stages in the mass gain curves at temperature higher than 800 ℃ and the oxidation process can be divided into two stages at temperature lower than 800 ℃. At the earlier stage the gain rate of the weight oxidized in temperature range of 850 ℃ to 1,000 ℃ are extremely lower. The oxidation products having different surface microstructures and phase compositions were produced in oxidation reaction at different temperatures. The phase compositions of oxide scale formed at 1,000 ℃ are composed of Fe and Mn oxide without Cr. However, protective film of Cr oxide with complicated structure can be formed when the oxidation temperature is lower than 800 ℃.
基金supported by the National Natural Science Foundation of China(51325102)the International Science and Technology Cooperation Program of Ministry of Science and Technology(2015DFA90750)
文摘Aiming to develop materials for construction of the set-up and electrode of high-temperature molten salt reactors, the effect of Al and Y on the high-temperature oxidation behavior of Ni-11Fe-10Cu at 750 and 950 °C in air were investigated. The oxidation kinetics of Ni-11Fe-10Cu alloy followed parabolic law at 750 °C without spallation and linear law at 950 °C with severe spallation, while that of Ni-11Fe-10Cu-6Al-3Y alloy followed parabolic law at 750 and 950 °C without spallation. The parabolic rate constant (kp) of Ni-11Fe-10Cu was smaller than that of Ni-11Fe-10Cu-6Al-3Y at 750 °C. The oxide scale formed on Ni-11Fe-10Cu at 750 °C was composed of a CuO outer layer, a NiFe2O4 middle layer and a NiO inner layer. The oxide scale formed on Ni-11Fe-10Cu-6Al-3Y at 750 °C was also composed of the similar triplex layers in addition to an internal oxidation zone containing Al, Ni and Cu oxide and the microstructure of the scale changed with increasing temperature. Although the doping Al and Y could improve the adherence of oxide scale, it could aggravate the extent of internal oxidation. Based on the combination of X-ray diffraction (XRD), scanning electron mi-croscopy/energy dispersive spectroscopy (SEM/EDX) analysis, the microstructure and growth mechanism of the multi-layer oxide scale was studied and the effect of doping Al and Y on the oxidation behavior of Ni-11Fe-10Cu alloy was also discussed.
文摘To further improve the oxidation-resistance of materials and reduce the cost of grid plates in grate-kiln, a new kind of heat-resistant grid plate was developed. The microstructure of this grid plate with a life more than 18 months was studied by XRD, SEM and EDS techniques. The results show that high hardness, high intensity and good impact property make the new kind of heat-resistant grid plate and its oxide film have a higher resistance to deformation and abrasion at 900-1000℃ Besides, small grain size is beneficial to form a complete protective oxide film. The oxide film composed of SiO2 layer, Cr2O3 layer and Fe2O3 layer is rather thin and bonds closely with the backing. The forming of the chemical stable nickel-rich layer increases the density of Cr2O3 layer.