期刊文献+
共找到194,748篇文章
< 1 2 250 >
每页显示 20 50 100
Enhanced high-temperature stability in CuCrZrY alloys:Reduced precipitate coarsening and recrystallization
1
作者 Xinhao Zhang Xiaoxin Zhang +1 位作者 Jun Zhang Qingzhi Yan 《Journal of Materials Science & Technology》 2025年第26期1-13,共13页
Precipitation strengthening is a critical strategy for developing high-performance Cu alloys that combine exceptional strength with high conductivity.However,this method often loses effectiveness at elevated temperatu... Precipitation strengthening is a critical strategy for developing high-performance Cu alloys that combine exceptional strength with high conductivity.However,this method often loses effectiveness at elevated temperatures due to the poor thermal stability of the precipitates,which tend to coarsen rapidly,leading to accelerated mechanical degradation.In this study,we introduce a CuCrZrY alloy that demonstrates remarkable structural and mechanical stability at high temperatures.Notably,after annealing at 550℃ for 500 h,only 18.8%of the grains were recrystallized.Through a combination of experimental investigations and first-principles calculations,we discovered that the strong solute-vacancy binding energy of Y in Cu significantly impedes bulk diffusion of solute,thereby inhibiting precipitate coarsening and recrystallization.The coarsening rate constant for the CuCrZrY alloy was found to be approximately half that of the CuCrZr alloy.During prolonged annealing,the formation of sub-grains via recovery enhances boundary diffusion,leading to a layered distribution of precipitates.The recrystallization model further elucidates the interplay between eutectic phases,precipitates,and the migration of recrystallization boundaries.Initially,eutectic phases contribute to the accumulation of geometrically necessary dislocations during rolling,which triggers recrystallization in the early stages of annealing.Additionally,the triple junctions of sub-grain and recrystallization boundaries facilitate precipitate coarsening,thereby reducing the pinning force.Consequently,the CuCrZrY alloy undergoes a unique recrystallization process characterized by discontinuous precipitate coarsening and a cycle of pinning-depinning-repinning of recrystallized grain boundaries.These insights provide valuable guidance for designing Cu alloys with stable microstructural and mechanical properties under prolonged high-temperature conditions. 展开更多
关键词 CuCrZrY Recrystallization mechanism Thermal stability Precipitate coarsening Diffusion
原文传递
Study of High-Temperature Stability of Pyrochlore Zirconates 被引量:1
2
作者 范群波 王富耻 张慧玲 《Journal of Beijing Institute of Technology》 EI CAS 2010年第1期99-102,共4页
Based on defect chemistry theory and molecular dynamics,the defect formation energy and its relationship with the mechanism of pyrochlore-fluorite phase change were investigated,so as to reveal the underlying mechanis... Based on defect chemistry theory and molecular dynamics,the defect formation energy and its relationship with the mechanism of pyrochlore-fluorite phase change were investigated,so as to reveal the underlying mechanism of high-temperature stability of pyrochlore zirconates.Results showed that with the rise of the atom mass of A,the defect formation energies decreased that meant the crystal structure tended to become more disordered.Noticeably,the first nearest cation antisite dominated the pyrochlore disorder transformation process.In addition,it was found that the diffusion of oxygen atoms was far higher than that of cations,and was increased with the temperature,thus also promoting the pyrochlore-fluorite transformation process. 展开更多
关键词 high-temperature stability pyrochlore zirconates defect formation energy
在线阅读 下载PDF
High-temperature stability of retained austenite and plastic deformation mechanism of ultra-fine bainitic steel isothermally treated below Ms
3
作者 Ting-ting He Feng Hu +4 位作者 Kun Wang Wen Zhou Li Li Serhii Yershov Kai-ming Wu 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第8期2014-2030,共17页
The mechanical properties of the sample and the stability of retained austenite were studied by designing two kinds of ultra-fine bainitic steel with different heat treatment methods austempering above and below Ms(ma... The mechanical properties of the sample and the stability of retained austenite were studied by designing two kinds of ultra-fine bainitic steel with different heat treatment methods austempering above and below Ms(martensite start tem-perature),which were subjected to tensile tests at 20 and 450℃,respectively.The results show that compared to room temperature(20℃)tensile properties,the uniform elongation of the sample at high temperature(450℃)significantly decreased.Specifically,the uniform elongation of the sample austempered above Ms decreased from 8.0%to 3.5%,and the sample austempered below Ms decreased from 10.9%to 3.1%.Additionally,the tensile strength of the sample austempered above Ms significantly decreased(from 1281 to 912 MPa),and the sample austempered below Ms slightly decreased(from 1010 to 974 MPa).This was due to the high carbon content(1.60 wt.%),high mechanical stability,low thermal stability for the retained austenite of the sample austempered below Ms.Besides,the retained austenite decomposed at high temper-atures,the carbon content and transformation driving force were significantly reduced,the transformation rate increased,and the phase transformation content reduced. 展开更多
关键词 Ultra-fine bainite Isothermal treatment high-temperature tensile property Retained austenite stability Plastic deformation
原文传递
Effect of yttrium and manganese addition on catalytic soot combustion activity and anti-high-temperature stability of CeO_(2) catalyst 被引量:1
4
作者 Yi Zhu Xingyu Liu +6 位作者 Wei Shi Jia Li Changbing Ye Ruimei Fang Huifeng Zhu Shanhu Chen Li Lan 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第2期334-344,I0004,共12页
In order to analyze the influence of the addition of yttrium and manganese on the soot combustion performance and high temperature stability of CeO_(2) catalyst,a series of Y/Mn-modified CeO_(2) catalysts were prepare... In order to analyze the influence of the addition of yttrium and manganese on the soot combustion performance and high temperature stability of CeO_(2) catalyst,a series of Y/Mn-modified CeO_(2) catalysts were prepared.The effects of structural properties,textural properties,oxygen vacancies,Ce^(3+),surface adsorbed oxygen species,reduction properties and desorption properties of oxygen species on the activity were analyzed by various characterization methods.The results of the activity test show that the addition of manganese is beneficial to enhancement of the activity,while the addition of yttrium increases the amount of reactive oxygen species,but decreases the activity.After aging at 700℃,the activity of the CeMn catalyst decreases most sharply,while the catalytic activity of the CeY catalyst can be maintained to a certain extent.Interestingly,the addition of yttrium and manganese at the same time can stabilize the activity.The fundamental reason is that yttrium and manganese move to the surface of the solid solution after aging,which increases the reduction performance of the catalyst,thus contributing to the increase of activity.Although the activity of CeYMn catalyst decreases after aging at 800℃,it is still higher than that of other catalysts aged at 700℃. 展开更多
关键词 CeO_(2)catalyst Soot catalytic combustion Diesel pollution control Rare earths High temperature stability Low temperature reduction performance
原文传递
A novel strategy for obtaining lead-based piezoelectric ceramics with giant piezoelectricity and high-temperature stability through the construction of“slush-like”polar states
5
作者 Yangxi Yan Yun Qiao +5 位作者 Longlong Wang Li Jin Maolin Zhang Zhimin Li Mo Zhao Dongyan Zhang 《Journal of Materials Science & Technology》 2025年第18期25-35,共11页
Maintaining high piezoelectric response and piezoelectric temperature stability of lead-based piezoceramics is critical for applications under high-temperature environments.Unfortunately,the piezoelectric response of ... Maintaining high piezoelectric response and piezoelectric temperature stability of lead-based piezoceramics is critical for applications under high-temperature environments.Unfortunately,the piezoelectric response of lead-based piezoceramics shows strong temperature dependence.Herein,an innovative strategy was proposed to solve this problem.The method consisted of constructing“slush-like”polar states by introducing localized heterostructures in the tetragonal phase structure to lower the energy barriers.The presence of the tetragonal phase stabilized the domain structure,providing excellent temperature stability,while the localized heterostructures also flattened the free energy landscape and enhanced the piezo-electric response.The strategy was implemented by using 0.11Pb(In_(0.5)Nb_(0.5))O_(3)-0.89Pb(Hf_(0.47)Ti_(0.53))O_(3)(PIN-PHT)piezoceramics doped with heterovalent ion Nb^(5+)to form a“slush-like”polar state with strong in-teractions inside the ceramics.The piezoelectric response and relaxor behavior of the ceramics were then investigated using piezoelectric force microscopy to reveal the mapping relationship between the complex ferroelectric domain structure and both the piezoelectric response and temperature stability.At Nb5+doping amount of 0.8 mol%,the ceramics showed excellent comprehensive performances with d_(33)=764 pC/N,T_(c)=319.1℃,ε_(r)=3253.59,k_(p)=0.67,and tan δ=0.0122.At an external ambient temperature of 300℃,the d_(33) of PIN-PHT-0.8Nb^(5+) remained high at 734 pC/N,with piezoelectric performance retention of 96.1%,showing excellent temperature stability.Overall,a new path was proposed for developing Pb-based piezoceramics with both good piezoelectric response and high-temperature stability,promising to broaden the temperature range of high-temperature piezoceramics for various applications. 展开更多
关键词 Gibbs free energy “slush-like”polar states Giant piezoelectric response high-temperature stability
原文传递
Enhancing the high-temperature stability of OFETs by inducing D-A stacking in P(NDI2OD-T2) films
6
作者 Xuetao Xiao Wenhao Li +6 位作者 Qing Zhou Zeng Wu Xiaochan Zuo Rong Ma Yifei Xu Sichun Wang Yan Zhao 《Science China Materials》 2025年第1期117-124,共8页
High-temperature stability of organic field-effect transistors(OFETs)is critical to ensure its long-term reliable operation under various environmental conditions.The molecular packing of donor-acceptor(D-A)conjugated... High-temperature stability of organic field-effect transistors(OFETs)is critical to ensure its long-term reliable operation under various environmental conditions.The molecular packing of donor-acceptor(D-A)conjugated polymers is closely related to the electrical performance stability in OFETs.Herein,we choose poly[[N,N′-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5′-(2,2′-bithiophene)]as a modal system to reveal the relationship between the molecular stacking and electrical stability in high-temperature environment.The results demonstrate that the films with D-A moieties in alternate stacking have better electrical thermal stability compared to normal donor-donor(D-D)stacking.The D-A stacking configuration alternates donor and acceptor units along the out-of-plane direction,while the D-D stacking involves D-D and A-A stacking separately.The structural transition from D-D to D-A is captured at a treated temperature range of 225±250°C.Owing to the tighter packing arrangement along theπ-πand lamellar directions,the electron mobility of the D-A stacked films reaches up to 0.23 cm^(2)/V·s,a 50%increase as compared to the D-D stacking films.Furthermore,the D-A stacked films indicate superior electrical performance stability with mobility retaining 100%at 250°C during high-temperature cycling tests.This result highlights that the manipulation of conjugated polymer closely stacked structures can significantly enhance the thermal stability and durability of semiconductor devices. 展开更多
关键词 high-temperature stability D-A stacking P(NDI2OD-T2) electrical properties OFETs
原文传递
In situ formation of high-entropy carbide phase in porous SiBCN ceramic for enhanced high-temperature stability
7
作者 Zifeng Hu Huijie Wang Dong Su 《Journal of Advanced Ceramics》 2025年第2期65-76,共12页
Porous SiBCN ceramics exhibit great potential in high-tech structural and functional applications. However, nucleation-crystallization and carbothermal decomposition limit their use in high-temperature environments. H... Porous SiBCN ceramics exhibit great potential in high-tech structural and functional applications. However, nucleation-crystallization and carbothermal decomposition limit their use in high-temperature environments. Herein, high-entropy carbide (HEC) (Ti_(0.25)Zr_(0.25)Hf_(0.25)Ta_(0.25))C-modified porous SiBCN ceramics (HEC/SiBCN) were successfully fabricated from a multi-metal (Ti,Zr,Hf,Ta) precursor containing polyborosilazane via solvothermal methods, freeze-drying, and pyrolysis. The porous HEC/SiBCN ceramic possesses tailorable porosity (63.5%–79.1%), low thermal conductivity (0.054–0.089 W/(m·K)), and good mechanical strength. The HEC phase is in situ formed by carbothermal reduction and solid solution reaction of the multicomponent precursor with highly active free carbon in the SiBCN matrix during the pyrolysis, which endows the porous HEC/SiBCN ceramics with outstanding thermal stability up to 1800℃. The in situ formation of the HEC phase provides novel insight and a promising strategy for enhancing the overall performance of porous SiBCN ceramics, expanding their application in high-temperature environments. 展开更多
关键词 porous ceramics high-entropy carbide(HEC)ceramics SiBCN ceramics high-temperature stability thermal insulation
原文传递
Advancements and Challenges in Enhancing Thermal Stability of Lithium-Ion Battery Separators: Review on CoatingMaterials, High-Temperature Resistant Materials and Future Trends
8
作者 Haoran Li Yayou Xu +3 位作者 Zihan Zhang Feng Han Ye-Tang Pan Rongjie Yang 《Journal of Polymer Materials》 2025年第1期33-55,共23页
The thermal stability of lithium-ion battery separators is a critical determinant of battery safety and performance,especially in the context of rapidly expanding applications in electric vehicles and energy storage s... The thermal stability of lithium-ion battery separators is a critical determinant of battery safety and performance,especially in the context of rapidly expanding applications in electric vehicles and energy storage systems.While traditional polyolefin separators(PP/PE)dominate the market due to their cost-effectiveness and mechanical robustness,their inherent poor thermal stability poses significant safety risks under high-temperature conditions.This review provides a comprehensive analysis of recent advancements in enhancing separator thermal stability through coating materials(metal,ceramic,inorganic)and novel high-temperature-resistant polymers(e.g.,PVDF copolymers,PI,PAN).Notably,we critically evaluate the trade-offs between thermal resilience and electrochemical performance,such as the unintended increase in electronic conductivity from metal coatings(e.g.,Cu,MOFs)and reduced electrolyte wettability in ceramic coatings(e.g.,Al_(2)O_(3)).Innovations in hybrid coatings(e.g.,BN/PAN composites,gradient-structured MOFs)and scalable manufacturing techniques(e.g.,roll-to-roll electrospinning)are highlighted as promising strategies to balance these competing demands.Furthermore,a comparative analysis of next-generation high-temperature-resistant separators underscores their ionic conductivity,mechanical strength,and scalability,offering actionable insights for material selection.The review concludes with forward-looking perspectives on integrating machine learning for material discovery,optimizing interfacial adhesion in ceramic coatings,and advancing semi-/all-solid-state batteries to address both thermal and electrochemical challenges.This work aims to bridge the gap between laboratory innovations and industrial applications,fostering safer and more efficient lithium battery technologies. 展开更多
关键词 Lithium battery thermal stability SEPARATOR COATING
在线阅读 下载PDF
Simultaneous achievement of large strain, low hysteresis, and high-temperature stability in textured BT-based piezoelectric ceramics
9
作者 Xiyue Zhang Zhe Wang +5 位作者 Peng Li Yingchun Liu Juan Du Jigong Hao Wei Li Jiwei Zhai 《Journal of Advanced Ceramics》 2025年第2期131-139,共9页
BaTiO_(3) (BT)-based piezoceramics with large temperature-stable strains and low hysteresis are urgently needed for high-precision actuators because of increasing environmental problems. Here, tetragonal [001]c-textur... BaTiO_(3) (BT)-based piezoceramics with large temperature-stable strains and low hysteresis are urgently needed for high-precision actuators because of increasing environmental problems. Here, tetragonal [001]c-textured (Ba_(0.98)Ca_(0.02))(Ti_(0.96)Sn_(0.04))O_(3) (BCTS) ceramics with a texture degree (F_(001)) of ~98% were obtained via the templated grain growth (TGG) method. A large maximum unipolar strain (S_(max)) of ~0.24% with a low strain hysteresis (Hs) of ~3.8% and an optimized piezoelectric strain coefficient (d_(33)^(*)) of ~1124 pm·V^(−1) are simultaneously achieved in the textured BCTS ceramics. Moreover, the variation in the strain response is less than 20% from room temperature (RT) to 100℃ for the textured ceramics. The underlying mechanism for the optimized strain performance could be attributed to the synergetic effect of the polarization extension and a fine domain structure. This work provides new insight for achieving a balance of multiple strain properties (large strain, low hysteresis, and high-temperature stability) in BT-based ceramics, showing the widespread application prospects of lead-free ceramics in high-precision actuators. 展开更多
关键词 textured ceramics strain performance HYSTERESIS temperature stability
原文传递
Composition optimization, high-temperature stability, and thermal cycling performance of Sc-doped Gd_(2)Zr_(2)O_(7) thermal barrier coatings: Theoretical and experimental studies 被引量:15
10
作者 Lei GUO Bowen LI +1 位作者 Yuxian CHENG Lu WANG 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2022年第3期454-469,共16页
Sc was doped into Gd_(2)Zr_(2)O_(7) for expanding the potential for thermal barrier coating (TBC) applications. The solid solution mechanism of Sc in the Gd_(2)Zr_(2)O_(7) lattice, and the mechanical and thermophysica... Sc was doped into Gd_(2)Zr_(2)O_(7) for expanding the potential for thermal barrier coating (TBC) applications. The solid solution mechanism of Sc in the Gd_(2)Zr_(2)O_(7) lattice, and the mechanical and thermophysical properties of the doped Gd_(2)Zr_(2)O_(7) were systematically studied by the first-principles method, based on which the Sc doping content was optimized. Additionally, Sc-doped Gd_(2)Zr_(2)O_(7) TBCs with the optimized composition were prepared by air plasma spraying using YSZ as a bottom ceramic coating (Gd-Sc/YSZ TBCs), and their sintering behavior and thermal cycling performance were examined. Results revealed that at low Sc doping levels, Sc has a large tendency to occupy the lattice interstitial sites, and when the doping content is above 11.11 at%, Sc substituting for Gd in the lattice becomes dominant. Among the doped Gd_(2)Zr_(2)O_(7), the composition with 16.67 at% Sc content has the lowest Pugh’s indicator (G/B) and the highest Poisson ratio (σ) indicative of the highest toughness, and the decreasing trends of Debye temperature and thermal conductivity slow down at this composition. By considering the mechanical and thermophysical properties comprehensively, the Sc doping content was optimized to be 16.67 at%. The fabricated Gd-Sc coatings remain phase and structural stability after sintering at 1400 ℃ for 100 h. Gd-Sc/YSZ TBCs exhibit excellent thermal shock resistance, which is related to the good thermal match between Gd-Sc and YSZ coatings, and the buffering effect of the YSZ coating during thermal cycling. These results revealed that Sc-doped Gd_(2)Zr_(2)O_(7) has a high potential for TBC applications, especially for the composition with 16.67 at% Sc content. 展开更多
关键词 thermal barrier coating(TBC) first-principles calculation solid solution mechanism high-temperature stability thermal cycling
原文传递
Analysis of the Mechanism and Effectiveness of Lignin in Improving the High-Temperature Thermal Stability of Asphalt 被引量:4
11
作者 Cheng Cheng Weiwei Sun +4 位作者 Bo Hu Guixiang Tao Chao Peng Yanjuan Tian Shujuan Wu 《Journal of Renewable Materials》 SCIE EI 2020年第10期1243-1255,共13页
The use of lignin,which is a by-product of the pulp and paper industry,in the development of asphalt binders would contribute to waste reduction,providing environmental,economic,and social benefits.In this study,sampl... The use of lignin,which is a by-product of the pulp and paper industry,in the development of asphalt binders would contribute to waste reduction,providing environmental,economic,and social benefits.In this study,samples of lignin-modified asphalt binder samples with different content of lignin(3%,6%,9%,12%,and 15%)and unmodified asphalt(control)were tested using Fourier transform infrared spectroscopy(FTIR),dynamic shear rheometer(DSR),and thermogravimetry.The mechanism and effectiveness of lignin in improving the thermal stability of asphalt at high temperatures were analyzed.The FTIR analysis shows that no new characteristic absorption peak is seen in the infrared spectral of the lignin-modified asphalt binder samples,and some bands characteristic of lignin-related peaks gradually increased with the increase of lignin content.This suggests that the modification of lignin-modified asphalt binder samples was due to physical blending rather than chemical modification.The increase of lignin content in the lignin-modified asphalt samples increases the complex shear modulus G*of the samples and decreases the phase angles of the samples.Similarly,the anti-rutting performance(G*/sinδ)of the samples improves with the increase in lignin content,but this is not significant after any addition of lignin that exceeds 12%of asphalt mass.Thermal characterizations show that the thermal decomposition rate of lignin is lower,and its residual amount is higher compared to that of asphalt,which is a major reason for the improved stability of lignin-modified asphalt binders at high temperatures.The effect of lignin on the thermal stability of asphalt is dependent on both lignin content and temperature.It has a positive effect on the thermal stability of asphalt at high temperatures within the range of asphalt service temperature(25℃–200℃).Additionally,from the pyrolysis viewpoint,it was explained that excessive lignin addition is not beneficial to the thermal stability of asphalt at high temperatures,which is consistent with the DSR test result conducted high temperatures. 展开更多
关键词 Lignin modified asphalt high-temperature stability FTIR TG
在线阅读 下载PDF
Dynamics of the perturbed Calogero-Moser system:well-posedness,stability and blow up
12
作者 LIU Qianle WANG Zhong ZHU Weipeng 《中山大学学报(自然科学版)(中英文)》 北大核心 2026年第1期157-168,共12页
We investigate a class of non-integrable two-particle Calogero-Moser systems modulated by a power-law external potential.The local well-posedness of the Cauchy problem is established under the strict initial separatio... We investigate a class of non-integrable two-particle Calogero-Moser systems modulated by a power-law external potential.The local well-posedness of the Cauchy problem is established under the strict initial separation condition for the particles.For suitably prepared initial configurations,local solutions can be extended globally via energy conservation;conversely,negative energy conditions induce(in)finite-time blowup.The linear(in)stability of stationary solutions is analyzed,with their energy serving as a threshold.Numerical investigations employ a fourth-order Runge-Kutta scheme with adaptive step-size control.Simulations demonstrate that the trajectories either converge to steady states or exhibit blowup,depending on the power exponentαand initial conditions.Increasingαaccelerates the convergence rate and dampens oscillatory dynamics,promoting a transition from periodic behavior to static equilibrium. 展开更多
关键词 Calogero-Moser system WELL-POSEDNESS blow up stability
在线阅读 下载PDF
Effect of Substrate Micro-arc Oxidation Pretreatment on Microstructure and High-Temperature Oxidation Resistance of Si-Cr-Ti-Zr Coating on Ta12W Alloy
13
作者 Yang Fan Chang Jianxiu +2 位作者 Wang Xin Li Hongzhan Yan Peng 《稀有金属材料与工程》 北大核心 2026年第1期92-104,共13页
To mitigate the impact of interdiffusion reactions between the silicide slurry and Ta12W alloy substrate during vacuum sintering process on the oxidation resistance of the silicide coating,a micro-arc oxidation pretre... To mitigate the impact of interdiffusion reactions between the silicide slurry and Ta12W alloy substrate during vacuum sintering process on the oxidation resistance of the silicide coating,a micro-arc oxidation pretreatment was employed to construct a Ta_(2)O_(5)ceramic layer on the Ta12W alloy surface.Subsequently,a slurry spraying-vacuum sintering method was used to prepare a Si-Cr-Ti-Zr coating on the pretreated substrate.Comparative studies were conducted on the microstructure,phase composition,and isothermal oxidation resistance(at 1600℃)of the as-prepared coatings with and without the micro-arc oxidation ceramic layer.The results show that the Ta_(2)O_(5)layer prepared at 400 V is more continuous and has smaller pores than that prepared at 350 V.After microarc oxidation pretreatment,the Si-Cr-Ti-Zr coating on Ta12W alloy consists of three distinct layers:an upper layer dominated by Ti_(5)Si_(3),Ta_(5)Si_(3),and ZrSi;a middle layer dominated by TaSi_(2);a coating/substrate interfacial reaction layer dominated by Ta_(5)Si_(3).Both the Si-Cr-Ti-Zr coatings with and without the Ta_(2)O_(5)ceramic layer do not fail after isothermal oxidation at 1600℃for 5 h.Notably,the addition of the Ta2O5 ceramic layer reduces the high-temperature oxidation rate of the coating. 展开更多
关键词 tantalum-tungsten alloy silicide coating micro-arc oxidation reaction formation mechanism high-temperature oxidation
原文传递
High-temperature oxidation resistance of TiB_(2)coatings on molybdenum produced by molten salt electrophoretic deposition
14
作者 Qian Kou Chuntao Ge +6 位作者 Yanlu Zhou Wenjuan Qi Junjie Xu Weiliang Jin Jun Zhang Hongmin Zhu Saijun Xiao 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期282-291,共10页
TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing Ti... TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing TiB_(2)coatings have disadvantages such as high equipment costs,complicated processes,and highly toxic gas emissions.This paper proposes an environmentally friendly method,which requires inexpensive equipment and simple processing,for preparing TiB_(2)coating on molybdenum via electrophoretic deposition within Na3AlF6-based molten salts.The produced TiB_(2)layer had an approximate thickness of 60μm and exhibited high density,outstanding hardness(38.2 GPa)and robust adhesion strength(51 N).Additionally,high-temperature oxidation experiments revealed that,at900℃,the TiB_(2)coating provided effective protection to the molybdenum substrate against oxidation for 3 h.This result indicates that the TiB_(2)coating prepared on molybdenum using molten salt electrophoretic deposition possesses good high-temperature oxidation resistance. 展开更多
关键词 molten salt electrophoretic deposition MOLYBDENUM TiB_(2)coating high-temperature oxidation resistance
在线阅读 下载PDF
3D printed high-temperature ceramic conformal array antenna:Design,analysis,manufacturing,and testing
15
作者 Peng Li Ruibo Li +5 位作者 Zijiao Fan Jiujiu Han Guangda Ding Qunbiao Wang Wanye Xu Paolo Rocca 《Defence Technology(防务技术)》 2026年第1期340-353,共14页
In this study,the design,analysis,manufacturing,and testing of a 3D-printed conformal microstrip array antenna for high-temperature environments is presented.3D printing technology is used to fabricate a curved cerami... In this study,the design,analysis,manufacturing,and testing of a 3D-printed conformal microstrip array antenna for high-temperature environments is presented.3D printing technology is used to fabricate a curved ceramic substrate,and laser sintering and microdroplet spraying processes are used to add the conductive metal on the curved substrate.The problems of gain loss,bandwidth reduction,and frequency shift caused by high temperatures are addressed by using a proper antenna design,with parasitic patches,slots,and metal resonant cavities.The antenna prototype is characterized by the curved substrates and the conductive metals for the power dividers,the patch,and the ground plane;its performance is examined up to a temperature of 600℃in a muffle furnace and compared with the results from the numerical analysis.The results show that the antenna can effectively function at 600℃and even higher temperatures. 展开更多
关键词 Ceramic antenna Conformal array high-temperature environment 3D printing High gain and wide band
在线阅读 下载PDF
Novel entropy-stabilized spinel materials and their potential application in high-temperature industry:[(Mg_(x)Zn_((1-x)/2)Cu_((1-x)/2))(Al_(0.9)Fe_(0.1))_(2)O_(4)](x=0.5,0.6,0.7,and 0.8) 被引量:1
16
作者 Bo-Kang Li Lv-Ping Fu +2 位作者 Hua-Zhi Gu Ao Huang Shuang Yang 《Rare Metals》 2025年第8期5844-5858,共15页
High-temperature industries,as the primary consumers of energy,are greatly concerned with energy savings.Designing refractory linings with low thermal conductivity to reduce heat dissipation through high-temperature f... High-temperature industries,as the primary consumers of energy,are greatly concerned with energy savings.Designing refractory linings with low thermal conductivity to reduce heat dissipation through high-temperature furnace linings is a critical concern.In this study,a series of novel entropy-stabilized spinel materials are reported,and their potential applications in high-temperature industries are investigated.XRD and TEM results indicate that all materials possess a cubic spinel crystal structure with the■space group.Furthermore,these materials exhibit good phase stability at high temperatures.All entropy-stabilized spinel aggregates demonstrated high refractoriness(>1800℃)and a high load softening temperature(>1700℃).The impact of configurational entropy on the properties of entropy-stabilized spinel materials was also studied.As configurational entropy increased,the thermal conductivity of the entropy-stabilized spinel decreased,while slag corrosion resistance deteriorated.For the entropy-stabilized spinel with a configurational entropy value of 1.126R,it showed good high-temperature stability,reliable resistance to slag attack,and a low thermal conductivity of 2.776 W·m^(-1)·K^(-1)at 1000℃. 展开更多
关键词 Entropy-stabilized spinel Thermal conductivity high-temperature performance Configurational entropy
原文传递
Innovative Strategies to Overcome Stability Challenges of Single‑Atom Nanozymes
17
作者 Rong Guo Qiuzheng Du +3 位作者 Yaping He Haoan Wu Yu Zhang Ziwei Jing 《Nano-Micro Letters》 2026年第3期725-756,共32页
Single-atom nanozymes(SAzymes)exhibit exceptional catalytic efficiency due to their maximized atom utilization and precisely modulated metalcarrier interactions,which have attracted significant attention in the biomed... Single-atom nanozymes(SAzymes)exhibit exceptional catalytic efficiency due to their maximized atom utilization and precisely modulated metalcarrier interactions,which have attracted significant attention in the biomedical field.However,stability issues may impede the clinical translation of SAzymes.This review provides a comprehensive overview of the applications of SAzymes in various biomedical fields,including disease diagnosis(e.g.,biosensors and diagnostic imaging),antitumor therapy(e.g.,photothermal therapy,photodynamic therapy,sonodynamic therapy,and immunotherapy),antimicrobial therapy,and anti-oxidative stress therapy.More importantly,the existing challenges of SAzymes are discussed,such as metal atom clustering and active site loss,ligand bond breakage at high temperature,insufficient environment tolerance,biosecurity risks,and limited catalytic long-term stability.Finally,several innovative strategies to address these stability concerns are proposed—synthesis process optimization(space-limited strategy,coordination site design,bimetallic synergistic strategy,defect engineering strategy,atom stripping-capture),surface modification,and dynamic responsive design—that collectively pave the way for robust,clinically viable SAzymes. 展开更多
关键词 Single-atom nanozymes Clinical translation stability issues Innovative strategies BIOCOMPATIBILITY
在线阅读 下载PDF
Increased NH3-SCR activity and stability of Fe-Beta catalysts achieved by using Al-rich zeolite
18
作者 Tongliang Zhang Zhongqi Liu +7 位作者 Jingjing Liu Minghui Jiang Xue Xia Xinyue Shan Yulong Shan Xiaoyan Shi Yunbo Yu Hong He 《Journal of Environmental Sciences》 2026年第1期809-818,共10页
Selective catalytic reduction with NH3(NH3-SCR)is an important means of NO_(x) abatement from stationary and mobile sources,and the key element is efficient and stable NH3-SCR catalysts.In this study,we propose a meth... Selective catalytic reduction with NH3(NH3-SCR)is an important means of NO_(x) abatement from stationary and mobile sources,and the key element is efficient and stable NH3-SCR catalysts.In this study,we propose a method to construct superior Fe-Beta catalysts based on Al-rich zeolites.This strategy successfully promotes the formation of NH3-SCR-active isolated Fe^(3+)species,thus effectively improving the low-temperature activity of the Fe-Beta catalysts.Thanks to the abundant Brønsted acid sites of the Al-rich zeolite,the Fe_(2)O_(3) particles are redispersed and anchored as isolated Fe^(3+)during hydrothermal aging.This dynamic evolution of Fe species makes up for the adverse effect of dealumination of the Al-rich zeolite framework and achieves high stability for the Al-rich Fe-Beta catalyst.This study may promote the understanding of highly efficient and stable catalyst design using Al-rich zeolites. 展开更多
关键词 Fe-Beta Al-rich zeolite NH3-SCR hydrothermal stability
原文传递
Stability enhancement of MnO_(x)-CeO_(2)via hydrophobic modification for NO reduction by NH_(3)
19
作者 Boyu Wu Shengen Zhang +2 位作者 Shengyang Zhang Bo Liu Bolin Zhang 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期357-368,共12页
MnO_(x)-CeO_(2)catalysts for the low-temperature selective catalytic reduction(SCR)of NO remain vulnerable to water and sulfur poisoning,limting their practical applications.Herein,we report a hydrophobic-modified MnO... MnO_(x)-CeO_(2)catalysts for the low-temperature selective catalytic reduction(SCR)of NO remain vulnerable to water and sulfur poisoning,limting their practical applications.Herein,we report a hydrophobic-modified MnO_(x)-CeO_(2)catalyst that achieves enhanced NO conversion rate and stability under harsh conditions.The catalyst was synthesized by decorating MnOx crystals with amorphous CeO_(2),followed by loading hydrophobic silica on the external surfaces.The hydrophobic silica allowed the adsorption of NH_(3)and NO and diffusion of H,suppressed the adsorption of H_(2)O,and prevented SO_(2)interaction with the Mn active sites,achieving selective molecular discrimination at the catalyst surface.At 120℃,under H_(2)O and SO_(2)exposure,the optimal hydrophobic catalyst maintains 82%NO conversion rate compared with 69%for the unmodified catalyst.The average adsorption energies of NH_(3),H_(2)O,and SO_(2)decreased by 0.05,0.43,and 0.52 eV,respectively.The NO reduction pathway follows the Eley-Rideal mechanism,NH_(3)^(*)+*→NH_(2)^(*)+H^(*)followed by NH_(2)^(*)+NO^(*)→N_(2)^(*)+H_(2)O^(*),with NH_(3)dehydrogenation being the rate determining step.Hydrophobic modification increased the activation energy for H atom transfer,leading to a minor decrease in the NO conversion rate at 120℃.This work demonstrates a viable strategy for developing robust NH_(3)-S CR catalysts capable of efficient operation in water-and sulfur-rich environments. 展开更多
关键词 Mn-Ce catalyst NH_(3)-SCR hydrophobic modification enhanced stability
在线阅读 下载PDF
Ultrasound biomicroscopy analysis of age-related trends in lens stability in cortical cataracts
20
作者 Jia-Jun Chen Ling Wang +3 位作者 Sha-Sha Xue Zhi-Ying Yu Yun-Xiao Wang Feng-Lei Wang 《International Journal of Ophthalmology(English edition)》 2026年第2期252-259,共8页
AIM:To investigate age-related differences in the irislens angle(ILA)among patients with age-related cortical cataracts and elucidate the impact of age on lens stability.METHODS:A prospective observational study was c... AIM:To investigate age-related differences in the irislens angle(ILA)among patients with age-related cortical cataracts and elucidate the impact of age on lens stability.METHODS:A prospective observational study was conducted on patients with age-related cortical cataracts scheduled for phacoemulsification surgery.Preoperative ultrasound biomicroscopy(UBM)images were collected and analyzed.Initially,patients were stratified into two age groups:<60y and≥60y,with no significant intergroup differences in sex or eye laterality.For further analysis,participants were subdivided into three age strata:<60y,60-75y,and>75y.The ILA was measured in four quadrants(superior,inferior,nasal,and temporal).Intergroup differences in ILA were compared,and correlations between age and ILA parameters were analyzed using statistical methods.RESULTS:The sample data were categorized into three groups according to age,<60y(113 patients;55.8%female),60–75y(245 patients;61.0%female),and>75y(70 patients;50.2%female).The superior quadrant ILA increased progressively with age stratification(P=0.02),and the maximum ILA difference(ΔILA)was significantly higher in patients over 75y(P<0.01).Simple linear regression analysis demonstrated a positive correlation between age and ILA in the superior(Y=7.487+0.096X,R=0.191,P<0.001)and temporal(Y=10.254+0.052X,R=0.104,P=0.032)quadrants.Additionally,the mean ILA across all quadrants(ILAmean)andΔILA were positively correlated with age(ILAmean:Y=9.721+0.055X,R=0.138,P=0.004;ΔILA:Y=3.267+0.044X,R=0.006,P<0.05).CONCLUSION:In patients with age-related cortical cataracts,ILA increases with age,particularly in the superior and temporal quadrants,suggesting that advanced age is associated with greater lens deviation and decreased lens stability.UBM imaging can effectively evaluate the status of the zonule and lens stability,providing crucial evidence for personalized surgical planning based on patients’age. 展开更多
关键词 iris-lens angle age-related cortical cataract lens stability ultrasound biomicroscopy PHACOEMULSIFICATION surgical planning
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部