期刊文献+
共找到112,715篇文章
< 1 2 250 >
每页显示 20 50 100
A thermally-cyclized electrospun GO/PAN nanofiber piezoelectric sensor for high-temperature applications
1
作者 LI Wei-dong LI Yin-hui +5 位作者 YIN Rong-yan FAN Kai GAO Fei LIANG Jian-guo LI Peng-wei BIAN Gui-bin 《新型炭材料(中英文)》 北大核心 2025年第5期1154-1168,I0051-I0057,共22页
High-temperature piezoelectric sen-sors are very important in severe environments such as fire safety,aerospace and oil drills,however,most current sensors are not heat res-istant(<300℃)and are fragile,which limit... High-temperature piezoelectric sen-sors are very important in severe environments such as fire safety,aerospace and oil drills,however,most current sensors are not heat res-istant(<300℃)and are fragile,which limits their use,especially in high-temperature environ-ments.A high-temperature resistant flexible piezoelectric film based on graphene oxide(GO)/polyacrylonitrile(PAN)composites was prepared by electrospinning and thermal treat-ment.It was packed into a micro-device,which could work continuously at 500℃.The intro-duction of GO significantly increased the mechanical properties of the PAN nanofibers because the oxygen-containing func-tional groups(electronegative groups)on the surface of the GO initiated a nucleophilic attack on the PAN molecule during heat treatment,enabling the GO to initiate the cyclization of the PAN at lower heat-treatment temperatures.In addition,the abund-ant oxygen-containing functional groups on GO acted as pro-oxidants to hasten the oxidation of PAN during heat treatment.The effects of GO content and heat treatment temperature on the properties of the nanofiber films were investigated.A GO/PAN nanofiber piezoelectric sensor heat-treated at 300℃had a 9.10 V and 2.25μA peak output,which are respectively 101.3%and 78.6%higher than those of the untreated films.Cyclic testing over 5000 cycles at 350℃confirmed the stable out-put performance of the GO/PAN nanofiber piezoelectric sensor.Furthermore,a sensor heat-treated at 400℃had a sensitivity of 1.7 V/N,which is 83.5%higher than that of an untreated one.The results show that the prepared GO/PAN nanofiber piezo-electric sensor combines high temperature resistance,high flexibility,stability and high sensitivity,and may have broad applic-ations in high temperature environments such as the aerospace and petroleum industries. 展开更多
关键词 GO/PAN nanofiber PIEZOELECTRIC high-temperature Thermal-cyclization Fully flexible
在线阅读 下载PDF
High-temperature thin-film strain sensors with low temperature coefficient of resistance and high sensitivity via direct ink writing
2
作者 Lida Xu Fuxin Zhao +10 位作者 Xiong Zhou Yusen Wang Tingting Shen Jun Liu Haidong Wang Guo Yi Xingguang Zhou Chao Wu Yang Zhao Daoheng Sun Qinnan Chen 《Nanotechnology and Precision Engineering》 2025年第1期1-9,共9页
High-temperature thin-film strain sensors are advanced technological devices for monitoring stress and strain in extreme environments,but the coupling of temperature and strain at high temperature is a challenge for t... High-temperature thin-film strain sensors are advanced technological devices for monitoring stress and strain in extreme environments,but the coupling of temperature and strain at high temperature is a challenge for their use.Here,this issue is addressed by creating a composite ink that combines Pb_(2)Ru_(2)O_(6) and TiB_(2) using polysilazane(PSZ)as a binder.After direct writing and annealing the PSZ/Pb_(2)Ru_(2)O_(6)/TiB_(2) film at 800℃ in air,the resulting thin film exhibits a low temperature coefficient of resistance(TCR)of only 281 ppm/℃ over a wide temperature range from 100℃ to 700℃,while also demonstrating high sensitivity with a gauge factor approaching 19.8.This exceptional performance is attributed to the intrinsic properties of Pb_(2)Ru_(2)O_(6),which has positive TCR at high temperature,and TiB2,which has negative TCR at high temperature.Combining these materials reduces the overall TCR of the film.Tests showed that the PSZ/Pb_(2)Ru_(2)O_(6)/TiB_(2) film maintains stable strain responses and significant signal output even under varying temperature.These findings provide valuable insights for developing high-temperature strain sensors with low TCR and high sensitivity,highlighting their potential for applications in high-temperature strain measurements. 展开更多
关键词 high-temperature thinfilm Strain sensor Direct ink writing Low temperature coefficient of resistance High sensitivity
在线阅读 下载PDF
Highly sensitive flexible high-temperature sensor based on ITO/In_(2)O_(3)for underwater hot spring monitoring
3
作者 Shilong Liu Shuntao Hu +7 位作者 Qingfei Wu Jun Chen Qi Wen Wenbiao Zhang Shuai Ren Ying Li Zhenyin Hai Junyang Li 《Science China Materials》 2025年第11期4115-4124,共10页
Using a highly sensitive flexible sensor for monitoring the rapidly fluctuating thermal environments of underwater hot springs is a highly promising temperature measurement technology.Herein,a flexible high-temperatur... Using a highly sensitive flexible sensor for monitoring the rapidly fluctuating thermal environments of underwater hot springs is a highly promising temperature measurement technology.Herein,a flexible high-temperature sensor was designed,using conductive ITO and sensitive In_(2)O_(3)as the sensing layers.These materials were deposited on a polyimide film substrate and encapsulated with PET material to enable in situ temperature monitoring of rapidly changing thermal environments in underwater hot springs.Simulation results showed that the device achieved a sensitivity of 179.6µV/℃during rapid cooling from various temperatures to 25℃without applied pressure,and exhibited a maximum output variation of 5.76%under the same cooling conditions under 20 MPa,reflecting excellent thermal response stability.Furthermore,combined simulation and experimental results indicated that the serpentine electrode structure in the sensor effectively reduced internal stress,enabling it to maintain stable output after 10,000 mechanical bending cycles,thereby demonstrating excellent structural stability and repeatability.Further tests showed that the device maintained stable thermoelectric output over a wide temperature range of 30–300℃and exhibited excellent performance in various media,including air(flame heating),water,seawater,and high-temperature silicone oil.Notably,after continuous operation in seawater for 20 h and immersion for 48 h,the average variation in the thermoelectric output curve was only 1.94%,demonstrating good corrosion resistance and long-term stability.These characteristics indicate that significant potential is possessed by the flexible sensor for temperature monitoring applications in the extreme thermal environments of underwater hot springs. 展开更多
关键词 thermocouple sensor high sensitivity bending durability underwater hot springs
原文传递
Combing the Entropy Weight Method with Fuzzy Mathematics for Assessing the Quality and Post-Ripening Mechanism of High-Temperature Daqu during Storage 被引量:1
4
作者 YANG Junlin YANG Shaojuan +8 位作者 WU Cheng YIN Yanshun YOU Xiaolong ZHAO Wenyu ZHU Anran WANG Jia HU Feng HU Jianfeng WANG Diqiang 《食品科学》 北大核心 2025年第9期48-62,共15页
This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standar... This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu. 展开更多
关键词 microbial community high-temperature Daqu comprehensive quality evaluation entropy weight method maturation process
在线阅读 下载PDF
Novel entropy-stabilized spinel materials and their potential application in high-temperature industry:[(Mg_(x)Zn_((1-x)/2)Cu_((1-x)/2))(Al_(0.9)Fe_(0.1))_(2)O_(4)](x=0.5,0.6,0.7,and 0.8) 被引量:1
5
作者 Bo-Kang Li Lv-Ping Fu +2 位作者 Hua-Zhi Gu Ao Huang Shuang Yang 《Rare Metals》 2025年第8期5844-5858,共15页
High-temperature industries,as the primary consumers of energy,are greatly concerned with energy savings.Designing refractory linings with low thermal conductivity to reduce heat dissipation through high-temperature f... High-temperature industries,as the primary consumers of energy,are greatly concerned with energy savings.Designing refractory linings with low thermal conductivity to reduce heat dissipation through high-temperature furnace linings is a critical concern.In this study,a series of novel entropy-stabilized spinel materials are reported,and their potential applications in high-temperature industries are investigated.XRD and TEM results indicate that all materials possess a cubic spinel crystal structure with the■space group.Furthermore,these materials exhibit good phase stability at high temperatures.All entropy-stabilized spinel aggregates demonstrated high refractoriness(>1800℃)and a high load softening temperature(>1700℃).The impact of configurational entropy on the properties of entropy-stabilized spinel materials was also studied.As configurational entropy increased,the thermal conductivity of the entropy-stabilized spinel decreased,while slag corrosion resistance deteriorated.For the entropy-stabilized spinel with a configurational entropy value of 1.126R,it showed good high-temperature stability,reliable resistance to slag attack,and a low thermal conductivity of 2.776 W·m^(-1)·K^(-1)at 1000℃. 展开更多
关键词 Entropy-stabilized spinel Thermal conductivity high-temperature performance Configurational entropy
原文传递
Impact of Burial Dissolution on the Development of Ultradeep Fault-controlled Carbonate Reservoirs:Insights from High-temperature and High-pressure Dissolution Kinetic Simulation 被引量:1
6
作者 TAN Xiaolin ZENG Lianbo +6 位作者 SHE Min LI Hao MAO Zhe SONG Yichen YAO Yingtao WANG Junpeng LU Yuzhen 《Acta Geologica Sinica(English Edition)》 2025年第1期228-242,共15页
Burial dissolution is a critical diagenetic process influencing ultra-deep carbonate reservoir development and preservation.Artificial carbonate samples with different internal structures were prepared,and high-temper... Burial dissolution is a critical diagenetic process influencing ultra-deep carbonate reservoir development and preservation.Artificial carbonate samples with different internal structures were prepared,and high-temperature and highpressure dissolution kinetic simulations were conducted.The results demonstrate that the intensity of burial dissolution is controlled by temperature and pressure,while tectonic-fluid activity influences the development pattern of burial dissolution,ultimately determining the direction of its differential modification.Extensive burial dissolution is likely to occur primarily at relatively shallow depths,significantly influencing reservoir formation,preservation,modification,and adjustment.The development of faults facilitates the maintenance of the intensity of burial dissolution.The maximum intensity of burial dissolution occurs at the tips and overlap zones of faults and intersections of multiple faults.The larger the scale of the faults,the more conducive it is to the development of burial dissolution.Burial dissolution fosters the formation of fault networks characterized by enhanced reservoir capacity and permeability.Burial dissolution controlled by episodic tectonic-fluid activity is a plausible explanation for forming the Tarim Basin's ultra-deep fault-controlled“stringbead-like”reservoirs. 展开更多
关键词 burial dissolution tectonic-fluid ultra-deep carbonate reservoirs high-temperature and high-pressure dissolution kinetic simulation
在线阅读 下载PDF
Hierarchical porous SiC_(nws)/SiC composites with one-dimensional oriented assemblies for high-temperature broadband wave absorption 被引量:1
7
作者 Huiying Ouyang Xiao You +6 位作者 Yuanhang Yang Meihan Ren Qiuqi Zhang Ruixiang Deng Xiangyu Zhang Jinshan Yang Shaoming Dong 《Journal of Materials Science & Technology》 2025年第11期1-10,共10页
The research on high-performance electromagnetic wave absorption materials with high-temperature and oxidative stability in extreme environments is gaining popularity.Herein,the lightweight silicon carbide nanowires(S... The research on high-performance electromagnetic wave absorption materials with high-temperature and oxidative stability in extreme environments is gaining popularity.Herein,the lightweight silicon carbide nanowires(SiC_(nws))/SiC composites are fabricated with in-situ SiC interface on one-dimensional oriented SiC_(nws)skeleton,which collaborative configuration by 3D printing and freeze casting assembly.The con-structed porous structure optimizes the impedance matching degree and scattering intensity,the maximum effective absorption bandwidth(EAB_(max))of 5.9 GHz and the minimum reflection loss(RL_(min))of−41.4 dB can be realized.Considering the inherent oxidation resistance of SiC,the composites present well-maintained absorption performance at 600℃.Even at 1100℃,the EAB_(max)of 4.9 GHz and RLmin of−30.4 dB also demonstrate the high-temperature absorption stability of the composites,indicating exceptional wave absorption properties and thermal stability.The slight attenuation can be attributed to the decrease in impedance matching capability accompanying the elevated dielectric constant.This work clarifies the impact of structure and component synergy on wave absorption behavior,and offers a novel approach to producing high-performance and high-temperature resistance ceramic-based electromagnetic wave absorption materials suitable for extreme environments. 展开更多
关键词 Electromagnetic wave absorption Porous structure INTERFACE SiC_(nws)/SiC composites high-temperature resistance
原文传递
In Situ Partial-Cyclized Polymerized Acrylonitrile-Coated NCM811 Cathode for High-Temperature≥100℃ Stable Solid-State Lithium Metal Batteries 被引量:1
8
作者 Jiayi Zheng Haolong Jiang +13 位作者 Xieyu Xu Jie Zhao Xia Ma Weiwei Sun Shuangke Liu Wei Xie Yufang Chen ShiZhao Xiong Hui Wang Kai Xie Yu Han Maoyi Yi Chunman Zheng Qingpeng Guo 《Nano-Micro Letters》 2025年第8期399-415,共17页
High-nickel ternary cathodes hold a great application prospect in solid-state lithium metal batteries to achieve high-energy density,but they still suffer from structural instability and detrimental side reactions wit... High-nickel ternary cathodes hold a great application prospect in solid-state lithium metal batteries to achieve high-energy density,but they still suffer from structural instability and detrimental side reactions with the solid-state electrolytes.To circumvent these issues,a continuous uniform layer polyacrylonitrile(PAN)was introduced on the surface of LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2) via in situ polymerization of acrylonitrile(AN).Furthermore,the partial-cyclized treatment of PAN(cPAN)coating layer presents high ionic and electron conductivity,which can accelerate interfacial Li+and electron diffusion simultaneously.And the thermodynamically stabilized cPAN coating layer cannot only effectively inhibit detrimental side reactions between cathode and solid-state electrolytes but also provide a homogeneous stress to simultaneously address the problems of bulk structural degradation,which contributes to the exceptional mechanical and electrochemical stabilities of the modified electrode.Besides,the coordination bond interaction between the cPAN and NCM811 can suppress the migration of Ni to elevate the stability of the crystal structure.Benefited from these,the In-cPAN-260@NCM811 shows excellent cycling performance with a retention of 86.8%after 300 cycles and superior rate capability.And endow the solid-state battery with thermal safety stability even at hightemperature extreme environment.This facile and scalable surface engineering represents significant progress in developing high-performance solid-state lithium metal batteries. 展开更多
关键词 Solid-state lithium metal battery Ni-rich cathode Interface engineering In situ partial-cyclized PAN high-temperature resistance
在线阅读 下载PDF
Preparation and High-Temperature Oxidation Performance of TiC-NiCr Cermet
9
作者 Zhang Lei Huang Bensheng +4 位作者 Xie Chuandi Chen Gen Du Jiao Sun Haishen Zuo Hanyang 《稀有金属材料与工程》 北大核心 2025年第5期1194-1206,共13页
Powder metallurgy was used to fabricate TiC-NiCr cermets and the oxidation behavior at 900℃ was investigated.Results reveal that TiC-NiCr cermets have uniform structures with excellent mechanical properties,whose har... Powder metallurgy was used to fabricate TiC-NiCr cermets and the oxidation behavior at 900℃ was investigated.Results reveal that TiC-NiCr cermets have uniform structures with excellent mechanical properties,whose hardness is 65 HRC and flexural strength is 1450 MPa.The high-temperature oxidation mechanism of TiC-based cermets was investigated through an X-ray diffractometer and scanning electron microscope.The added elements Ni and Cr along with their solid solutions not only bond with the hard phase TiC to ensure the physical performance of the cermet,but also impede the internal diffusion during oxidation by forming a dense composite oxide layer,thereby enhancing the oxidation resistance.The TiC-NiCr cermet exhibits a dense protective oxide layer at 900℃ and can endure continuous oxidation for approximately 1000 h.A methodology for fabricating TiC-NiCr metal matrix composites is proposed,and their oxidation resistance is evaluated,providing a theoretical and practical basis for simultaneously enhancing the mechanical properties and oxidation resistance and reducing production costs. 展开更多
关键词 TiC-NiCr microstructure high-temperature oxidation thermodynamics and kinetics
原文传递
Effect of Co Content on Microstructure and Mechanical Properties of High-Entropy High-Temperature Shape Memory Alloy
10
作者 Zhao Yanchun Jin Bo +4 位作者 Feng Yuanfei Ma Huwen Yu Zhiqi Feng Li Liaw Peter K 《稀有金属材料与工程》 北大核心 2025年第1期10-16,共7页
(TiZrHf)_(50)Ni_(30)Cu_(20-x)Co_(x)(x=2,4,6,at%)high-entropy high-temperature shape memory alloys were fabricated by watercooled copper crucible in a magnetic levitation vacuum melting furnace,and the effects of Co co... (TiZrHf)_(50)Ni_(30)Cu_(20-x)Co_(x)(x=2,4,6,at%)high-entropy high-temperature shape memory alloys were fabricated by watercooled copper crucible in a magnetic levitation vacuum melting furnace,and the effects of Co content on microstructure and mechanical properties were investigated.The results indicate that the grain size of the alloy decreases with increasing the Co content.In the as-cast state,the alloy consists primarily of the B19′phase,with a trace of B2 phase.The fracture morphology is predominantly composed of the B19′phase,whereas the B2 phase is nearly absent.Increasing the Co content or reducing the sample dimensions(d)markedly enhance the compressive strength and ductility of the alloy.When d=2 mm,the(TiZrHf)_(50)Ni_(30)Cu_(14)Co_(6) alloy demonstrates the optimal mechanical properties,achieving a compressive strength of 2142.39±1.8 MPa and a plasticity of 17.31±0.3%.The compressive cyclic test shows that with increasing the compressive strain,the residual strain of the(TiZrHf)_(50)Ni_(30)Cu_(14)Co_(6) alloy increases while the recovery ability declines.The superelastic recovery capability of the alloy is continuously enhanced.The superelastic recovery rate increases from 1.36%to 2.12%,the residual strain rate rises from 1.79%to 5.52%,the elastic recovery rate ascends from 3.86%to 7.36%,while the total recovery rate declines from 74.48%to 63.20%. 展开更多
关键词 high-temperature shape memory alloy high-entropy alloy MICROSTRUCTURE mechanical property
原文传递
Microstructure and High-Temperature Oxidation Resistance of Cr-Al-Y Co-deposition Coating on TiAlNb9 Alloy Surface
11
作者 Hao Qingrui Li Yongquan +1 位作者 Li Ning Gao Yang 《稀有金属材料与工程》 北大核心 2025年第11期2739-2748,共10页
To improve the high-temperature oxidation resistance of TiAlNb9 alloy,a Cr-Al-Y co-deposition coating was prepared on the alloy surface by the pack cementation method.The microstructure of the coating was analyzed by ... To improve the high-temperature oxidation resistance of TiAlNb9 alloy,a Cr-Al-Y co-deposition coating was prepared on the alloy surface by the pack cementation method.The microstructure of the coating was analyzed by scanning electron microscope,energy dispersive spectrometer,and X-ray diffractometer,and the high-temperature oxidation properties of the substrate and coating at 1273 K were compared and studied.The results show that the Cr-Al-Y coating is about 30μm in thickness,and it has a dense structure and good film-substrate bonding.The coating includes an outer layer composed of TiCr_(2),TiCr,Ti4Cr,and(Ti,Nb)Cr4 phases as well as an inner layer composed of Ti_(2)Al,and Nb-richγ-TiAl interdiffusion zone.The TiAlNb9 substrate forms an oxide layer composed of TiO2 and Al_(2)O_(3) at 1273 K.Due to its loose and porous structure,TiO2 oxide film cannot effectively isolate the internal diffusion of element O,resulting in continuous oxidation damage to the substrate.The Cr-Al-Y co-deposition coating forms a dense Cr2O3 and Al_(2)O_(3) oxide layer during oxidation,effectively preventing the internal diffusion of element O and significantly improving the high-temperature oxidation resistance of the substrate alloy. 展开更多
关键词 pack cementation TiAlNb9 alloy Cr-Al-Y co-deposition coating high-temperature oxidation resistance
原文传递
High-Temperature Oxidation Property and Corrosion and Wear Resistance of Laser Cladding Co-based Coatings on Pure Zr Surface
12
作者 Xia Chaoqun Yang Bo +3 位作者 Liu Shuguang Zhang Bo Zhong Hua Li Qiang 《稀有金属材料与工程》 北大核心 2025年第6期1397-1409,共13页
Co-based alloy coating was prepared on Zr alloy using laser melting and cladding technique to study the difference in the high-temperature oxidation behavior between pure metal Co coatings and Co-T800 alloy coatings,a... Co-based alloy coating was prepared on Zr alloy using laser melting and cladding technique to study the difference in the high-temperature oxidation behavior between pure metal Co coatings and Co-T800 alloy coatings,as well as the wear resistance of the coatings.Besides,the effect of changing the laser melting process on the coatings was also investigated.The oxidation mass gain at 800–1200℃and the high-temperature oxidation behavior during high-temperature treatment for 1 h of two coated Zr alloy samples were studied.Results show that the Co coating and the Co-T800 coating have better resistance against high-temperature oxidation.After oxidizing at 1000℃for 1 h,the thickness of the oxide layer of the uncoated sample was 241.0μm,whereas that of the sample with Co-based coating is only 11.8–35.5μm.The friction wear test shows that the depth of the abrasion mark of the coated sample is only 1/2 of that of the substrate,indicating that the hardness and wear resistance of the Zr substrate are greatly improved.The disadvantage of Co-based coatings is the inferior corrosion resistance in 3.5wt%NaCl solution. 展开更多
关键词 Zr metal laser cladding Co-based coating high-temperature oxidation resistance wear resistance
原文传递
Design and fabrication of metal spherical conformal thin film multisensor for high-temperature environment 被引量:1
13
作者 Lida XU Xiong ZHOU +7 位作者 Yong HUANG Yusen WANG Chenhe SHAO Yuelong LI Lingyun WANG Qingtao YANG Daoheng SUN Qinnan CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第11期535-547,共13页
Conformal thin-film sensors enable precise monitoring of the operating conditions of components in extreme environments.However,the development of these sensors encounters major challenges,especially in uniformly appl... Conformal thin-film sensors enable precise monitoring of the operating conditions of components in extreme environments.However,the development of these sensors encounters major challenges,especially in uniformly applying multiple film layers on complex metallic surfaces and accurately capturing diverse operational parameters.This work reports a multi-sensor design and multi-layer additive manufacturing process targeting spherical metallic substrates.The proposed high-temperature dip-coating and self-leveling fabrication process achieves high-temperature thin-film coatings with excellent uniformity,high-temperature electrical insulation,and adhesion properties.The fabricated Ag/Pt thin film thermocouple arrays and a heat flux sensor exhibit a maximum temperature resistance of up to 960℃,with thermoelectric potential outputs and hightemperature resistance closely mirroring those of wire-based Ag/Pt thermocouples.Harsh environmental testing was conducted using high-power lasers and a flame gun.The results show that the array of thin-film conformal thermocouples more accurately reflected temperature changes at different points on a spherical surface.The heat flux sensors achieve responses within 95 ms and with-stand environments with heat fluxes over 1.2 MW/m^(2).The proposed multi-sensor design and fabrication method offers promising monitoring applications in harsh environments,including aerospace and nuclear power. 展开更多
关键词 Conformal thin-film sensor Metallic spherical surfaces Multi-sensor perception Harsh environments Additive manufacturing
原文传递
A new technical approach for real-time tensile strength testing of high-temperature granite based on micro-tensile testing technology
14
作者 Xianzhong Li Yinnan Tian +3 位作者 Zhenhua Li Shuai Heng Xiaodong Zhang Bing Liu 《International Journal of Mining Science and Technology》 2025年第8期1323-1339,共17页
The tensile strength of rocks under real-time high-temperatures is essential for enhanced geothermal system development.However,the complex occurrence and deep burial of hot dry rocks limit the quantity and quality of... The tensile strength of rocks under real-time high-temperatures is essential for enhanced geothermal system development.However,the complex occurrence and deep burial of hot dry rocks limit the quantity and quality of standard samples for mechanical testing.This paper compared the tensile strengths obtained from Brazilian splitting tests on standard samples(with a diameter of 50 mm and a thickness of 25 mm)and micro-tensile samples(with a diameter of 50 mm and a thickness of 25 mm)of two types of granites.A power-law size effect model was established between the two sets of data,validating the reliability of the testing method.Then,miniature Brazilian splitting under real-time high-temperature,combined with X-ray diffraction(XRD)revealed temperature-dependent strength variations and microstructural damage mechanisms.The results show that:(1)The comparison error between the tensile strength obtained by the fitting model and that of the measured standard samples was less than 6%.(2)In real-time high-temperature conditions,tensile strength of granite exhibited non-monotonic behavior,increasing below 300°C before decreasing,with sharp declines at 400–500°C and 600–700°C.(3)Thermal damage stems from the differences in the high-temperature behavior of minerals,including dehydration,phase transformation,and differential expansion. 展开更多
关键词 Dry hot rock development Real-time high-temperature tensile strength Micro-tensile testing high-temperature microscopic mechanism Size effect
在线阅读 下载PDF
High-temperature solid lubrication applications of Transition Metal Dichalcogenides(TMDCs)MX_(2):A review
15
作者 Mohan Li Quan Zhou +2 位作者 Mingmei Cao Zheng Zhou Xiaoying Liu 《Nano Materials Science》 2025年第4期409-423,共15页
With the rapid advancement of science and technology,along with an increasing global focus on space exploration,there is a growing concern for addressing friction and wear issues in surface coatings for components ope... With the rapid advancement of science and technology,along with an increasing global focus on space exploration,there is a growing concern for addressing friction and wear issues in surface coatings for components operating in high-temperature environments within the aerospace sector.However,typical high-temperature coatings currently face challenges in effectively integrating excellent oxidation resistance,wear resistance,and lubrication properties in high-temperature settings.Studies have demonstrated the significant potential of Transition Metal Dichalcogenides(TMDCs)as lubricant additives in high-temperature lubrication,attributable to their distinctive crystal structures.Thus,this review concentrates on the compositional design of individual MX_(2)-type(M=W,Mo,Nb,Ta;X=S,Se)TMDCs(molybdenum disulfide(MoS_(2)),tungsten disulfide(WS2),niobium diselenide(NbSe_(2)),molybdenum diselenide(MoSe_(2)),tungsten diselenide(WSe_(2)))and their composites,including inorganic oxygen-containing sulfides,and explores the utilization of TMDCs in self-lubricating coatings.Furthermore,conventional preparation methods(mechanical exfoliation,liquid-phase ultrasonic exfoliation,chemical vapour deposition)for synthesizing TMDCs are outlined.Finally,an analysis of the lubrication mechanism of MX_(2)-type TMDCs is provided,along with future directions for enhancing the high-temperature lubrication performance of composite coatings. 展开更多
关键词 TMDCs high-temperature LUBRICATION Preparation technique
在线阅读 下载PDF
Focus on the catalysts to resist the phosphate poisoning in high-temperature proton exchange membrane fuel cells
16
作者 Liyuan Gong Li Tao +2 位作者 Lei Wang Xian-Zhu Fu Shuangyin Wang 《Chinese Journal of Catalysis》 2025年第1期155-176,共22页
Investigating highly effective electrocatalysts for high-temperature proton exchange membrane fuel cells(HT-PEMFC)requires the resistance to phosphate acid(PA)poisoning at cathodic oxygen reduction reaction(ORR).Recen... Investigating highly effective electrocatalysts for high-temperature proton exchange membrane fuel cells(HT-PEMFC)requires the resistance to phosphate acid(PA)poisoning at cathodic oxygen reduction reaction(ORR).Recent advancements in catalysts have focused on alleviating phosphoric anion adsorption on Pt-based catalysts with modified electronic structure or catalytic interface and developing Fe-N-C based catalysts with immunity of PA poisoning.Fe-N-C-based catalysts have emerged as promising alternatives to Pt-based catalysts,offering significant potential to overcome the characteristic adsorption of phosphate anion on Pt.An overview of these developments provides insights into catalytic mechanisms and facilitates the design of more efficient catalysts.This review begins with an exploration of basic poisoning principles,followed by a critical summary of characterization techniques employed to identified the underlying mechanism of poisoning effect.Attention is then directed to endeavors aimed at enhancing the HT-PEMFC performance by well-designed catalysts.Finally,the opportunities and challenges in developing the anti-PA poisoning strategy and practical HT-PEMFC is discussed.Through these discussions,a comprehensive understanding of PA-poisoning bottlenecks and inspire future research directions is aim to provided. 展开更多
关键词 Fuel cell high-temperature Phosphate acid poisoning Activitydegradation Electrocatalystdesign
在线阅读 下载PDF
A secondary high-temperature precursor of the θ'-phase in Al-Cu-(Sc) alloys
17
作者 J.Yan X.K.Xiong +3 位作者 C.L.Wu W.Q.Ming P.Xie J.H.Chen 《Journal of Materials Science & Technology》 2025年第9期55-66,共12页
The Al-Cu alloy is a historical model alloy system in the physical metallurgy of engineering aluminum al-loys.Nevertheless,a few fundamental phenomena of phase transformation occurring in this simple alloy are still n... The Al-Cu alloy is a historical model alloy system in the physical metallurgy of engineering aluminum al-loys.Nevertheless,a few fundamental phenomena of phase transformation occurring in this simple alloy are still not adequately understood.Among all,for instance,the formation mechanisms of its key harden-ingθ'-phase remain mysterious.There is strong evidence thatθ'-precipitates can form from a different high-temperature precipitation pathway,while their formation mechanism via the conventional pathway well-known since 1938 remains to be clarified.Using state-of-the-art electron microscopy,here we report a secondary high-temperature precipitation pathway ofθ'-precipitates.It is demonstrated that led by a secondary high-temperature precursor,namedθ'_(S-HTP),very fineθ'-precipitates can form in the unde-formed bulk Al-Cu alloys at elevated temperatures(≥250℃).Interestingly is that with Sc-microalloying the surviving rate of meta-stableθ'_(S-HTP) precipitates increases drastically and the formedθ'-precipitates become much finer,significantly enhancing the alloys’strength and thermal stability.It is also revealed that aθ'_(S-HTP) precipitate can genetically evolve into aθ'-precipitate without having to change its mor-phology and orientation.Our study provides new insights into understanding the industry bulk alloys’microstructures and properties. 展开更多
关键词 Aluminum alloy Phase transformation high-temperature precipitation Electron microscopy Strength
原文传递
Improved unified dislocation density-based constitutive model for high-temperature deformation and dynamic recrystallization behaviors of GH4698 superalloy
18
作者 Pei-zhi YAN Dong-xu WEN +4 位作者 Qi-feng DING Liang HUANG Xiao-li YANG Zhi-cheng ZHANG Jian-jun LI 《Transactions of Nonferrous Metals Society of China》 2025年第11期3778-3794,共17页
The high-temperature deformation and dynamic recrystallization(DRX)behaviors of GH4698 superalloy were investigated via hot compression tests,and an improved unified dislocation density-based constitutive model was es... The high-temperature deformation and dynamic recrystallization(DRX)behaviors of GH4698 superalloy were investigated via hot compression tests,and an improved unified dislocation density-based constitutive model was established.The results indicate that with the temperature decreasing or the strain rate increasing,the flow stress increases and the DRX fraction decreases.However,as the strain rate increases from 1 to 10 s^(-1),rapid dislocation multiplication and deformation heat accelerate the DRX nucleation,which further increases the DRX fraction.Discontinuous DRX nucleation is the dominant DRX nucleation mechanism,and continuous DRX nucleation mainly occurs under low strain rates.For the developed improved unified dislocation density-based constitutive model,the correlation coefficient,average absolute relative error,and root mean square error between the measured and predicted stresses are 0.994,7.32%and 10.8 MPa,respectively.Meanwhile,the correlation coefficient between the measured and predicted DRX fractions is 0.976.These indicate that the developed model exhibits high accuracy in predicting the high-temperature deformation and DRX behaviors of GH4698 superalloy. 展开更多
关键词 Ni-based superalloy constitutive model high-temperature deformation dynamic recrystallization
在线阅读 下载PDF
High-temperature strength of gel casting silica-based ceramic core
19
作者 Hai-tian Zhang Yan Liu +5 位作者 Cheng-dong Wang Zhong-liang Lu Kai Miao Sai Li Yu Han Di-chen Li 《China Foundry》 2025年第2期128-138,共11页
Considering the fracture problem of the silica-based ceramic core in the integrated casting of hollow turbine blades during directional solidification,the influence of various whiskers,including silicon carbide whiske... Considering the fracture problem of the silica-based ceramic core in the integrated casting of hollow turbine blades during directional solidification,the influence of various whiskers,including silicon carbide whiskers,silicon nitride whiskers,and mullite whiskers,on the high-temperature strength of the silica-based ceramic core was investigated.Additionally,the formation of microstructure morphology and phase structure was analyzed.Research results show that silicon carbide whiskers can reduce the microcracks caused by the shrinkage of cristobalite.During the sintering process,some of the silicon carbide whiskers oxidize and react with aluminum powder to form mullite,which can improve the high-temperature strength of the ceramic cores.When the content of silicon carbide whiskers is 3wt.%,the high-temperature bending strength of the cores reaches the maximum value of 21 MPa.Silicon nitride whiskers decompose in a high-temperature environment and react with aluminum powder in the matrix material to form mullite whiskers.When the content of silicon nitride whiskers is 5wt.%,the high-temperature bending strength of the cores reaches 20 MPa.By adding mullite whiskers,a structure of cristobalite wrapped mullite whiskers can be formed to achieve toughening.When the content of mullite whiskers is 4wt.%,the high-temperature bending strength can reach 17.2 MPa.By comparing the performance of silicon carbide whiskers,silicon nitride whiskers,and mullite whiskers,along with conducting slurry viscosity tests and casting experiments,it is determined that a ceramic slurry containing 4wt.%mullite whiskers is the most suitable for making the cores used in the integrated casting of hollow turbine blades. 展开更多
关键词 hollow turbine blades ceramic core GEL-CASTING high-temperature strength WHISKER
在线阅读 下载PDF
Isostructural Transition of Zr_(0.7)Hf_(0.15)Nb_(0.15)Co_(0.6)Cu_(0.15)Ni_(0.25) Alloy for Isotope Trapping Minimization and High-Temperature Durability Enhancement
20
作者 Jiacheng Qi Xinyi Zhang +10 位作者 Binkai Yu Xuezhang Xiao Fei Chu Tiao Ying Xingwen Feng Jiangfeng Song Yan Shi Huaqin Kou Changan Chen Wenhua Luo Lixin Chen 《Energy & Environmental Materials》 2025年第4期250-258,共9页
The launch of International Thermonuclear Experimental Reactor project paves the way to wide adoption of DT fusion energy as future energy source.Efficient fuel cycle to minimize strategic tritium inventory proves cru... The launch of International Thermonuclear Experimental Reactor project paves the way to wide adoption of DT fusion energy as future energy source.Efficient fuel cycle to minimize strategic tritium inventory proves crucial for commercially viable fusion technologies.ZrCo alloy is considered as a promising candidate for fast isotope handling.However,cycling degradation caused by hydrogen-induced disproportionation results in severe tritium trapping,thus impeding its practical application.Herein,an isostructural transition is successfully constructed with low hysterisis,ameliorated plateau flatness of pressure-composition isotherms and improved high-temperature durability for hydrogen trapping minimization.Specifically,the optimal Zr_(0.7)Hf_(0.15)Nb_(0.15)Co_(0.6)Cu_(0.15)Ni_(0.25) alloy adopts Hf-Nb and Cu-Ni as Zr and Co side doping elements,exhibiting substantial thermodynamic destabilization with nearly 90℃ reduction of delivery temperature,and significant kinetic promotion with a threefold lower energy barrier.More importantly,both hydrogen utilization and cycling retention of optimal alloy are increased by about twenty times compared with pristine alloy after 100 cycles at 500℃.Minimized disproportionation driving force from both isostructural transition and suppressed 8e hydrogen occupation realizes full potential of optimal alloy.This work demonstrates the effectiveness of combining isostructural transformation and high-temperature durability improvement to enhance the hydrogen utilization of ZrCo-based alloys and other hydrogen storage materials. 展开更多
关键词 high-temperature durability hydrogen trapping isostructural phase transition ZrCo-based alloys
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部