期刊文献+
共找到918,081篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of Substrate Micro-arc Oxidation Pretreatment on Microstructure and High-Temperature Oxidation Resistance of Si-Cr-Ti-Zr Coating on Ta12W Alloy
1
作者 Yang Fan Chang Jianxiu +2 位作者 Wang Xin Li Hongzhan Yan Peng 《稀有金属材料与工程》 北大核心 2026年第1期92-104,共13页
To mitigate the impact of interdiffusion reactions between the silicide slurry and Ta12W alloy substrate during vacuum sintering process on the oxidation resistance of the silicide coating,a micro-arc oxidation pretre... To mitigate the impact of interdiffusion reactions between the silicide slurry and Ta12W alloy substrate during vacuum sintering process on the oxidation resistance of the silicide coating,a micro-arc oxidation pretreatment was employed to construct a Ta_(2)O_(5)ceramic layer on the Ta12W alloy surface.Subsequently,a slurry spraying-vacuum sintering method was used to prepare a Si-Cr-Ti-Zr coating on the pretreated substrate.Comparative studies were conducted on the microstructure,phase composition,and isothermal oxidation resistance(at 1600℃)of the as-prepared coatings with and without the micro-arc oxidation ceramic layer.The results show that the Ta_(2)O_(5)layer prepared at 400 V is more continuous and has smaller pores than that prepared at 350 V.After microarc oxidation pretreatment,the Si-Cr-Ti-Zr coating on Ta12W alloy consists of three distinct layers:an upper layer dominated by Ti_(5)Si_(3),Ta_(5)Si_(3),and ZrSi;a middle layer dominated by TaSi_(2);a coating/substrate interfacial reaction layer dominated by Ta_(5)Si_(3).Both the Si-Cr-Ti-Zr coatings with and without the Ta_(2)O_(5)ceramic layer do not fail after isothermal oxidation at 1600℃for 5 h.Notably,the addition of the Ta2O5 ceramic layer reduces the high-temperature oxidation rate of the coating. 展开更多
关键词 tantalum-tungsten alloy silicide coating micro-arc oxidation reaction formation mechanism high-temperature oxidation
原文传递
High-temperature oxidation resistance of TiB_(2)coatings on molybdenum produced by molten salt electrophoretic deposition
2
作者 Qian Kou Chuntao Ge +6 位作者 Yanlu Zhou Wenjuan Qi Junjie Xu Weiliang Jin Jun Zhang Hongmin Zhu Saijun Xiao 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期282-291,共10页
TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing Ti... TiB_(2)coatings can significantly enhance the high-temperature oxidation resistance of molybdenum,which would broaden the application range of molybdenum and alloys thereof.However,traditional methods for preparing TiB_(2)coatings have disadvantages such as high equipment costs,complicated processes,and highly toxic gas emissions.This paper proposes an environmentally friendly method,which requires inexpensive equipment and simple processing,for preparing TiB_(2)coating on molybdenum via electrophoretic deposition within Na3AlF6-based molten salts.The produced TiB_(2)layer had an approximate thickness of 60μm and exhibited high density,outstanding hardness(38.2 GPa)and robust adhesion strength(51 N).Additionally,high-temperature oxidation experiments revealed that,at900℃,the TiB_(2)coating provided effective protection to the molybdenum substrate against oxidation for 3 h.This result indicates that the TiB_(2)coating prepared on molybdenum using molten salt electrophoretic deposition possesses good high-temperature oxidation resistance. 展开更多
关键词 molten salt electrophoretic deposition MOLYBDENUM TiB_(2)coating high-temperature oxidation resistance
在线阅读 下载PDF
3D printed high-temperature ceramic conformal array antenna:Design,analysis,manufacturing,and testing
3
作者 Peng Li Ruibo Li +5 位作者 Zijiao Fan Jiujiu Han Guangda Ding Qunbiao Wang Wanye Xu Paolo Rocca 《Defence Technology(防务技术)》 2026年第1期340-353,共14页
In this study,the design,analysis,manufacturing,and testing of a 3D-printed conformal microstrip array antenna for high-temperature environments is presented.3D printing technology is used to fabricate a curved cerami... In this study,the design,analysis,manufacturing,and testing of a 3D-printed conformal microstrip array antenna for high-temperature environments is presented.3D printing technology is used to fabricate a curved ceramic substrate,and laser sintering and microdroplet spraying processes are used to add the conductive metal on the curved substrate.The problems of gain loss,bandwidth reduction,and frequency shift caused by high temperatures are addressed by using a proper antenna design,with parasitic patches,slots,and metal resonant cavities.The antenna prototype is characterized by the curved substrates and the conductive metals for the power dividers,the patch,and the ground plane;its performance is examined up to a temperature of 600℃in a muffle furnace and compared with the results from the numerical analysis.The results show that the antenna can effectively function at 600℃and even higher temperatures. 展开更多
关键词 Ceramic antenna Conformal array high-temperature environment 3D printing High gain and wide band
在线阅读 下载PDF
Improved unified dislocation density-based constitutive model for high-temperature deformation and dynamic recrystallization behaviors of GH4698 superalloy
4
作者 Pei-zhi YAN Dong-xu WEN +4 位作者 Qi-feng DING Liang HUANG Xiao-li YANG Zhi-cheng ZHANG Jian-jun LI 《Transactions of Nonferrous Metals Society of China》 2025年第11期3778-3794,共17页
The high-temperature deformation and dynamic recrystallization(DRX)behaviors of GH4698 superalloy were investigated via hot compression tests,and an improved unified dislocation density-based constitutive model was es... The high-temperature deformation and dynamic recrystallization(DRX)behaviors of GH4698 superalloy were investigated via hot compression tests,and an improved unified dislocation density-based constitutive model was established.The results indicate that with the temperature decreasing or the strain rate increasing,the flow stress increases and the DRX fraction decreases.However,as the strain rate increases from 1 to 10 s^(-1),rapid dislocation multiplication and deformation heat accelerate the DRX nucleation,which further increases the DRX fraction.Discontinuous DRX nucleation is the dominant DRX nucleation mechanism,and continuous DRX nucleation mainly occurs under low strain rates.For the developed improved unified dislocation density-based constitutive model,the correlation coefficient,average absolute relative error,and root mean square error between the measured and predicted stresses are 0.994,7.32%and 10.8 MPa,respectively.Meanwhile,the correlation coefficient between the measured and predicted DRX fractions is 0.976.These indicate that the developed model exhibits high accuracy in predicting the high-temperature deformation and DRX behaviors of GH4698 superalloy. 展开更多
关键词 Ni-based superalloy constitutive model high-temperature deformation dynamic recrystallization
在线阅读 下载PDF
Electromagnetic equivalent physical model for high-speed aircraft radomes considering high-temperature effects
5
作者 JI Jianmin WANG Wei +3 位作者 YIN Kai WANG Kaibin CHEN Bo YU Huilong 《Journal of Systems Engineering and Electronics》 2025年第6期1453-1464,共12页
During actual high-speed flights,the electromagnetic(EM)properties of aircraft radomes are influenced by dielectric temperature drift,leading to substantial drift in the boresight errors(BSEs)from their room temperatu... During actual high-speed flights,the electromagnetic(EM)properties of aircraft radomes are influenced by dielectric temperature drift,leading to substantial drift in the boresight errors(BSEs)from their room temperature values.However,applying thermal loads to the radome during ground-based EM simulation tests is challenging.This paper presents an EM equivalent physical model(EEPM)for high-speed aircraft radomes that account for the effects of dielectric temperature drift.This is achieved by attaching dielectric slices of specific thicknesses to the outer surface of a room-temperature radome(RTR)to simulate the increase in electrical thickness resulting from high temperatures.This approach enables accurate simulations of the BSEs of high-temperature radomes(HTRs)under high-speed flight conditions.An application example,supported by full-wave numerical calculations and physical testing,demonstrates that the EEPM exhibits substantial improvement in approximating the HTR compared to the RTR,facilitating precise simulations of the BSEs of HTRs during high-speed flights.Overall,the proposed EEPM is anticipated to considerably enhance the alignment between the ground-based simulations of high-speed aircraft guidance systems and their actual flight conditions. 展开更多
关键词 high-speed aircraft RADOME dielectric temperature drift boresight error(BSE) electromagnetic equivalent physical model(EEPM)
在线阅读 下载PDF
High-temperature flow behavior modeling of 2099 alloy considering strain effects 被引量:2
6
作者 张飞 沈健 +4 位作者 闫晓东 孙建林 孙晓龙 杨银 刘勇 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第3期798-805,共8页
Isothermal compression tests in a wide range of temperatures (300-500 ℃) and strain rates (0.001-10 s^-1), were performed on 2099 alloy to reveal the hot deformation characteristics. In order to give a precise pr... Isothermal compression tests in a wide range of temperatures (300-500 ℃) and strain rates (0.001-10 s^-1), were performed on 2099 alloy to reveal the hot deformation characteristics. In order to give a precise prediction of flow behavior, the obtained experimental data were modified by friction and temperature correction and then employed to derive the constitutive modeling. The effects of the temperature and strain rate on hot deformation behavior can be expressed by Zener-Hollomon parameter including Arrhenius term. Furthermore, the influence of strain was incorporated in the constitutive analysis by considering the effect of strain on material constants (i.e. a, n, Q and A). Consequently, the flow stress curves predicted by the developed modeling show a good agreement with the corrected ones, which indicates that the developed constitutive modeling could give an accurate and precise prediction for the flow stress of 2099 alloy. 展开更多
关键词 2099 alloy constitutive modeling compensation of strain flow stress
在线阅读 下载PDF
High-temperature fracture behavior of MnS inclusions based on GTN model 被引量:6
7
作者 Xin-gang Liu Can Wang +1 位作者 Qing-feng Deng Bao-feng Guo 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2019年第9期941-952,共12页
The influence of the MnS plastic inclusion on the accumulation of internal damage was considered, and the Gurson– Tvergaard–Needleman (GTN) model was calibrated based on the finite element inverse method and image a... The influence of the MnS plastic inclusion on the accumulation of internal damage was considered, and the Gurson– Tvergaard–Needleman (GTN) model was calibrated based on the finite element inverse method and image analysis method using ABAQUS and GTN models. The modified GTN damage model was used to simulate the initiation and propagation of cracks in an as-cast 304 stainless steel with MnS inclusions at 900 C. The simulation results agreed well with the experimental results, indicating that the model can be effectively applied to examine the high-temperature fracture behavior of MnS inclusions. The simulation and high-temperature tensile test results revealed that MnS inclusions increased the number of holes initiation and the probability of hole polymerization, reduced the crack propagation resistance, accelerated the occurrence of material fracture behavior, and were closely related to the stress state at high temperatures. When the stress triaxiality was low, the plastic strain in the metal matrix was high, and the MnS plastic inclusions accelerated the polymerization of the pores, making metal fracture failure more likely. On the other hand, when the stress triaxiality was high, the stress state in the metal matrix was biased to the tensile state, the plastic strain in the metal matrix was low, and the influence of MnS plastic inclusions on the fracture behavior was not evident. 展开更多
关键词 MNS inclusion GTN model Tension high-temperature fracture behavior CRACK INITIATION CRACK propagation Stress
原文传递
Combing the Entropy Weight Method with Fuzzy Mathematics for Assessing the Quality and Post-Ripening Mechanism of High-Temperature Daqu during Storage 被引量:1
8
作者 YANG Junlin YANG Shaojuan +8 位作者 WU Cheng YIN Yanshun YOU Xiaolong ZHAO Wenyu ZHU Anran WANG Jia HU Feng HU Jianfeng WANG Diqiang 《食品科学》 北大核心 2025年第9期48-62,共15页
This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standar... This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu. 展开更多
关键词 microbial community high-temperature Daqu comprehensive quality evaluation entropy weight method maturation process
在线阅读 下载PDF
High-Temperature Oxidation Property and Corrosion and Wear Resistance of Laser Cladding Co-based Coatings on Pure Zr Surface 被引量:1
9
作者 Xia Chaoqun Yang Bo +3 位作者 Liu Shuguang Zhang Bo Zhong Hua Li Qiang 《稀有金属材料与工程》 北大核心 2025年第6期1397-1409,共13页
Co-based alloy coating was prepared on Zr alloy using laser melting and cladding technique to study the difference in the high-temperature oxidation behavior between pure metal Co coatings and Co-T800 alloy coatings,a... Co-based alloy coating was prepared on Zr alloy using laser melting and cladding technique to study the difference in the high-temperature oxidation behavior between pure metal Co coatings and Co-T800 alloy coatings,as well as the wear resistance of the coatings.Besides,the effect of changing the laser melting process on the coatings was also investigated.The oxidation mass gain at 800–1200℃and the high-temperature oxidation behavior during high-temperature treatment for 1 h of two coated Zr alloy samples were studied.Results show that the Co coating and the Co-T800 coating have better resistance against high-temperature oxidation.After oxidizing at 1000℃for 1 h,the thickness of the oxide layer of the uncoated sample was 241.0μm,whereas that of the sample with Co-based coating is only 11.8–35.5μm.The friction wear test shows that the depth of the abrasion mark of the coated sample is only 1/2 of that of the substrate,indicating that the hardness and wear resistance of the Zr substrate are greatly improved.The disadvantage of Co-based coatings is the inferior corrosion resistance in 3.5wt%NaCl solution. 展开更多
关键词 Zr metal laser cladding Co-based coating high-temperature oxidation resistance wear resistance
原文传递
Novel entropy-stabilized spinel materials and their potential application in high-temperature industry:[(Mg_(x)Zn_((1-x)/2)Cu_((1-x)/2))(Al_(0.9)Fe_(0.1))_(2)O_(4)](x=0.5,0.6,0.7,and 0.8) 被引量:1
10
作者 Bo-Kang Li Lv-Ping Fu +2 位作者 Hua-Zhi Gu Ao Huang Shuang Yang 《Rare Metals》 2025年第8期5844-5858,共15页
High-temperature industries,as the primary consumers of energy,are greatly concerned with energy savings.Designing refractory linings with low thermal conductivity to reduce heat dissipation through high-temperature f... High-temperature industries,as the primary consumers of energy,are greatly concerned with energy savings.Designing refractory linings with low thermal conductivity to reduce heat dissipation through high-temperature furnace linings is a critical concern.In this study,a series of novel entropy-stabilized spinel materials are reported,and their potential applications in high-temperature industries are investigated.XRD and TEM results indicate that all materials possess a cubic spinel crystal structure with the■space group.Furthermore,these materials exhibit good phase stability at high temperatures.All entropy-stabilized spinel aggregates demonstrated high refractoriness(>1800℃)and a high load softening temperature(>1700℃).The impact of configurational entropy on the properties of entropy-stabilized spinel materials was also studied.As configurational entropy increased,the thermal conductivity of the entropy-stabilized spinel decreased,while slag corrosion resistance deteriorated.For the entropy-stabilized spinel with a configurational entropy value of 1.126R,it showed good high-temperature stability,reliable resistance to slag attack,and a low thermal conductivity of 2.776 W·m^(-1)·K^(-1)at 1000℃. 展开更多
关键词 Entropy-stabilized spinel Thermal conductivity high-temperature performance Configurational entropy
原文传递
High-Temperature Overpressure Basin Reservoir and Pressure Prediction Model 被引量:1
11
作者 Aiqun Liu Jiaxiong Zhou +3 位作者 Dianyuan Chen Bentian Ou Caiwei Fan Wentuo Li 《Open Journal of Marine Science》 2015年第3期265-272,共8页
Yinggehai Basin locates in the northern South China Sea. Since the Cainozoic Era, crust has several strong tension: the basin subsides quickly, the deposition is thick, and the crust is thin. In the central basin, for... Yinggehai Basin locates in the northern South China Sea. Since the Cainozoic Era, crust has several strong tension: the basin subsides quickly, the deposition is thick, and the crust is thin. In the central basin, formation pressure coefficient is up to 2.1;Yinggehai Basin is a fomous high-temperature overpressure basin.YinggehaiBasin’s in-depth, especially high-temperature overpressure stratum has numerous large-scale exploration goals. As a result of high-temperature overpressure basin’s perplexing geological conditions and geophysical analysis technical limitations, this field of gas exploration can’t be carried out effectively, which affects the process of gas exploration seriously. A pressure prediction model of the high-temperature overpressure basin in different structural positions is summed up by pressure forecast pattern research in recent years, which can be applied to target wells pre-drilling pressure prediction and post drilling pressure analysis of Yinggehai Basin. The model has small erroneous and high rate of accuracy. The Yinggehai Basin A well drilling is successful in 2010, and gas is discovered in high-temperature overpressure stratum, which proved that reservoir can be found in high-temperature overpressure stratum. It is a great theoretical breakthrough of reservoir knowledge. 展开更多
关键词 high-temperature OVERPRESSURE Yinggehai BASIN PRESSURE PREDICTION model RESERVOIR THEORY
在线阅读 下载PDF
Petrology and phase equilibrium modeling of sapphirine + quartz assemblage from the Napier Complex, East Antarctica: Diagnostic evidence for Neoarchean ultrahigh-temperature metamorphism 被引量:5
12
作者 Hisako Shimizu Toshiaki Tsunogae M.Santosh 《Geoscience Frontiers》 SCIE CAS CSCD 2013年第6期655-666,共12页
A synthesis of the petrological characters of granulite facies rocks that contain equilibrium sapphirine + quartz assemblage from two localities (Tonagh Island (TI) and Priestley Peak (PP)) in the Napier Comple... A synthesis of the petrological characters of granulite facies rocks that contain equilibrium sapphirine + quartz assemblage from two localities (Tonagh Island (TI) and Priestley Peak (PP)) in the Napier Complex,East Antarctica,provides unequivocal evidence for extreme crustal metamorphism possibly associated with the collisional orogeny during Neoarchean.The reaction microstructures associated with sapphirine + quartz vary among the samples,probably suggesting different tectonic conditions during the metamorphic evolution.Sapphirine and quartz in TI sample were probably in equilibrium at the peak stage,but now separated by corona of Grt + Sil + Opx suggesting near isobaric cooling after the peak metamorphism,whereas the Spr + Qtz + Sil + Crd + Spl assemblage replaces garnet in PP sample suggesting post-peak decompression.The application of mineral equilibrium modeling in NCKFMASHTO system demonstrated that Spr + Qtz stability is lowered down to 930 ℃ due to small Fe3+ contents in the rocks (mole Fe2O3/(FeO + Fe2O3) =0.02).The TI sample yields a peak p-T range of 950-1100 ℃ and 7.5-11 kbar,followed by cooling toward a retrograde stage of 800-950 ℃ and 8-10 kbar,possibly along a counterclockwise p-T path.In contrast,the peak condition of the PP sample shows 1000-1050 ℃ and >12 kbar,which was followed by the formation ofSpr + Qtz corona around garnet at 930-970 ℃ and 6.7-7.7 kbar,suggesting decompression possibly along a clockwise p-T trajectory.Such contrasting p-T paths are consistent with a recent model on the structural framework of the Napier Complex that correlates the two areas to different crustal blocks.The different p-T paths obtained from the two localities might reflect the difference in the tectonic framework of these rocks within a complex Neoarchean subduction/collision belt. 展开更多
关键词 Ultrahigh-temperature granulite PETROLOGY Pseudosection modeling Napier complex ANTARCTICA
在线阅读 下载PDF
In-situ high-temperature EBSD study of austenite reversion from martensite,bainite and pearlite in a high-strength steel 被引量:1
13
作者 X.L.Wang X.Y.Wang +2 位作者 Z.P.Liu Z.J.Xie C.J.Shang 《Journal of Materials Science & Technology》 2025年第14期268-280,共13页
The austenite(γ)reversely transformed from lath martensite(LM),lath bainite(LB),granular bainite(GB)and pearlite+ferrite(P+F)in a high-strength steel was studied at high temperatures using in-situ electron backscatte... The austenite(γ)reversely transformed from lath martensite(LM),lath bainite(LB),granular bainite(GB)and pearlite+ferrite(P+F)in a high-strength steel was studied at high temperatures using in-situ electron backscatter diffraction(EBSD).The memory effect of initial γ significantly affects the nucleation of the reverted γ in LM and GB structures,while a weak influence on that of LB and P+F structures.This results in a significant difference in γ grain size after complete austenitization,with the first two obtaining larger γ grains while the latter two are relatively small.Crystallographic analysis revealed that the reverted γ with acicular morphology(γA),most of which maintained the same orientation with the prior γ,dominated the reaustenitization behavior of LM and GB structures through preferential nucleation within γ grains and coalesced growth modes.Although globular reverted γ(γ_(G))with random orientation or large deviation from the prior γ can nucleate at the grain boundaries or within the grains,it is difficult for it to grow and play a role in segmenting and refining the prior γ due to the inhibition of γ_(A) coalescing.For LB and P+F structures,the nucleation rate of intragranular γ_(G) increases with increasing temperature,and always shows a random orientation.These γ_(G) grains can coarsen simultaneously with the intergranular γ_(G),ultimately playing a role in jointly dividing and refining the finalγgrains.Research also found that the differences in the effects of four different microstructures on revertedγnucleation are closely related to the variant selection of the matrix structure,as well as the content and size of cementite(θ).High density of block boundaries induced by weakening of variant selection and many fineθformed in the lath are the key to promoting LB structure to obtain more intragranular γ_(G) formation,as well as the important role of the large-sized θ in P+F structure. 展开更多
关键词 In-situ characterization high-temperature EBSD Austenite reversion CEMENTITE Nucleation and growth Crystallography
原文传递
Impact of Burial Dissolution on the Development of Ultradeep Fault-controlled Carbonate Reservoirs:Insights from High-temperature and High-pressure Dissolution Kinetic Simulation 被引量:1
14
作者 TAN Xiaolin ZENG Lianbo +6 位作者 SHE Min LI Hao MAO Zhe SONG Yichen YAO Yingtao WANG Junpeng LU Yuzhen 《Acta Geologica Sinica(English Edition)》 2025年第1期228-242,共15页
Burial dissolution is a critical diagenetic process influencing ultra-deep carbonate reservoir development and preservation.Artificial carbonate samples with different internal structures were prepared,and high-temper... Burial dissolution is a critical diagenetic process influencing ultra-deep carbonate reservoir development and preservation.Artificial carbonate samples with different internal structures were prepared,and high-temperature and highpressure dissolution kinetic simulations were conducted.The results demonstrate that the intensity of burial dissolution is controlled by temperature and pressure,while tectonic-fluid activity influences the development pattern of burial dissolution,ultimately determining the direction of its differential modification.Extensive burial dissolution is likely to occur primarily at relatively shallow depths,significantly influencing reservoir formation,preservation,modification,and adjustment.The development of faults facilitates the maintenance of the intensity of burial dissolution.The maximum intensity of burial dissolution occurs at the tips and overlap zones of faults and intersections of multiple faults.The larger the scale of the faults,the more conducive it is to the development of burial dissolution.Burial dissolution fosters the formation of fault networks characterized by enhanced reservoir capacity and permeability.Burial dissolution controlled by episodic tectonic-fluid activity is a plausible explanation for forming the Tarim Basin's ultra-deep fault-controlled“stringbead-like”reservoirs. 展开更多
关键词 burial dissolution tectonic-fluid ultra-deep carbonate reservoirs high-temperature and high-pressure dissolution kinetic simulation
在线阅读 下载PDF
In Situ Partial-Cyclized Polymerized Acrylonitrile-Coated NCM811 Cathode for High-Temperature≥100℃ Stable Solid-State Lithium Metal Batteries 被引量:1
15
作者 Jiayi Zheng Haolong Jiang +13 位作者 Xieyu Xu Jie Zhao Xia Ma Weiwei Sun Shuangke Liu Wei Xie Yufang Chen ShiZhao Xiong Hui Wang Kai Xie Yu Han Maoyi Yi Chunman Zheng Qingpeng Guo 《Nano-Micro Letters》 2025年第8期399-415,共17页
High-nickel ternary cathodes hold a great application prospect in solid-state lithium metal batteries to achieve high-energy density,but they still suffer from structural instability and detrimental side reactions wit... High-nickel ternary cathodes hold a great application prospect in solid-state lithium metal batteries to achieve high-energy density,but they still suffer from structural instability and detrimental side reactions with the solid-state electrolytes.To circumvent these issues,a continuous uniform layer polyacrylonitrile(PAN)was introduced on the surface of LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2) via in situ polymerization of acrylonitrile(AN).Furthermore,the partial-cyclized treatment of PAN(cPAN)coating layer presents high ionic and electron conductivity,which can accelerate interfacial Li+and electron diffusion simultaneously.And the thermodynamically stabilized cPAN coating layer cannot only effectively inhibit detrimental side reactions between cathode and solid-state electrolytes but also provide a homogeneous stress to simultaneously address the problems of bulk structural degradation,which contributes to the exceptional mechanical and electrochemical stabilities of the modified electrode.Besides,the coordination bond interaction between the cPAN and NCM811 can suppress the migration of Ni to elevate the stability of the crystal structure.Benefited from these,the In-cPAN-260@NCM811 shows excellent cycling performance with a retention of 86.8%after 300 cycles and superior rate capability.And endow the solid-state battery with thermal safety stability even at hightemperature extreme environment.This facile and scalable surface engineering represents significant progress in developing high-performance solid-state lithium metal batteries. 展开更多
关键词 Solid-state lithium metal battery Ni-rich cathode Interface engineering In situ partial-cyclized PAN high-temperature resistance
在线阅读 下载PDF
Hierarchical porous SiC_(nws)/SiC composites with one-dimensional oriented assemblies for high-temperature broadband wave absorption 被引量:1
16
作者 Huiying Ouyang Xiao You +6 位作者 Yuanhang Yang Meihan Ren Qiuqi Zhang Ruixiang Deng Xiangyu Zhang Jinshan Yang Shaoming Dong 《Journal of Materials Science & Technology》 2025年第11期1-10,共10页
The research on high-performance electromagnetic wave absorption materials with high-temperature and oxidative stability in extreme environments is gaining popularity.Herein,the lightweight silicon carbide nanowires(S... The research on high-performance electromagnetic wave absorption materials with high-temperature and oxidative stability in extreme environments is gaining popularity.Herein,the lightweight silicon carbide nanowires(SiC_(nws))/SiC composites are fabricated with in-situ SiC interface on one-dimensional oriented SiC_(nws)skeleton,which collaborative configuration by 3D printing and freeze casting assembly.The con-structed porous structure optimizes the impedance matching degree and scattering intensity,the maximum effective absorption bandwidth(EAB_(max))of 5.9 GHz and the minimum reflection loss(RL_(min))of−41.4 dB can be realized.Considering the inherent oxidation resistance of SiC,the composites present well-maintained absorption performance at 600℃.Even at 1100℃,the EAB_(max)of 4.9 GHz and RLmin of−30.4 dB also demonstrate the high-temperature absorption stability of the composites,indicating exceptional wave absorption properties and thermal stability.The slight attenuation can be attributed to the decrease in impedance matching capability accompanying the elevated dielectric constant.This work clarifies the impact of structure and component synergy on wave absorption behavior,and offers a novel approach to producing high-performance and high-temperature resistance ceramic-based electromagnetic wave absorption materials suitable for extreme environments. 展开更多
关键词 Electromagnetic wave absorption Porous structure INTERFACE SiC_(nws)/SiC composites high-temperature resistance
原文传递
Preparation and High-Temperature Oxidation Performance of TiC-NiCr Cermet
17
作者 Zhang Lei Huang Bensheng +4 位作者 Xie Chuandi Chen Gen Du Jiao Sun Haishen Zuo Hanyang 《稀有金属材料与工程》 北大核心 2025年第5期1194-1206,共13页
Powder metallurgy was used to fabricate TiC-NiCr cermets and the oxidation behavior at 900℃ was investigated.Results reveal that TiC-NiCr cermets have uniform structures with excellent mechanical properties,whose har... Powder metallurgy was used to fabricate TiC-NiCr cermets and the oxidation behavior at 900℃ was investigated.Results reveal that TiC-NiCr cermets have uniform structures with excellent mechanical properties,whose hardness is 65 HRC and flexural strength is 1450 MPa.The high-temperature oxidation mechanism of TiC-based cermets was investigated through an X-ray diffractometer and scanning electron microscope.The added elements Ni and Cr along with their solid solutions not only bond with the hard phase TiC to ensure the physical performance of the cermet,but also impede the internal diffusion during oxidation by forming a dense composite oxide layer,thereby enhancing the oxidation resistance.The TiC-NiCr cermet exhibits a dense protective oxide layer at 900℃ and can endure continuous oxidation for approximately 1000 h.A methodology for fabricating TiC-NiCr metal matrix composites is proposed,and their oxidation resistance is evaluated,providing a theoretical and practical basis for simultaneously enhancing the mechanical properties and oxidation resistance and reducing production costs. 展开更多
关键词 TiC-NiCr microstructure high-temperature oxidation thermodynamics and kinetics
原文传递
A thermally-cyclized electrospun GO/PAN nanofiber piezoelectric sensor for high-temperature applications
18
作者 LI Wei-dong LI Yin-hui +5 位作者 YIN Rong-yan FAN Kai GAO Fei LIANG Jian-guo LI Peng-wei BIAN Gui-bin 《新型炭材料(中英文)》 北大核心 2025年第5期1154-1168,I0051-I0057,共22页
High-temperature piezoelectric sen-sors are very important in severe environments such as fire safety,aerospace and oil drills,however,most current sensors are not heat res-istant(<300℃)and are fragile,which limit... High-temperature piezoelectric sen-sors are very important in severe environments such as fire safety,aerospace and oil drills,however,most current sensors are not heat res-istant(<300℃)and are fragile,which limits their use,especially in high-temperature environ-ments.A high-temperature resistant flexible piezoelectric film based on graphene oxide(GO)/polyacrylonitrile(PAN)composites was prepared by electrospinning and thermal treat-ment.It was packed into a micro-device,which could work continuously at 500℃.The intro-duction of GO significantly increased the mechanical properties of the PAN nanofibers because the oxygen-containing func-tional groups(electronegative groups)on the surface of the GO initiated a nucleophilic attack on the PAN molecule during heat treatment,enabling the GO to initiate the cyclization of the PAN at lower heat-treatment temperatures.In addition,the abund-ant oxygen-containing functional groups on GO acted as pro-oxidants to hasten the oxidation of PAN during heat treatment.The effects of GO content and heat treatment temperature on the properties of the nanofiber films were investigated.A GO/PAN nanofiber piezoelectric sensor heat-treated at 300℃had a 9.10 V and 2.25μA peak output,which are respectively 101.3%and 78.6%higher than those of the untreated films.Cyclic testing over 5000 cycles at 350℃confirmed the stable out-put performance of the GO/PAN nanofiber piezoelectric sensor.Furthermore,a sensor heat-treated at 400℃had a sensitivity of 1.7 V/N,which is 83.5%higher than that of an untreated one.The results show that the prepared GO/PAN nanofiber piezo-electric sensor combines high temperature resistance,high flexibility,stability and high sensitivity,and may have broad applic-ations in high temperature environments such as the aerospace and petroleum industries. 展开更多
关键词 GO/PAN nanofiber PIEZOELECTRIC high-temperature Thermal-cyclization Fully flexible
在线阅读 下载PDF
Effect of Co Content on Microstructure and Mechanical Properties of High-Entropy High-Temperature Shape Memory Alloy
19
作者 Zhao Yanchun Jin Bo +4 位作者 Feng Yuanfei Ma Huwen Yu Zhiqi Feng Li Liaw Peter K 《稀有金属材料与工程》 北大核心 2025年第1期10-16,共7页
(TiZrHf)_(50)Ni_(30)Cu_(20-x)Co_(x)(x=2,4,6,at%)high-entropy high-temperature shape memory alloys were fabricated by watercooled copper crucible in a magnetic levitation vacuum melting furnace,and the effects of Co co... (TiZrHf)_(50)Ni_(30)Cu_(20-x)Co_(x)(x=2,4,6,at%)high-entropy high-temperature shape memory alloys were fabricated by watercooled copper crucible in a magnetic levitation vacuum melting furnace,and the effects of Co content on microstructure and mechanical properties were investigated.The results indicate that the grain size of the alloy decreases with increasing the Co content.In the as-cast state,the alloy consists primarily of the B19′phase,with a trace of B2 phase.The fracture morphology is predominantly composed of the B19′phase,whereas the B2 phase is nearly absent.Increasing the Co content or reducing the sample dimensions(d)markedly enhance the compressive strength and ductility of the alloy.When d=2 mm,the(TiZrHf)_(50)Ni_(30)Cu_(14)Co_(6) alloy demonstrates the optimal mechanical properties,achieving a compressive strength of 2142.39±1.8 MPa and a plasticity of 17.31±0.3%.The compressive cyclic test shows that with increasing the compressive strain,the residual strain of the(TiZrHf)_(50)Ni_(30)Cu_(14)Co_(6) alloy increases while the recovery ability declines.The superelastic recovery capability of the alloy is continuously enhanced.The superelastic recovery rate increases from 1.36%to 2.12%,the residual strain rate rises from 1.79%to 5.52%,the elastic recovery rate ascends from 3.86%to 7.36%,while the total recovery rate declines from 74.48%to 63.20%. 展开更多
关键词 high-temperature shape memory alloy high-entropy alloy MICROSTRUCTURE mechanical property
原文传递
Microstructure and High-Temperature Oxidation Resistance of Cr-Al-Y Co-deposition Coating on TiAlNb9 Alloy Surface
20
作者 Hao Qingrui Li Yongquan +1 位作者 Li Ning Gao Yang 《稀有金属材料与工程》 北大核心 2025年第11期2739-2748,共10页
To improve the high-temperature oxidation resistance of TiAlNb9 alloy,a Cr-Al-Y co-deposition coating was prepared on the alloy surface by the pack cementation method.The microstructure of the coating was analyzed by ... To improve the high-temperature oxidation resistance of TiAlNb9 alloy,a Cr-Al-Y co-deposition coating was prepared on the alloy surface by the pack cementation method.The microstructure of the coating was analyzed by scanning electron microscope,energy dispersive spectrometer,and X-ray diffractometer,and the high-temperature oxidation properties of the substrate and coating at 1273 K were compared and studied.The results show that the Cr-Al-Y coating is about 30μm in thickness,and it has a dense structure and good film-substrate bonding.The coating includes an outer layer composed of TiCr_(2),TiCr,Ti_(4)Cr,and(Ti,Nb)Cr_(4) phases as well as an inner layer composed of Ti_(2)Al,and Nb-richγ-TiAl interdiffusion zone.The TiAlNb9 substrate forms an oxide layer composed of TiO_(2) and Al_(2)O_(3) at 1273 K.Due to its loose and porous structure,TiO_(2) oxide film cannot effectively isolate the internal diffusion of element O,resulting in continuous oxidation damage to the substrate.The Cr-Al-Y co-deposition coating forms a dense Cr_(2)O_(3) and Al_(2)O_(3) oxide layer during oxidation,effectively preventing the internal diffusion of element O and significantly improving the high-temperature oxidation resistance of the substrate alloy. 展开更多
关键词 pack cementation TiAlNb9 alloy Cr-Al-Y co-deposition coating high-temperature oxidation resistance
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部