A novel CMOS image sensor(CIS) pinned photodiode(PPD) pixel, named as O-T pixel, is proposed and investigated by TCAD simulations. Compared with the conventional PPD pixel, the proposed pixel features the overlapping ...A novel CMOS image sensor(CIS) pinned photodiode(PPD) pixel, named as O-T pixel, is proposed and investigated by TCAD simulations. Compared with the conventional PPD pixel, the proposed pixel features the overlapping gate(OG)and the temporary storage diffusing(TSD) region, based on which the several-nanosecond-level charge transfer could be achieved and the complete charge transfer from the PPD to the floating node(FD) could be realized. And systematic analyses of the influence of the doping conditions of the proposed processes, the OG length, and the photodiode length on the transfer performances of the proposed pixel are conducted. Optimized simulation results show that the total charge transfer time could reach about 5.862 ns from the photodiode to the sensed node and the corresponding charge transfer efficiency could reach as high as 99.995% in the proposed pixel with 10 μm long photodiode and 2.22 μm long OG. These results demonstrate a great potential of the proposed pixel in high-speed applications.展开更多
Complementary metal oxide semiconductor(CMOS) image sensors(CIS) are being widely used in digital video cameras, web cameras, digital single lens reflex camera(DSLR), smart phones and so on, owing to their high level ...Complementary metal oxide semiconductor(CMOS) image sensors(CIS) are being widely used in digital video cameras, web cameras, digital single lens reflex camera(DSLR), smart phones and so on, owing to their high level of integration, random accessibility, and low-power operation. It needs to be installed with the cover glass in practical applications to protect the sensor from damage, mechanical issues,and environmental conditions, which, however, limits the accuracy and usability of the sensor due to the reflection in the optical path from air-to-cover glass-to-air. In this work, the flexible 3D nanocone anti-reflection(AR) film with controlled aspect ratio was firstly employed to reduce the light reflection at air/cover glass/air interfaces by directly attaching onto the front and rear sides of the CIS cover glass.As both the front and rear sides of cover glass were coated by the AR film, the output image quality was found to be improved with external quantum efficiency increased by 7%, compared with that without AR film. The mean digital data value, root-mean-square contrast, and dynamic range are increased by45.14%, 38.61% and 57, respectively, for the output image with AR films. These results provide a novel and facile pathway to improve the CIS performance and also could be extended to rational design of other image sensors and optoelectronic devices.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61574112)。
文摘A novel CMOS image sensor(CIS) pinned photodiode(PPD) pixel, named as O-T pixel, is proposed and investigated by TCAD simulations. Compared with the conventional PPD pixel, the proposed pixel features the overlapping gate(OG)and the temporary storage diffusing(TSD) region, based on which the several-nanosecond-level charge transfer could be achieved and the complete charge transfer from the PPD to the floating node(FD) could be realized. And systematic analyses of the influence of the doping conditions of the proposed processes, the OG length, and the photodiode length on the transfer performances of the proposed pixel are conducted. Optimized simulation results show that the total charge transfer time could reach about 5.862 ns from the photodiode to the sensed node and the corresponding charge transfer efficiency could reach as high as 99.995% in the proposed pixel with 10 μm long photodiode and 2.22 μm long OG. These results demonstrate a great potential of the proposed pixel in high-speed applications.
基金financially supported by the National Natural Science Foundation of China(61474128,21503261,61504155and 61404145)Youth Innovation Fund for Interdisciplinary Research of SARI(Y526453233,141004)+2 种基金Science & Technology Commission of Shanghai Municipality(14JC1492900,14511102302,15DZ1100502)Youth Innovation Promotion Association,CAS(2013302)Development Fund for Information communication and integrated circuit technology public service platform(No.2016-14)supported by Zhangjiang Adminstrative Committee
文摘Complementary metal oxide semiconductor(CMOS) image sensors(CIS) are being widely used in digital video cameras, web cameras, digital single lens reflex camera(DSLR), smart phones and so on, owing to their high level of integration, random accessibility, and low-power operation. It needs to be installed with the cover glass in practical applications to protect the sensor from damage, mechanical issues,and environmental conditions, which, however, limits the accuracy and usability of the sensor due to the reflection in the optical path from air-to-cover glass-to-air. In this work, the flexible 3D nanocone anti-reflection(AR) film with controlled aspect ratio was firstly employed to reduce the light reflection at air/cover glass/air interfaces by directly attaching onto the front and rear sides of the CIS cover glass.As both the front and rear sides of cover glass were coated by the AR film, the output image quality was found to be improved with external quantum efficiency increased by 7%, compared with that without AR film. The mean digital data value, root-mean-square contrast, and dynamic range are increased by45.14%, 38.61% and 57, respectively, for the output image with AR films. These results provide a novel and facile pathway to improve the CIS performance and also could be extended to rational design of other image sensors and optoelectronic devices.