Embedding optical fiber sensors into composite materials offers the advantage of real-time structural monitoring.However,there is an order-of-magnitude difference in diameter between optical fibers and reinforcing fib...Embedding optical fiber sensors into composite materials offers the advantage of real-time structural monitoring.However,there is an order-of-magnitude difference in diameter between optical fibers and reinforcing fibers,and the detailed mechanism of how embedded optical fibers affect the micromechanical behavior and damage failure processes within composite materials remains unclear.This paper presents a micromechanical simulation analysis of composite materials embedded with optical fibers.By constructing representative volume elements(RVEs)with randomly distributed reinforcing fibers,the optical fiber,the matrix,and the interface phase,the micromechanical behavior and damage evolution under transverse tensile and compressive loads are explored.The study finds that the presence of embedded optical fibers significantly influences the initiation and propagation of microscopic damage within the composites.Under transverse tension,the fiber-matrix interface cracks first,followed by plastic cracking in the matrix surrounding the fibers,forming micro-cracks.Eventually,these cracks connect with the debonded areas at the fiber-matrix interface to form a dominant crack that spans the entire model.Under transverse compression,plastic cracking first occurs in the resin surrounding the optical fibers,connecting with the interface debonding areas between the optical fibers and the matrix to form two parallel shear bands.Additionally,it is observed that the strength of the interface between the optical fiber and the matrix critically affects the simulation results.The simulated damage morphologies align closely with those observed using scanning electron microscopy(SEM).These findings offer theoretical insights that can inform the design and fabrication of smart composite materials with embedded optical fiber sensors for advanced structural health monitoring.展开更多
The microscopic global nucleon–nucleus optical model potential(OMP)proposed by Whitehead,Lim,and Holt,the WLH potential(Whitehead et al.,Phys Rev Lett 127:182502,2021),which was constructed in the framework of many-b...The microscopic global nucleon–nucleus optical model potential(OMP)proposed by Whitehead,Lim,and Holt,the WLH potential(Whitehead et al.,Phys Rev Lett 127:182502,2021),which was constructed in the framework of many-body per-turbation theory with state-of-the-art nuclear interactions from chiral effective field theory(EFT),was tested with(p,d)transfer reactions calculated using adiabatic wave approximation.The target nuclei included both stable and unstable nuclei,and the incident energies reached 200 MeV.The results were compared with experimental data and predictions using the phenomenological global optical potential of Koning and Delaroche,the KD02 potential.Overall,we found that the micro-scopic WLH potential described the(p,d)reaction angular distributions similarly to the phenomenological KD02 potential;however,the former was slightly better than the latter for radioactive targets.On average,the obtained spectroscopic factors(SFs)using both microscopic and phenomenological potentials were similar when the incident energies were below approxi-mately 120 MeV.However,their difference tended to increase at higher incident energies,which was particularly apparent for the doubly magic target nucleus 40Ca.展开更多
Since the beginning of the twenty-first century,several countries have made great efforts to develop space remote sensing for building a high-resolution earth observation system.Under the great attention of the govern...Since the beginning of the twenty-first century,several countries have made great efforts to develop space remote sensing for building a high-resolution earth observation system.Under the great attention of the government and the guidance of the major scientific and technological project of the high-resolution earth observation system,China has made continuous breakthroughs and progress in high-resolution remote sensing imaging technology.The development of domestic high-resolution remote sensing satellites shows a vigorous trend,and consequently,a relatively stable and perfect high-resolution earth observation system has been formed.The development of high-resolution remote sensing satellites has greatly promoted and enriched modern mapping technologies and methods.In this paper,the development status,along with mapping modes and applications of China’s high-resolution remote sensing satellites are reviewed,and the development trend in high-resolution earth observation system for global and ground control-free mapping is discussed,providing a reference for the subsequent development of high-resolution remote sensing satellites in China.展开更多
In this work, we introduce position-resolved surface characterization and nanofabrication using an optical microscope(OM) combined with a nanopipette-based quartz tuning fork atomic force microscope(nanopipette/QTF-AF...In this work, we introduce position-resolved surface characterization and nanofabrication using an optical microscope(OM) combined with a nanopipette-based quartz tuning fork atomic force microscope(nanopipette/QTF-AFM) system. This system is used to accurately determine substrate position and nanoscale phenomena under ambient conditions. Solutions consisting of 5 nm Au nanoparticles, nanowires, and polydimethylsiloxane(PDMS) are deposited onto the substrate through the nano/microaperture of a pulled pipette. Nano/microscale patterning is performed using a nanopipette/QTF-AFM, while position is resolved by monitoring the substrate with a custom OM. With this tool, one can perform surface characterization(force spectroscopy/microscopy) using the quartz tuning fork(QTF) sensor. Nanofabrication is achieved by accurately positioning target materials on the surface, and on-demand delivery and patterning of various solutions for molecular architecture.展开更多
Phase is one of the most important parameters of electromagnetic waves. It is the phase distribution that determines the propagation, reflection, refraction, focusing, divergence, and coupling features of light, and f...Phase is one of the most important parameters of electromagnetic waves. It is the phase distribution that determines the propagation, reflection, refraction, focusing, divergence, and coupling features of light, and further affects the intensity distribution. In recent years, the designs of surface plasmon polariton (SPP) devices have mostly been based on the phase modulation and manipulation. Here we demonstrate a phase sensitive multi-parameter heterodyne scanning near-field opti- cal microscope (SNOM) with an aperture probe in the visible range, with which the near field optical phase and amplitude distributions can be simultaneously obtained. A novel architecture combining a spatial optical path and a fiber optical path is employed for stability and flexibility. Two kinds of typical nano-photonic devices are tested with the system. With the phase-sensitive SNOM, the phase and amplitude distributions of any nano-optical field and localized field generated with any SPP nano-structures and irregular phase modulation surfaces can be investigated. The phase distribution and the interference pattern will help us to gain a better understanding of how light interacts with SPP structures and how SPP waves generate, localize, convert, and propagate on an SPP surface. This will be a significant guidance on SPP nano-structure design and optimization.展开更多
Optical microscopes with polishing equipment possess high performance/cost ratio for refractories industry. Here, the preparation of polishing sections of refractory materials and products and their observation under ...Optical microscopes with polishing equipment possess high performance/cost ratio for refractories industry. Here, the preparation of polishing sections of refractory materials and products and their observation under microscopes were introduced in detail. The observation of microstructures helps to improve and optimize production process. Optical microscopes can observe (1) homogenous or inhomogeneous composition distribution to improve mixing intensity; (2) coarse grains contact or not and contacted grain edges broken or intact to adjust the pressing parameters to avoid overpressure ; ( 3 ) the filling degree of components to optimize the particle size distribution; (4) the sintering necks and bridges and matrix shrinkage status to adjust sintering intensity or sintering atmosphere; (5) the crack edge in round or sharp to know when the cracks formed ( before or after entering sintering zone) and take countermeasures ; (6) used refractories to find the wear mechanism.展开更多
The principle of laser optical feedback microscope was presented and demonstrated. Three methods to advance the vertical resolution of laser optical feedback microscope were experimentally studied. The first one is to...The principle of laser optical feedback microscope was presented and demonstrated. Three methods to advance the vertical resolution of laser optical feedback microscope were experimentally studied. The first one is to detect the two polarized lights’ intensities separately with a Wollaston prism instead of to detect the whole light’s intensity. The second is that both of the two orthogonally polarized lights of a birefringent dual frequency laser are fed back. The third one is that only one of the orthogonally polarized lights is fed back. The experimental results show that the modes competition between orthogonally polarized lights can be used to improve the vertical resolution of laser optical feedback microscope effectively.展开更多
An error correction technique for the micro-scanning instrument of the optical micro-scanning thermal microscope imaging system is proposed. The technique is based on micro-scanning technology combined with the propos...An error correction technique for the micro-scanning instrument of the optical micro-scanning thermal microscope imaging system is proposed. The technique is based on micro-scanning technology combined with the proposed second-order oversampling reconstruction algorithm and local gradient image reconstruction algorithm. In this paper, we describe the local gradient image reconstruction model, the error correction technique, down-sampling model and the error correction principle. In this paper, we use a Lena original image and four low-resolution images obtained from the standard half-pixel displacement to simulate and verify the effectiveness of the proposed technique. In order to verify the effectiveness of the proposed technique, two groups of low-resolution thermal microscope images are collected by the actual thermal microscope imaging system for experimental study. Simulations and experiments show that the proposed technique can reduce the optical micro-scanning errors, improve the imaging effect of the system and improve the system's spatial resolution. It can be applied to other electro-optical imaging systems to improve their resolution.展开更多
The images obtained by a large optical detection system(>500 mm) are always blurred by atmospheric turbulence. To address this blurring, an adaptive optical system is urgently needed. Here, a 1.3 m vehicle-based ad...The images obtained by a large optical detection system(>500 mm) are always blurred by atmospheric turbulence. To address this blurring, an adaptive optical system is urgently needed. Here, a 1.3 m vehicle-based adaptive optical system(VAOS), located on the Nasmyth focus, is investigated. A two-grade tip/tilt steering mirror is used to eliminate tracking jitter and atmospheric tipping error. Pupil matching and cooperation between the deformable mirror and the wavefront sensor are adopted to achieve high-order aberration measurement and correction via closed-loop correction and to allow the telescope to obtain high-quality imaging. For different seeing conditions and site locations, the VAOS achieves the sensing over the wavelength range from 0.5 μm to 0.7 μm using a Shack-Harmann wavefront sensor and the correction with a 97-unit deformable mirror for an imaging spectrum range from 0.7 μm to 0.9 μm. Moreover, the maximum detection capability of the system is greater than a visual magnitude of 5, and the angular imaging resolution is better than 0.3".展开更多
Remote-mode microsphere nanoscope can observe the nano-structures with 23 nm feature size. It does not require samplepreparation and functions in both ambient air and liquid environments. Compared with the scientific ...Remote-mode microsphere nanoscope can observe the nano-structures with 23 nm feature size. It does not require samplepreparation and functions in both ambient air and liquid environments. Compared with the scientific characterizationtools listed in Table S1, the simple and portable nature makes the microsphere nanoscope a favorable solution forgeneral purpose imaging in practical fields, like hospitals, food industry, semiconductor production lines, schools andenvironment agencies.展开更多
Current global climate models cannot resolve the complex topography over the Tibetan Plateau(TP)due to their coarse resolution.This study investigates the impacts of horizontal resolution on simulating aerosol and its...Current global climate models cannot resolve the complex topography over the Tibetan Plateau(TP)due to their coarse resolution.This study investigates the impacts of horizontal resolution on simulating aerosol and its direct radiative effect(DRE)over the TP by applying two horizontal resolutions of about 100 km and 25 km to the Chinese Academy of Sciences Flexible Global Ocean-Atmosphere Land System(CAS FGOALS-f3)over a 10-year period.Compared to the AErosol RObotic NETwork observations,a high-resolution model(HRM)can better reproduce the spatial distribution and seasonal cycles of aerosol optical depth(AOD)compared to a low-resolution model(LRM).The HRM bias and RMSE of AOD decreased by 0.08 and 0.12,and the correlation coefficient increased by 0.22 compared to the LRM.An LRM is not sufficient to reproduce the aerosol variations associated with fine-scale topographic forcing,such as in the eastern marginal region of the TP.The difference between hydrophilic aerosols in an HRM and LRM is caused by the divergence of the simulated relative humidity(RH).More reasonable distributions and variations of RH are conducive to simulating hydrophilic aerosols.An increase of the 10-m wind speed in winter by an HRM leads to increased dust emissions.The simulated aerosol DREs at the top of the atmosphere(TOA)and at the surface by the HRM are–0.76 W m^(–2)and–8.72 W m^(–2)over the TP,respectively.Both resolution models can capture the key feature that dust TOA DRE transitions from positive in spring to negative in the other seasons.展开更多
A scanning near-field optical microscope using uncoated fiber tipis described, which can work in transmission and reflectionconfigurations, both capable of working in illumination andcollection-mode, so that either tr...A scanning near-field optical microscope using uncoated fiber tipis described, which can work in transmission and reflectionconfigurations, both capable of working in illumination andcollection-mode, so that either transparent of opaque sample can beinvestigated. Depending on different applications, eitherconstant-gap or constant-height images can be achieved. A compacthomemade translator permits to elect interested area of sample in therange of 4 mm×4 mm.展开更多
Based on a strong inter-diagonal matrix and Taylor series expansions,an oversample reconstruction method was proposed to calibrate the optical micro-scanning error. The technique can obtain regular 2 ×2 microscan...Based on a strong inter-diagonal matrix and Taylor series expansions,an oversample reconstruction method was proposed to calibrate the optical micro-scanning error. The technique can obtain regular 2 ×2 microscanning undersampling images from the real irregular undersampling images,and can then obtain a high spatial oversample resolution image. Simulations and experiments show that the proposed technique can reduce optical micro-scanning error and improve the system's spatial resolution. The algorithm is simple,fast and has low computational complexity. It can also be applied to other electro-optical imaging systems to improve their spatial resolution and has a widespread application prospect.展开更多
In the metrology of radon, an environmental lung carcinogen, the integrated measurements necessary for epidemiological studies are made very often using the tracks detector LR 115 type 2. For dosimetric analysis, the ...In the metrology of radon, an environmental lung carcinogen, the integrated measurements necessary for epidemiological studies are made very often using the tracks detector LR 115 type 2. For dosimetric analysis, the etched tracks from radon alpha particles on this detector are usually counted by means of an optical microscope or a spark counter. An optimal reading of the track densities which must be converted into radon concentrations, can’t be done without a good mastery of the mode of operation and use of these devices. Furthermore, investigations to know as to whether or not each of those can be used to determine radon concentration are necessary. These are the objectives of the present work in which LR 115 samples exposed to radon for at least 3 months, were chemically developed under standard conditions and read. The track densities obtained with the microscope are very much higher than those of the counter for each sample. These results are consistent with those published by other authors. However, each of these devices can be used interchangeably for alpha tracks counting, as both provide radon concentrations with a very good linear correlation coefficient of 0.95 taking into account their respective calibration factors for the reading of this detector. In addition, the saturation phenomenon for the spark counter reading of LR 115 detector occurs beyond 11,000 tr/cm<sup>2</sup>, a density never reached during our environmental radon measurements.展开更多
Utilizing reflection-based near-field scanning optical microscopy(NSOM) to image and analyze standing-wave patterns, we present a characterization technique potentially suitable for complex photonic integrated circuit...Utilizing reflection-based near-field scanning optical microscopy(NSOM) to image and analyze standing-wave patterns, we present a characterization technique potentially suitable for complex photonic integrated circuits. By raster scanning along the axis of a straight nano-waveguide in tapping mode and sweeping wavelength, detailed information of propagating waves in that waveguide has been extracted from analyses in both space and wavelength domains. Our technique needs no special steps for phase stabilization, thus allowing long-duration and environment-insensitive measurements. As a proof-of-concept test, in a silicon single-mode waveguide with a few of etched holes, the locations and reflection strengths of the inner defects have been quantified. The measurement uncertainty of the reflection amplitude is less than 25% at current stage. Our technique paves the way for non-destructively diagnosing photonic circuits on a chip with sub-wavelength spatial resolution and detailed information extraction.展开更多
An in-situ optically transparent thin-layer microscopic FTIR spectroelectro- chemical cell was constructed.Using this cell,we characterize a concentration-distance profile in the electrochemical diffusion thin-layer b...An in-situ optically transparent thin-layer microscopic FTIR spectroelectro- chemical cell was constructed.Using this cell,we characterize a concentration-distance profile in the electrochemical diffusion thin-layer by in-situ adjusting the focal point at different distances to the electrode surface.展开更多
Adaptive optics(AO)has significantly advanced high-resolution solar observations by mitigating atmospheric turbulence.However,traditional post-focal AO systems suffer from external configurations that introduce excess...Adaptive optics(AO)has significantly advanced high-resolution solar observations by mitigating atmospheric turbulence.However,traditional post-focal AO systems suffer from external configurations that introduce excessive optical surfaces,reduced light throughput,and instrumental polarization.To address these limitations,we propose an embedded solar adaptive optics telescope(ESAOT)that intrinsically incorporates the solar AO(SAO)subsystem within the telescope's optical train,featuring a co-designed correction chain with a single Hartmann-Shack full-wavefront sensor(HS f-WFS)and a deformable secondary mirror(DSM).The HS f-WFS uses temporal-spatial hybrid sampling technique to simultane-ously resolve tip-tilt and high-order aberrations,while the DSM performs real-time compensation through adaptive modal optimization.This unified architecture achieves symmetrical polarization suppression and high system throughput by min-imizing optical surfaces.A 600 mm ESAOT prototype incorporating a 12×12 micro-lens array HS f-WFS and 61-actuator piezoelectric DSM has been developed and successfully conducted on-sky photospheric observations.Validations in-cluding turbulence simulations,optical bench testing,and practical observations at the Lijiang observatory collectively confirm the system's capability to maintain aboutλ/10 wavefront error during active region tracking.This architectural breakthrough of the ESAOT addresses long-standing SAO integration challenges in solar astronomy and provides scala-bility analyses confirming direct applicability to the existing and future large solar observation facilities.展开更多
The influence of InAs deposition thickness on the structural and optical properties of InAs/InA1As quantum wires (QWR) superlattices (SLS) was studied. The transmission electron microscopy (TEM) results show tha...The influence of InAs deposition thickness on the structural and optical properties of InAs/InA1As quantum wires (QWR) superlattices (SLS) was studied. The transmission electron microscopy (TEM) results show that with increasing the InAs deposited thickness, the size uniformity and spatial ordering of InAs QWR SLS was greatly improved, but threading dislocations initiated from InAs nanowires for the sample with 6 monolayers (MLs) InAs deposition. In addition, the zig-zag features along the extending direc- tion and lateral interlink of InAs nanowires were also observed. The InAs nanowires, especially for the first period, were laterally compact. These structural features may result in easy tunneling and coupling of charge carders between InAs nanowires and will hamper their device applications to some extent. Some suggestions are put forward for further improving the uniformity of the stacked InAs QWRs, and for suppressing the formation of the threading dislocations in InAs QWR SLS.展开更多
Monitoring the ecology and physiology of corals,sediments,planktons,and microplastic at a suitable spatial resolution is of great importance in oceanic scientific research.To meet this requirement,an underwater micros...Monitoring the ecology and physiology of corals,sediments,planktons,and microplastic at a suitable spatial resolution is of great importance in oceanic scientific research.To meet this requirement,an underwater microscope with an electrically controlled variable lens was designed and tested.The captured microscopic images of corals,sediments,planktons,and microplastic revealed their physical,biological,and morphological characteristics.Further studies of the images also revealed the growth,degradation,and bleaching patterns of corals;the presence of plankton communities;and the types of microplastics.The imaging performance is majorly influenced by the choice of lenses,camera selection,and lighting method.Image dehazing,global saturation masks,and image histograms were used to extract the image features.Fundamental experimental proof was obtained with micro-scale images of corals,sediments,planktons,and microplastic at different magnifications.The designed underwater microscope can provide relevant new insights into the observation and detection of the future conditions of aquatic ecosystems.展开更多
CH3 internal rotation is one of the typical large amplitude motions in polyatomic molecules,the spectral analysis and theoretical calculations of which,were developed by Li-Hong Xu and Jon Hougen.We observed a Doppler...CH3 internal rotation is one of the typical large amplitude motions in polyatomic molecules,the spectral analysis and theoretical calculations of which,were developed by Li-Hong Xu and Jon Hougen.We observed a Doppler-free high-resolution and high-precision spectrum of 9-methylanthracene(9MA)by using the collimated supersonic jet and optical frequency comb techniques.The potential energy curve of CH3 internal rotation is expressed by a six-fold symmetric sinusoidal function.It was previously shown that the barrier height(V6)of 9MA-d12 was considerably smaller than that of 9MA-h12[M.Baba,et al.,J.Phys.Chem.A 113,2366(2009)].We performed ab initio theoretical calculations of the multicomponent molecular orbital method.The barrier reduction by deuterium substitution was partly attributed to the difference between the wave functions of H and D atomic nuclei.展开更多
基金funded by the National Key Research and Development Program of China(Grant No.2022YFB3402500)the National Natural Science Foundation of China(Grant No.12372129).
文摘Embedding optical fiber sensors into composite materials offers the advantage of real-time structural monitoring.However,there is an order-of-magnitude difference in diameter between optical fibers and reinforcing fibers,and the detailed mechanism of how embedded optical fibers affect the micromechanical behavior and damage failure processes within composite materials remains unclear.This paper presents a micromechanical simulation analysis of composite materials embedded with optical fibers.By constructing representative volume elements(RVEs)with randomly distributed reinforcing fibers,the optical fiber,the matrix,and the interface phase,the micromechanical behavior and damage evolution under transverse tensile and compressive loads are explored.The study finds that the presence of embedded optical fibers significantly influences the initiation and propagation of microscopic damage within the composites.Under transverse tension,the fiber-matrix interface cracks first,followed by plastic cracking in the matrix surrounding the fibers,forming micro-cracks.Eventually,these cracks connect with the debonded areas at the fiber-matrix interface to form a dominant crack that spans the entire model.Under transverse compression,plastic cracking first occurs in the resin surrounding the optical fibers,connecting with the interface debonding areas between the optical fibers and the matrix to form two parallel shear bands.Additionally,it is observed that the strength of the interface between the optical fiber and the matrix critically affects the simulation results.The simulated damage morphologies align closely with those observed using scanning electron microscopy(SEM).These findings offer theoretical insights that can inform the design and fabrication of smart composite materials with embedded optical fiber sensors for advanced structural health monitoring.
基金Supported by National Natural Science Foundation of China(Nos.U2067205 and 12205098)National Key Laboratory of Computational Physics(HX02021-35).
文摘The microscopic global nucleon–nucleus optical model potential(OMP)proposed by Whitehead,Lim,and Holt,the WLH potential(Whitehead et al.,Phys Rev Lett 127:182502,2021),which was constructed in the framework of many-body per-turbation theory with state-of-the-art nuclear interactions from chiral effective field theory(EFT),was tested with(p,d)transfer reactions calculated using adiabatic wave approximation.The target nuclei included both stable and unstable nuclei,and the incident energies reached 200 MeV.The results were compared with experimental data and predictions using the phenomenological global optical potential of Koning and Delaroche,the KD02 potential.Overall,we found that the micro-scopic WLH potential described the(p,d)reaction angular distributions similarly to the phenomenological KD02 potential;however,the former was slightly better than the latter for radioactive targets.On average,the obtained spectroscopic factors(SFs)using both microscopic and phenomenological potentials were similar when the incident energies were below approxi-mately 120 MeV.However,their difference tended to increase at higher incident energies,which was particularly apparent for the doubly magic target nucleus 40Ca.
基金This work is supported by the National Natural Science Foundation of China[grant numbers 91738302 and 91838303]the National Science Fund for Distinguished Young Scholars[grant number 61825103]Thanks for the support of China Centre for Resources Satellite Data and Application(CRESDA).
文摘Since the beginning of the twenty-first century,several countries have made great efforts to develop space remote sensing for building a high-resolution earth observation system.Under the great attention of the government and the guidance of the major scientific and technological project of the high-resolution earth observation system,China has made continuous breakthroughs and progress in high-resolution remote sensing imaging technology.The development of domestic high-resolution remote sensing satellites shows a vigorous trend,and consequently,a relatively stable and perfect high-resolution earth observation system has been formed.The development of high-resolution remote sensing satellites has greatly promoted and enriched modern mapping technologies and methods.In this paper,the development status,along with mapping modes and applications of China’s high-resolution remote sensing satellites are reviewed,and the development trend in high-resolution earth observation system for global and ground control-free mapping is discussed,providing a reference for the subsequent development of high-resolution remote sensing satellites in China.
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (2013-056344)Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education,Science and Technology (2013R1A6A3A03063900)+1 种基金support from Center for Nano-Liquidsupport from the National Science Foundation OISE Grant #0853104
文摘In this work, we introduce position-resolved surface characterization and nanofabrication using an optical microscope(OM) combined with a nanopipette-based quartz tuning fork atomic force microscope(nanopipette/QTF-AFM) system. This system is used to accurately determine substrate position and nanoscale phenomena under ambient conditions. Solutions consisting of 5 nm Au nanoparticles, nanowires, and polydimethylsiloxane(PDMS) are deposited onto the substrate through the nano/microaperture of a pulled pipette. Nano/microscale patterning is performed using a nanopipette/QTF-AFM, while position is resolved by monitoring the substrate with a custom OM. With this tool, one can perform surface characterization(force spectroscopy/microscopy) using the quartz tuning fork(QTF) sensor. Nanofabrication is achieved by accurately positioning target materials on the surface, and on-demand delivery and patterning of various solutions for molecular architecture.
基金supported by the National Natural Science Foundation of China(Grant Nos.61177089,61227014,and 60978047)
文摘Phase is one of the most important parameters of electromagnetic waves. It is the phase distribution that determines the propagation, reflection, refraction, focusing, divergence, and coupling features of light, and further affects the intensity distribution. In recent years, the designs of surface plasmon polariton (SPP) devices have mostly been based on the phase modulation and manipulation. Here we demonstrate a phase sensitive multi-parameter heterodyne scanning near-field opti- cal microscope (SNOM) with an aperture probe in the visible range, with which the near field optical phase and amplitude distributions can be simultaneously obtained. A novel architecture combining a spatial optical path and a fiber optical path is employed for stability and flexibility. Two kinds of typical nano-photonic devices are tested with the system. With the phase-sensitive SNOM, the phase and amplitude distributions of any nano-optical field and localized field generated with any SPP nano-structures and irregular phase modulation surfaces can be investigated. The phase distribution and the interference pattern will help us to gain a better understanding of how light interacts with SPP structures and how SPP waves generate, localize, convert, and propagate on an SPP surface. This will be a significant guidance on SPP nano-structure design and optimization.
文摘Optical microscopes with polishing equipment possess high performance/cost ratio for refractories industry. Here, the preparation of polishing sections of refractory materials and products and their observation under microscopes were introduced in detail. The observation of microstructures helps to improve and optimize production process. Optical microscopes can observe (1) homogenous or inhomogeneous composition distribution to improve mixing intensity; (2) coarse grains contact or not and contacted grain edges broken or intact to adjust the pressing parameters to avoid overpressure ; ( 3 ) the filling degree of components to optimize the particle size distribution; (4) the sintering necks and bridges and matrix shrinkage status to adjust sintering intensity or sintering atmosphere; (5) the crack edge in round or sharp to know when the cracks formed ( before or after entering sintering zone) and take countermeasures ; (6) used refractories to find the wear mechanism.
文摘The principle of laser optical feedback microscope was presented and demonstrated. Three methods to advance the vertical resolution of laser optical feedback microscope were experimentally studied. The first one is to detect the two polarized lights’ intensities separately with a Wollaston prism instead of to detect the whole light’s intensity. The second is that both of the two orthogonally polarized lights of a birefringent dual frequency laser are fed back. The third one is that only one of the orthogonally polarized lights is fed back. The experimental results show that the modes competition between orthogonally polarized lights can be used to improve the vertical resolution of laser optical feedback microscope effectively.
基金Supported by Postgraduate Innovation Funding Project of Hebei Province(CXZZSS2019050)the Qinhuangdao City Key Research and Development Program Science and Technology Support Project(201801B010)
文摘An error correction technique for the micro-scanning instrument of the optical micro-scanning thermal microscope imaging system is proposed. The technique is based on micro-scanning technology combined with the proposed second-order oversampling reconstruction algorithm and local gradient image reconstruction algorithm. In this paper, we describe the local gradient image reconstruction model, the error correction technique, down-sampling model and the error correction principle. In this paper, we use a Lena original image and four low-resolution images obtained from the standard half-pixel displacement to simulate and verify the effectiveness of the proposed technique. In order to verify the effectiveness of the proposed technique, two groups of low-resolution thermal microscope images are collected by the actual thermal microscope imaging system for experimental study. Simulations and experiments show that the proposed technique can reduce the optical micro-scanning errors, improve the imaging effect of the system and improve the system's spatial resolution. It can be applied to other electro-optical imaging systems to improve their resolution.
基金supported by the National Natural Science Foundation of China(No.11703026)
文摘The images obtained by a large optical detection system(>500 mm) are always blurred by atmospheric turbulence. To address this blurring, an adaptive optical system is urgently needed. Here, a 1.3 m vehicle-based adaptive optical system(VAOS), located on the Nasmyth focus, is investigated. A two-grade tip/tilt steering mirror is used to eliminate tracking jitter and atmospheric tipping error. Pupil matching and cooperation between the deformable mirror and the wavefront sensor are adopted to achieve high-order aberration measurement and correction via closed-loop correction and to allow the telescope to obtain high-quality imaging. For different seeing conditions and site locations, the VAOS achieves the sensing over the wavelength range from 0.5 μm to 0.7 μm using a Shack-Harmann wavefront sensor and the correction with a 97-unit deformable mirror for an imaging spectrum range from 0.7 μm to 0.9 μm. Moreover, the maximum detection capability of the system is greater than a visual magnitude of 5, and the angular imaging resolution is better than 0.3".
文摘Remote-mode microsphere nanoscope can observe the nano-structures with 23 nm feature size. It does not require samplepreparation and functions in both ambient air and liquid environments. Compared with the scientific characterizationtools listed in Table S1, the simple and portable nature makes the microsphere nanoscope a favorable solution forgeneral purpose imaging in practical fields, like hospitals, food industry, semiconductor production lines, schools andenvironment agencies.
基金supported by the National Natural Science Funds of China(Grant Nos.41875133,91937302)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA2006010302)+2 种基金the Second Tibetan Plateau Scientific Expedition and Research Program(STEP,Grant No.2019QZKK0206)the Youth Innovation Promotion Association CAS(2020078)the International Partnership Program of Chinese Academy of Sciences(Grant No.134111KYSB20200006).
文摘Current global climate models cannot resolve the complex topography over the Tibetan Plateau(TP)due to their coarse resolution.This study investigates the impacts of horizontal resolution on simulating aerosol and its direct radiative effect(DRE)over the TP by applying two horizontal resolutions of about 100 km and 25 km to the Chinese Academy of Sciences Flexible Global Ocean-Atmosphere Land System(CAS FGOALS-f3)over a 10-year period.Compared to the AErosol RObotic NETwork observations,a high-resolution model(HRM)can better reproduce the spatial distribution and seasonal cycles of aerosol optical depth(AOD)compared to a low-resolution model(LRM).The HRM bias and RMSE of AOD decreased by 0.08 and 0.12,and the correlation coefficient increased by 0.22 compared to the LRM.An LRM is not sufficient to reproduce the aerosol variations associated with fine-scale topographic forcing,such as in the eastern marginal region of the TP.The difference between hydrophilic aerosols in an HRM and LRM is caused by the divergence of the simulated relative humidity(RH).More reasonable distributions and variations of RH are conducive to simulating hydrophilic aerosols.An increase of the 10-m wind speed in winter by an HRM leads to increased dust emissions.The simulated aerosol DREs at the top of the atmosphere(TOA)and at the surface by the HRM are–0.76 W m^(–2)and–8.72 W m^(–2)over the TP,respectively.Both resolution models can capture the key feature that dust TOA DRE transitions from positive in spring to negative in the other seasons.
文摘A scanning near-field optical microscope using uncoated fiber tipis described, which can work in transmission and reflectionconfigurations, both capable of working in illumination andcollection-mode, so that either transparent of opaque sample can beinvestigated. Depending on different applications, eitherconstant-gap or constant-height images can be achieved. A compacthomemade translator permits to elect interested area of sample in therange of 4 mm×4 mm.
基金Supported by the National Natural Science Foundation of China(NSFC 61501396)the Colleges and Universities under the Science and Technology Research Projects of Hebei Province(QN2015021)
文摘Based on a strong inter-diagonal matrix and Taylor series expansions,an oversample reconstruction method was proposed to calibrate the optical micro-scanning error. The technique can obtain regular 2 ×2 microscanning undersampling images from the real irregular undersampling images,and can then obtain a high spatial oversample resolution image. Simulations and experiments show that the proposed technique can reduce optical micro-scanning error and improve the system's spatial resolution. The algorithm is simple,fast and has low computational complexity. It can also be applied to other electro-optical imaging systems to improve their spatial resolution and has a widespread application prospect.
文摘In the metrology of radon, an environmental lung carcinogen, the integrated measurements necessary for epidemiological studies are made very often using the tracks detector LR 115 type 2. For dosimetric analysis, the etched tracks from radon alpha particles on this detector are usually counted by means of an optical microscope or a spark counter. An optimal reading of the track densities which must be converted into radon concentrations, can’t be done without a good mastery of the mode of operation and use of these devices. Furthermore, investigations to know as to whether or not each of those can be used to determine radon concentration are necessary. These are the objectives of the present work in which LR 115 samples exposed to radon for at least 3 months, were chemically developed under standard conditions and read. The track densities obtained with the microscope are very much higher than those of the counter for each sample. These results are consistent with those published by other authors. However, each of these devices can be used interchangeably for alpha tracks counting, as both provide radon concentrations with a very good linear correlation coefficient of 0.95 taking into account their respective calibration factors for the reading of this detector. In addition, the saturation phenomenon for the spark counter reading of LR 115 detector occurs beyond 11,000 tr/cm<sup>2</sup>, a density never reached during our environmental radon measurements.
基金Project supported by National Key R&D Program of China(Grant No.2017YFA0303800)National Natural Science Foundation of China(Grant No.61575218)Defense Industrial Technology Development Program,China(Grant No.JCKY201601C006)
文摘Utilizing reflection-based near-field scanning optical microscopy(NSOM) to image and analyze standing-wave patterns, we present a characterization technique potentially suitable for complex photonic integrated circuits. By raster scanning along the axis of a straight nano-waveguide in tapping mode and sweeping wavelength, detailed information of propagating waves in that waveguide has been extracted from analyses in both space and wavelength domains. Our technique needs no special steps for phase stabilization, thus allowing long-duration and environment-insensitive measurements. As a proof-of-concept test, in a silicon single-mode waveguide with a few of etched holes, the locations and reflection strengths of the inner defects have been quantified. The measurement uncertainty of the reflection amplitude is less than 25% at current stage. Our technique paves the way for non-destructively diagnosing photonic circuits on a chip with sub-wavelength spatial resolution and detailed information extraction.
文摘An in-situ optically transparent thin-layer microscopic FTIR spectroelectro- chemical cell was constructed.Using this cell,we characterize a concentration-distance profile in the electrochemical diffusion thin-layer by in-situ adjusting the focal point at different distances to the electrode surface.
基金support from the National Science Foundation of China(NSFC)(Grants No.12293031 and No.61905252)the National Science Foundation for Distinguished Young Scholars(Grant No.12022308)the National Key R&D Program of China(Grants No.2021YFC2202200 and No.2021YFC2202204).
文摘Adaptive optics(AO)has significantly advanced high-resolution solar observations by mitigating atmospheric turbulence.However,traditional post-focal AO systems suffer from external configurations that introduce excessive optical surfaces,reduced light throughput,and instrumental polarization.To address these limitations,we propose an embedded solar adaptive optics telescope(ESAOT)that intrinsically incorporates the solar AO(SAO)subsystem within the telescope's optical train,featuring a co-designed correction chain with a single Hartmann-Shack full-wavefront sensor(HS f-WFS)and a deformable secondary mirror(DSM).The HS f-WFS uses temporal-spatial hybrid sampling technique to simultane-ously resolve tip-tilt and high-order aberrations,while the DSM performs real-time compensation through adaptive modal optimization.This unified architecture achieves symmetrical polarization suppression and high system throughput by min-imizing optical surfaces.A 600 mm ESAOT prototype incorporating a 12×12 micro-lens array HS f-WFS and 61-actuator piezoelectric DSM has been developed and successfully conducted on-sky photospheric observations.Validations in-cluding turbulence simulations,optical bench testing,and practical observations at the Lijiang observatory collectively confirm the system's capability to maintain aboutλ/10 wavefront error during active region tracking.This architectural breakthrough of the ESAOT addresses long-standing SAO integration challenges in solar astronomy and provides scala-bility analyses confirming direct applicability to the existing and future large solar observation facilities.
基金Special Funds for Major State Basic Research Project of China (No.G2000068303)Na-tional Natural Science Foundation of China (No.60390074, 60390071, 90101004)National High-Tech Research and Develop-ment Program of China (No.2002AA311070).
文摘The influence of InAs deposition thickness on the structural and optical properties of InAs/InA1As quantum wires (QWR) superlattices (SLS) was studied. The transmission electron microscopy (TEM) results show that with increasing the InAs deposited thickness, the size uniformity and spatial ordering of InAs QWR SLS was greatly improved, but threading dislocations initiated from InAs nanowires for the sample with 6 monolayers (MLs) InAs deposition. In addition, the zig-zag features along the extending direc- tion and lateral interlink of InAs nanowires were also observed. The InAs nanowires, especially for the first period, were laterally compact. These structural features may result in easy tunneling and coupling of charge carders between InAs nanowires and will hamper their device applications to some extent. Some suggestions are put forward for further improving the uniformity of the stacked InAs QWRs, and for suppressing the formation of the threading dislocations in InAs QWR SLS.
基金This study is supported by the Key Research and Development Plan of Zhejiang Province,China(Grant number:2020C03012).
文摘Monitoring the ecology and physiology of corals,sediments,planktons,and microplastic at a suitable spatial resolution is of great importance in oceanic scientific research.To meet this requirement,an underwater microscope with an electrically controlled variable lens was designed and tested.The captured microscopic images of corals,sediments,planktons,and microplastic revealed their physical,biological,and morphological characteristics.Further studies of the images also revealed the growth,degradation,and bleaching patterns of corals;the presence of plankton communities;and the types of microplastics.The imaging performance is majorly influenced by the choice of lenses,camera selection,and lighting method.Image dehazing,global saturation masks,and image histograms were used to extract the image features.Fundamental experimental proof was obtained with micro-scale images of corals,sediments,planktons,and microplastic at different magnifications.The designed underwater microscope can provide relevant new insights into the observation and detection of the future conditions of aquatic ecosystems.
文摘CH3 internal rotation is one of the typical large amplitude motions in polyatomic molecules,the spectral analysis and theoretical calculations of which,were developed by Li-Hong Xu and Jon Hougen.We observed a Doppler-free high-resolution and high-precision spectrum of 9-methylanthracene(9MA)by using the collimated supersonic jet and optical frequency comb techniques.The potential energy curve of CH3 internal rotation is expressed by a six-fold symmetric sinusoidal function.It was previously shown that the barrier height(V6)of 9MA-d12 was considerably smaller than that of 9MA-h12[M.Baba,et al.,J.Phys.Chem.A 113,2366(2009)].We performed ab initio theoretical calculations of the multicomponent molecular orbital method.The barrier reduction by deuterium substitution was partly attributed to the difference between the wave functions of H and D atomic nuclei.