Scale variation is amajor challenge inmulti-person pose estimation.In scenes where persons are present at various distances,models tend to perform better on larger-scale persons,while the performance for smaller-scale...Scale variation is amajor challenge inmulti-person pose estimation.In scenes where persons are present at various distances,models tend to perform better on larger-scale persons,while the performance for smaller-scale persons often falls short of expectations.Therefore,effectively balancing the persons of different scales poses a significant challenge.So this paper proposes a newmulti-person pose estimation model called FSANet to improve themodel’s performance in complex scenes.Our model utilizes High-Resolution Network(HRNet)as the backbone and feeds the outputs of the last stage’s four branches into the DCB module.The dilated convolution-based(DCB)module employs a parallel structure that incorporates dilated convolutions with different rates to expand the receptive field of each branch.Subsequently,the attention operation-based(AOB)module performs attention operations at both branch and channel levels to enhance high-frequency features and reduce the influence of noise.Finally,predictions are made using the heatmap representation.The model can recognize images with diverse scales and more complex semantic information.Experimental results demonstrate that FSA Net achieves competitive results on the MSCOCO and MPII datasets,validating the effectiveness of our proposed approach.展开更多
Now object detection based on deep learning tries different strategies.It uses fewer data training networks to achieve the effect of large dataset training.However,the existing methods usually do not achieve the balan...Now object detection based on deep learning tries different strategies.It uses fewer data training networks to achieve the effect of large dataset training.However,the existing methods usually do not achieve the balance between network parameters and training data.It makes the information provided by a small amount of picture data insufficient to optimize model parameters,resulting in unsatisfactory detection results.To improve the accuracy of few shot object detection,this paper proposes a network based on the transformer and high-resolution feature extraction(THR).High-resolution feature extractionmaintains the resolution representation of the image.Channels and spatial attention are used to make the network focus on features that are more useful to the object.In addition,the recently popular transformer is used to fuse the features of the existing object.This compensates for the previous network failure by making full use of existing object features.Experiments on the Pascal VOC and MS-COCO datasets prove that the THR network has achieved better results than previous mainstream few shot object detection.展开更多
Background:Diabetic foot,a severe complication of diabetes,is characterized by chronic refractory wounds.Sanhuang Oil,a topical herbal formula,demonstrates significant therapeutic effects including antibacterial,anti-...Background:Diabetic foot,a severe complication of diabetes,is characterized by chronic refractory wounds.Sanhuang Oil,a topical herbal formula,demonstrates significant therapeutic effects including antibacterial,anti-inflammatory,and immunomodulatory activities.However,its active constituents and mechanisms of action against diabetic foot remain to be elucidated.Methods:In this study,the chemical constituents of Sanhuang Oil were identified using UPLC-QE-Orbitrap-MS.Subsequently,the mechanism by which Sanhuang Oil promotes diabetic foot ulcer healing was predicted by integrating network pharmacology and molecular docking.Additionally,diabetic mouse model was established in ICR mice using a combination of a high-fat diet(HFD)and streptozotocin(STZ)chemical induction.A full-thickness skin defect was created on the dorsum of the mice.Wound healing and the healing rate were observed following Sanhuang Oil intervention.The mechanism underlying Sanhuang Oil’s promotion of diabetic ulcer healing was further investigated using transcriptomics and histopathological examination(H&E staining).Results:A total of 97 active ingredients were identified from Sanhuang Oil.Network pharmacology analysis predicted 543 common targets,and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis identified 203 relevant pathways.Molecular docking further confirmed high binding affinity(binding energy≤−5.0 kcal/mol)between specific active components in Sanhuang Oil(e.g.,coptisine,phellodendrine,baicalein)and key targets associated with diabetic foot ulcers(e.g.,EGFR,AKT1,STAT3).In vivo experimental results demonstrated that the wound healing rate was significantly higher in Sanhuang Oil-treated groups compared to the model group(P<0.001).HE staining revealed that the high-dose Sanhuang Oil group exhibited more pronounced epithelial tissue coverage over the wound,reduced inflammatory cell infiltration,and increased collagen deposition and fibroblast proliferation.transcriptomic analysis identified Pdk4,Ttn,Csrp3,Actn2,Myoz2,Tnnc2,Myod1,Myog,Myot,and Myf6 as key regulatory proteins involved in promoting wound healing.Conclusion:Sanhuang Oil promotes wound healing in diabetic ulcer mice,potentially by mitigating inflammation and regulating key targets such as Pdk4 to enhance fibroblast function.These findings provide novel insights into the multi-target,multi-pathway mechanism of Sanhuang Oil for treating diabetic foot ulcers.展开更多
High-resolution transmission electron microscopy(HRTEM)promises rapid atomic-scale dynamic structure imaging.Yet,the precision limitations of aberration parameters and the challenge of eliminating aberrations in Cs-co...High-resolution transmission electron microscopy(HRTEM)promises rapid atomic-scale dynamic structure imaging.Yet,the precision limitations of aberration parameters and the challenge of eliminating aberrations in Cs-corrected transmission electron microscopy constrain resolution.A machine learning algorithm is developed to determine the aberration parameters with higher precision from small,lattice-periodic crystal images.The proposed algorithm is then validated with simulated HRTEM images of graphene and applied to the experimental images of a molybdenum disulfide(MoS_(2))monolayer with 25 variables(14 aberrations)resolved in wide ranges.Using these measured parameters,the phases of the exit-wave functions are reconstructed for each image in a focal series of MoS_(2)monolayers.The images were acquired due to the unexpected movement of the specimen holder.Four-dimensional data extraction reveals time-varying atomic structures and ripple.In particular,the atomic evolution of the sulfur-vacancy point and line defects,as well as the edge structure near the amorphous,is visualized as the resolution has been improved from about 1.75?to 0.9 A.This method can help salvage important transmission electron microscope images and is beneficial for the images obtained from electron microscopes with average stability.展开更多
Ground subsidence is one of the key factors damaging transportation facilities, e.g., road networks consisting of highways and railways. In this paper, we propose to apply the persistent scatterer synthetic aperture r...Ground subsidence is one of the key factors damaging transportation facilities, e.g., road networks consisting of highways and railways. In this paper, we propose to apply the persistent scatterer synthetic aperture radar interferometry (PS-InSAR) approach that uses high- resolution TerraSAR-X (TSX) imagery to extract the regional scale subsidence rates (i.e., average annual sub- sidence in mm/year) along road networks. The primary procedures involve interferometric pair selection, interfer- ogram generation, persistent scatterer (PS) detection, PS networking, phase parameterization, and subsidence rate estimation. The Xiqing District in southwest Tianjin (China) is selected as the study area. This district contains one railway line and several highway lines. A total of 15 TSX images covering this area between April 2009 and June 2010 are utilized to obtain the subsidence rates by using the PS-InSAR (PSI) approach. The subsidence rates derived from PSI range from -68.7 to -1.3 mm/year. These findings show a significantly uneven subsidence pattern along the road network. Comparison between the PSI-derived subsidence rates and the leveling data obtained along the highways shows that the mean and standard deviation (SD) of the discrepancies between the two types of subsidence rates are 0.1 and 4-3.2 mm/year, respectively. The results indicate that the high-resolution TSX PSI is capable of providing comprehensive and detailed subsidence information regarding road networks with millimeter-level accuracy. Further inspections under geo- logical conditions and land-use categories in the study area indicate that the observed subsidence is highly related to aquifer compression due to groundwater pumping. Therefore, measures should be taken to mitigate groundwater extraction for the study area.展开更多
Nonlinear flow behavior of fluids through three-dimensional(3D)discrete fracture networks(DFNs)considering effects of fracture number,surface roughness and fracture aperture was experimentally and numerically investig...Nonlinear flow behavior of fluids through three-dimensional(3D)discrete fracture networks(DFNs)considering effects of fracture number,surface roughness and fracture aperture was experimentally and numerically investigated.Three physical models of DFNs were 3D-printed and then computed tomography(CT)-scanned to obtain the specific geometry of fractures.The validity of numerically simulating the fluid flow through DFNs was verified via comparison with flow tests on the 3D-printed models.A parametric study was then implemented to establish quantitative relations between the coefficients/parameters in Forchheimer’s law and geometrical parameters.The results showed that the 3D-printing technique can well reproduce the geometry of single fractures with less precision when preparing complex fracture networks,numerical modeling precision of which can be improved via CT-scanning as evidenced by the well fitted results between fluid flow tests and numerical simulations using CT-scanned digital models.Streamlines in DFNs become increasingly tortuous as the fracture number and roughness increase,resulting in stronger inertial effects and greater curvatures of hydraulic pressure-low rate relations,which can be well characterized by the Forchheimer’s law.The critical hydraulic gradient for the onset of nonlinear flow decreases with the increasing aperture,fracture number and roughness,following a power function.The increases in fracture aperture and number provide more paths for fluid flow,increasing both the viscous and inertial permeabilities.The value of the inertial permeability is approximately four orders of magnitude greater than the viscous permeability,following a power function with an exponent a of 3,and a proportional coefficient b mathematically correlated with the geometrical parameters.展开更多
The objective of image-based virtual try-on is to seamlessly integrate clothing onto a target image, generating a realistic representation of the character in the specified attire. However, existing virtual try-on met...The objective of image-based virtual try-on is to seamlessly integrate clothing onto a target image, generating a realistic representation of the character in the specified attire. However, existing virtual try-on methods frequently encounter challenges, including misalignment between the body and clothing, noticeable artifacts, and the loss of intricate garment details. To overcome these challenges, we introduce a two-stage high-resolution virtual try-on framework that integrates an attention mechanism, comprising a garment warping stage and an image generation stage. During the garment warping stage, we incorporate a channel attention mechanism to effectively retain the critical features of the garment, addressing challenges such as the loss of patterns, colors, and other essential details commonly observed in virtual try-on images produced by existing methods. During the image generation stage, with the aim of maximizing the utilization of the information proffered by the input image, the input features undergo double sampling within the normalization procedure, thereby enhancing the detail fidelity and clothing alignment efficacy of the output image. Experimental evaluations conducted on high-resolution datasets validate the effectiveness of the proposed method. Results demonstrate significant improvements in preserving garment details, reducing artifacts, and achieving superior alignment between the clothing and body compared to baseline methods, establishing its advantage in generating realistic and high-quality virtual try-on images.展开更多
[Objective]The paper aimed to effectively reduce the occurrence of bacterial resistance associated with breeding practices and to mitigate food safety risks by controlling the illegal use of veterinary drugs in self-f...[Objective]The paper aimed to effectively reduce the occurrence of bacterial resistance associated with breeding practices and to mitigate food safety risks by controlling the illegal use of veterinary drugs in self-formulated feed at the source.[Method]A screening database comprising 274 illegally added chemical drugs in self-formulated feed was established utilizing ultra-performance liquid chromatography coupled with quadrupole/electrostatic field orbitrap high-resolution mass spectrometry(HPLC-Q-Exactive Focus/MS).Subsequently,253 batches of self-formulated feed samples from various farms in Hebei Province were screened and quantitatively analyzed.[Result]The screening results indicated the presence of 8 pharmaceutical components across 10 batches of self-formulated feed samples,with a detection rate of 3.2%and concentrations ranging from 0.06 to 28851.8μg/g.[Conclusion]The application of high-resolution mass spectrometry is feasible and highly significant for the risk monitoring of illegally added drugs in self-formulated feed.展开更多
In oceanic and atmospheric science,finer resolutions have become a prevailing trend in all aspects of development.For high-resolution fluid flow simulations,the computational costs of widely used numerical models incr...In oceanic and atmospheric science,finer resolutions have become a prevailing trend in all aspects of development.For high-resolution fluid flow simulations,the computational costs of widely used numerical models increase significantly with the resolution.Artificial intelligence methods have attracted increasing attention because of their high precision and fast computing speeds compared with traditional numerical model methods.The resolution-independent Fourier neural operator(FNO)presents a promising solution to the still challenging problem of high-resolution fluid flow simulations based on low-resolution data.Accordingly,we assess the potential of FNO for high-resolution fluid flow simulations using the vorticity equation as an example.We assess and compare the performance of FNO in multiple high-resolution tests varying the amounts of data and the evolution durations.When assessed with finer resolution data(even up to number of grid points with 1280×1280),the FNO model,trained at low resolution(number of grid points with 64×64)and with limited data,exhibits a stable overall error and good accuracy.Additionally,our work demonstrates that the FNO model takes less time than the traditional numerical method for high-resolution simulations.This suggests that FNO has the prospect of becoming a cost-effective and highly precise model for high-resolution simulations in the future.Moreover,FNO can make longer high-resolution predictions while training with less data by superimposing vorticity fields from previous time steps as input.A suitable initial learning rate can be set according to the frequency principle,and the time intervals of the dataset need to be adjusted according to the spatial resolution of the input when training the FNO model.Our findings can help optimize FNO for future fluid flow simulations.展开更多
While algorithms have been created for land usage in urban settings,there have been few investigations into the extraction of urban footprint(UF).To address this research gap,the study employs several widely used imag...While algorithms have been created for land usage in urban settings,there have been few investigations into the extraction of urban footprint(UF).To address this research gap,the study employs several widely used image classification method classified into three categories to evaluate their segmentation capabilities for extracting UF across eight cities.The results indicate that pixel-based methods only excel in clear urban environments,and their overall accuracy is not consistently high.RF and SVM perform well but lack stability in object-based UF extraction,influenced by feature selection and classifier performance.Deep learning enhances feature extraction but requires powerful computing and faces challenges with complex urban layouts.SAM excels in medium-sized urban areas but falters in intricate layouts.Integrating traditional and deep learning methods optimizes UF extraction,balancing accuracy and processing efficiency.Future research should focus on adapting algorithms for diverse urban landscapes to enhance UF extraction accuracy and applicability.展开更多
Understanding vegetation water availability can be important for managing vegetation and combating climate change.Changes in vegetation water availability throughout China remains poorly understood,especially at a hig...Understanding vegetation water availability can be important for managing vegetation and combating climate change.Changes in vegetation water availability throughout China remains poorly understood,especially at a high spatial resolution.Standardized Precipitation Evapotranspiration Index(SPEI)is an ideal water availability index for assessing the spatiotemporal characteristics of drought and investigating the vegetation-water availability relationship.However,no high-resolution and long-term SPEI datasets over China are available.To fill this gap,we developed a new model based on machine learning to obtain high-resolution(1 km)SPEI data by combining climate variables with topographical and geographical features.Here,we analyzed the long-term drought over the past century(1901–2020)and vegetation-water availability relationship in the past two decades(2000–2020).The century-long drought trend analyses indicated an overall drying trend across China with increasing drought frequency,duration,and severity during the past century.We found that drought events in 1901–1961 showed a larger increase than that in 1961–2020,with the Qinghai-Xizang Plateau showing a significant drying trend during 1901–1960 but a wetting trend during 1961–2020.There were 13.90%and 28.21%of vegetation in China showing water deficit and water surplus respectively during 2000–2020.The water deficit area significantly shrank from 2000 to 2020 across China,which is dominated by the significant decrease in water deficit areas in South China.Among temperature,precipitation,and vegetation abundance,temperature is the most important factor for the vegetation-water availability dynamics in China over the past two decades,with high temperature contributing to water deficit.Our findings are important for water and vegetation management under a warming climate.展开更多
BACKGROUND Rectal cancer is a common malignant tumor of the digestive system,with older patients representing the predominantly affected population.Magnetic resonance imaging(MRI)has been widely applied in preoperativ...BACKGROUND Rectal cancer is a common malignant tumor of the digestive system,with older patients representing the predominantly affected population.Magnetic resonance imaging(MRI)has been widely applied in preoperative tumor assessment;however,the value of high-resolution MRI(HR-MRI)combined with dynamic contrast-enhanced(DCE)scanning in the preoperative diagnosis of rectal cancer in older patients remains unclear.AIM To evaluate the value of HR-MRI combined with DCE scanning in the preoperative diagnosis of rectal cancer in older patients.METHODS This retrospective study included 148 consecutive older female patients with rectal cancer who were treated at our hospital between December 2020 and December 2024.Clinical data and HR-MRI and DCE scan findings were collected.Histopathological examination after surgical resection served as the gold standard.The diagnostic accuracy of MRI for preoperative T and N staging was calculated.Consistency,sensitivity,and specificity between HR-MRI combined with DCE scanning and pathological staging were analyzed using the k test.Among the 148 patients,the overall accuracy of T staging was 84.5%.Sensitivity for T1,T2,T3,and T4 staging was 75.00%,62.50%,89.47%,and 90.48%,respectively,whereas specificity was 100.00%,94.35%,79.25%,and 96.06%,respectively.T staging based on HR-MRI combined with DCE scanning showed good agreement with pathological staging(k=0.8176,P<0.001).For N staging,sensitivity and specificity were 54.88%and 84.85%for N0,36.96%and 72.55%for N1,and 70.00%and 73.44%for N2,respectively;agreement with pathological N staging was poor(k=0.259,P<0.001).CONCLUSION HR-MRI combined with DCE scanning demonstrates high diagnostic accuracy for T staging of rectal cancer in older patients and can provide a theoretical basis for treatment planning.However,its diagnostic accuracy for N staging requires improvement.展开更多
High-resolution sub-meter satellite data play an increasingly crucial role in the 3D real-scene China construction initiative.Current research on 3D reconstruction using high-resolution satellite data primarily focuse...High-resolution sub-meter satellite data play an increasingly crucial role in the 3D real-scene China construction initiative.Current research on 3D reconstruction using high-resolution satellite data primarily focuses on two approaches:Multi-stereo fusion and multi-view matching.While algorithms based on these two methodologies for multi-view image 3D reconstruction have reached relative maturity,no systematic comparison has been conducted specifically on satellite data to evaluate the relative merits of multi-stereo fusion versus multi-view matching methods.This paper conducts a comparative analysis of the practical accuracy of both approaches using high-resolution satellite datasets from diverse geographical regions.To ensure fairness in accuracy comparison,both methodologies employ non-local dense matching for cost optimization.Results demonstrate that the multi-stereo fusion method outperforms multi-view matching in all evaluation metrics,exhibiting approximately 1.2%higher average matching accuracy and 10.7%superior elevation precision in the experimental datasets.Therefore,for 3D modeling applications using satellite data,we recommend adopting the multi-stereo fusion approach for digital surface model(DSM)product generation.展开更多
During drilling operations,the low resolution of seismic data often limits the accurate characterization of small-scale geological bodies near the borehole and ahead of the drill bit.This study investigates high-resol...During drilling operations,the low resolution of seismic data often limits the accurate characterization of small-scale geological bodies near the borehole and ahead of the drill bit.This study investigates high-resolution seismic data processing technologies and methods tailored for drilling scenarios.The high-resolution processing of seismic data is divided into three stages:pre-drilling processing,post-drilling correction,and while-drilling updating.By integrating seismic data from different stages,spatial ranges,and frequencies,together with information from drilled wells and while-drilling data,and applying artificial intelligence modeling techniques,a progressive high-resolution processing technology of seismic data based on multi-source information fusion is developed,which performs simple and efficient seismic information updates during drilling.Case studies show that,with the gradual integration of multi-source information,the resolution and accuracy of seismic data are significantly improved,and thin-bed weak reflections are more clearly imaged.The updated seismic information while-drilling demonstrates high value in predicting geological bodies ahead of the drill bit.Validation using logging,mud logging,and drilling engineering data ensures the fidelity of the processing results of high-resolution seismic data.This provides clearer and more accurate stratigraphic information for drilling operations,enhancing both drilling safety and efficiency.展开更多
High-resolution flow field data has important applications in meteorology,aerospace engineering,high-energy physics and other fields.Experiments and numerical simulations are two main ways to obtain high-resolution fl...High-resolution flow field data has important applications in meteorology,aerospace engineering,high-energy physics and other fields.Experiments and numerical simulations are two main ways to obtain high-resolution flow field data,while the high experiment cost and computing resources for simulation hinder the specificanalysis of flow field evolution.With the development of deep learning technology,convolutional neural networks areused to achieve high-resolution reconstruction of the flow field.In this paper,an ordinary convolutional neuralnetwork and a multi-time-path convolutional neural network are established for the ablative Rayleigh-Taylorinstability.These two methods can reconstruct the high-resolution flow field in just a few seconds,and further greatlyenrich the application of high-resolution reconstruction technology in fluid instability.Compared with the ordinaryconvolutional neural network,the multi-time-path convolutional neural network model has smaller error and canrestore more details of the flow field.The influence of low-resolution flow field data obtained by the two poolingmethods on the convolutional neural networks model is also discussed.展开更多
As digital image techniques have been widely used, the requirements for high-resolution images become increasingly stringent. Traditional single-frame interpolation techniques cannot add new high frequency information...As digital image techniques have been widely used, the requirements for high-resolution images become increasingly stringent. Traditional single-frame interpolation techniques cannot add new high frequency information to the expanded images, and cannot improve resolution in deed. Multiframe-based techniques are effective ways for high-resolution image reconstruction, but their computation complexities and the difficulties in achieving image sequences limit their applications. An original method using an artificial neural network is proposed in this paper. Using the inherent merits in neural network, we can establish the mapping between high frequency components in low-resolution images and high-resolution images. Example applications and their results demonstrated the images reconstructed by our method are aesthetically and quantitatively (using the criteria of MSE and MAE) superior to the images acquired by common methods. Even for infrared images this method can give satisfactory results with high definition. In addition, a single-layer linear neural network is used in this paper, the computational complexity is very low, and this method can be realized in real time.展开更多
BACKGROUND Non-suicidal self-injury(NSSI)is common among adolescents with depressive disorders and poses a major public health challenge.Rumination,a key cognitive feature of depression,includes different subtypes tha...BACKGROUND Non-suicidal self-injury(NSSI)is common among adolescents with depressive disorders and poses a major public health challenge.Rumination,a key cognitive feature of depression,includes different subtypes that may relate to NSSI through distinct psychological mechanisms.However,how these subtypes interact with specific NSSI behaviors remains unclear.AIM To examine associations between rumination subtypes and specific NSSI behaviors in adolescents.METHODS We conducted a cross-sectional study with 305 hospitalized adolescents diagnosed with depressive disorders.The subjects ranged from 12-18 years in age.Rumi-nation subtypes were assessed using the Ruminative Response Scale,and 12 NSSI behaviors were evaluated using a validated questionnaire.Network analysis was applied to explore symptom-level associations and identify central symptoms.RESULTS The network analysis revealed close connections between rumination subtypes and NSSI behaviors.Brooding was linked to behaviors such as hitting objects and burning.Scratching emerged as the most influential NSSI symptom.Symptomfocused rumination served as a key bridge connecting rumination and NSSI.CONCLUSION Symptom-focused rumination and scratching were identified as potential intervention targets.These findings highlight the psychological significance of specific cognitive-behavioral links in adolescent depression and suggest directions for tailored prevention and treatment.However,the cross-sectional,single-site design limits causal inference and generalizability.Future longitudinal and multi-center studies are needed to confirm causal pathways and verify the generalizability of the findings to broader adolescent populations.展开更多
Background:Wenqing Yin(WQY)is a classic prescription used to treat skin diseases like atopic dermatitis(AD)in China,and the aim of this study is to investigate the therapeutic effects and molecular mechanisms of WQY o...Background:Wenqing Yin(WQY)is a classic prescription used to treat skin diseases like atopic dermatitis(AD)in China,and the aim of this study is to investigate the therapeutic effects and molecular mechanisms of WQY on AD.Methods:The DNFB-induced mouse models of AD were established to investigate the therapeutic effects of WQY on AD.The symptoms of AD in the ears and backs of the mice were assessed,while inflammatory factors in the ear were quantified using quantitative real-time-polymerase chain reaction(qRT-PCR),and the percentages of CD4^(+)and CD8^(+)cells in the spleen were analyzed through flow cytometry.The compounds in WQY were identified using ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS)analysis and the key targets and pathways of WQY to treat AD were predicted by network pharmacology.Subsequently,the key genes were tested and verified by qRT-PCR,and the potential active components and target proteins were verified by molecular docking.Results:WQY relieved the AD symptoms and histopathological injuries in the ear and back skin of mice with AD.Meanwhile,WQY significantly reduced the levels of inflammatory factors IL-6 and IL-1βin ear tissue,as well as the ratio of CD4^(+)/CD8^(+)cells in spleen.Additionally,a total of 142 compounds were identified from the water extract of WQY by UPLC-Orbitrap-MS/MS.39 key targets related to AD were screened out by network pharmacology methods.The KEGG analysis indicated that the effects of WQY were primarily mediated through pathways associated with Toll-like receptor signaling and T cell receptor signaling.Moreover,the results of qRT-PCR demonstrated that WQY significantly reduced the mRNA expressions of IL-4,IL-10,GATA3 and FOXP3,and molecular docking simulation verified that the active components of WQY had excellent binding abilities with IL-4,IL-10,GATA3 and FOXP3 proteins.Conclusion:The present study demonstrated that WQY effectively relieved AD symptoms in mice,decreased the inflammatory factors levels,regulated the balance of CD4^(+)and CD8^(+)cells,and the mechanism may be associated with the suppression of Th2 and Treg cell immune responses.展开更多
This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for ...This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for identifying critical failure modes and their root causes,while BN introduces flexibility in probabilistic reasoning,enabling dynamic updates based on new evidence.This dual methodology overcomes the limitations of static FTA models,offering a comprehensive framework for system reliability analysis.Critical failures,including External Leakage(ELU),Failure to Start(FTS),and Overheating(OHE),were identified as key risks.By incorporating redundancy into high-risk components such as pumps and batteries,the likelihood of these failures was significantly reduced.For instance,redundant pumps reduced the probability of ELU by 31.88%,while additional batteries decreased the occurrence of FTS by 36.45%.The results underscore the practical benefits of combining FTA and BN for enhancing system reliability,particularly in maritime applications where operational safety and efficiency are critical.This research provides valuable insights for maintenance planning and highlights the importance of redundancy in critical systems,especially as the industry transitions toward more autonomous vessels.展开更多
The most reliable archive of atmospheric CO_(2) information comprises ice core records spanning the last 800 ka(thousand years ago).The connection between temperature and greenhouse gases,as deduced from ice core reco...The most reliable archive of atmospheric CO_(2) information comprises ice core records spanning the last 800 ka(thousand years ago).The connection between temperature and greenhouse gases,as deduced from ice core records,may help better simulate CO_(2) variations.This research aimed to explore the model methods to precisely predict the atmospheric CO_(2) concentrations and fill the CO_(2) data gaps with CH4 concentration and temperature proxies(δD andδ18O)from Antarctica ice cores,employing Artificial Neural Network(ANN)and Wavelet Transform(WT)techniques.This study was divided into three sections to examine various timescales and resolutions.First,coarse-resolution CO_(2) records from the Vostok and EPICA Dronning Maud Land cores from 70–120 ka were used.Second,the models were applied to the Dome Fuji core for 9–120 ka.Finally,a high-resolution West Antarctic Ice Sheet(WAIS)Divide ice core record,focusing on the 9–70 ka,was employed.The results showed that between 70–120 ka,the hybrid method surpasses the traditional ANN approach.The hybrid method maintained superior performance in the last phase by utilizing high-resolution WAIS record.The results indicated improved accuracy(r=0.98),reinforcing the notion that hybrid methods yield better outcomes than those relying solely on AI methods.展开更多
基金supported in part by the National Natural Science Foundation of China 6167246662011530130,Joint Fund of Zhejiang Provincial Natural Science Foundation LSZ19F010001.
文摘Scale variation is amajor challenge inmulti-person pose estimation.In scenes where persons are present at various distances,models tend to perform better on larger-scale persons,while the performance for smaller-scale persons often falls short of expectations.Therefore,effectively balancing the persons of different scales poses a significant challenge.So this paper proposes a newmulti-person pose estimation model called FSANet to improve themodel’s performance in complex scenes.Our model utilizes High-Resolution Network(HRNet)as the backbone and feeds the outputs of the last stage’s four branches into the DCB module.The dilated convolution-based(DCB)module employs a parallel structure that incorporates dilated convolutions with different rates to expand the receptive field of each branch.Subsequently,the attention operation-based(AOB)module performs attention operations at both branch and channel levels to enhance high-frequency features and reduce the influence of noise.Finally,predictions are made using the heatmap representation.The model can recognize images with diverse scales and more complex semantic information.Experimental results demonstrate that FSA Net achieves competitive results on the MSCOCO and MPII datasets,validating the effectiveness of our proposed approach.
基金the National Natural Science Foundation of China under grant 62172059 and 62072055Hunan Provincial Natural Science Foundations of China under Grant 2020JJ4626+2 种基金Scientific Research Fund of Hunan Provincial Education Department of China under Grant 19B004“Double First-class”International Cooperation and Development Scientific Research Project of Changsha University of Science and Technology under Grant 2018IC25the Young Teacher Growth Plan Project of Changsha University of Science and Technology under Grant 2019QJCZ076.
文摘Now object detection based on deep learning tries different strategies.It uses fewer data training networks to achieve the effect of large dataset training.However,the existing methods usually do not achieve the balance between network parameters and training data.It makes the information provided by a small amount of picture data insufficient to optimize model parameters,resulting in unsatisfactory detection results.To improve the accuracy of few shot object detection,this paper proposes a network based on the transformer and high-resolution feature extraction(THR).High-resolution feature extractionmaintains the resolution representation of the image.Channels and spatial attention are used to make the network focus on features that are more useful to the object.In addition,the recently popular transformer is used to fuse the features of the existing object.This compensates for the previous network failure by making full use of existing object features.Experiments on the Pascal VOC and MS-COCO datasets prove that the THR network has achieved better results than previous mainstream few shot object detection.
基金supported by the Natural Science Foundation of Hubei Provincial Department of Education(D20232101)Shandong Second Medical University 2024 Affiliated Hospital(Teaching Hospital)Scientific Research Development Fund Project(2024FYQ026)+3 种基金the innovative Research Programme of Xiangyang No.1 People’s Hospital(XYY2023ZY01)Faculty Development Grants of Xiangyang No.1 People’s Hospital Affiliated to Hubei University of Medicine(XYY2023D05)Joint supported by Hubei Provincial Natural Science Foundation and Xiangyang of China(2025AFD091)Traditional Chinese Medicine Scientific Research Project of Hubei Provincial Administration of Traditional Chinese Medicine(ZY2025D019).
文摘Background:Diabetic foot,a severe complication of diabetes,is characterized by chronic refractory wounds.Sanhuang Oil,a topical herbal formula,demonstrates significant therapeutic effects including antibacterial,anti-inflammatory,and immunomodulatory activities.However,its active constituents and mechanisms of action against diabetic foot remain to be elucidated.Methods:In this study,the chemical constituents of Sanhuang Oil were identified using UPLC-QE-Orbitrap-MS.Subsequently,the mechanism by which Sanhuang Oil promotes diabetic foot ulcer healing was predicted by integrating network pharmacology and molecular docking.Additionally,diabetic mouse model was established in ICR mice using a combination of a high-fat diet(HFD)and streptozotocin(STZ)chemical induction.A full-thickness skin defect was created on the dorsum of the mice.Wound healing and the healing rate were observed following Sanhuang Oil intervention.The mechanism underlying Sanhuang Oil’s promotion of diabetic ulcer healing was further investigated using transcriptomics and histopathological examination(H&E staining).Results:A total of 97 active ingredients were identified from Sanhuang Oil.Network pharmacology analysis predicted 543 common targets,and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis identified 203 relevant pathways.Molecular docking further confirmed high binding affinity(binding energy≤−5.0 kcal/mol)between specific active components in Sanhuang Oil(e.g.,coptisine,phellodendrine,baicalein)and key targets associated with diabetic foot ulcers(e.g.,EGFR,AKT1,STAT3).In vivo experimental results demonstrated that the wound healing rate was significantly higher in Sanhuang Oil-treated groups compared to the model group(P<0.001).HE staining revealed that the high-dose Sanhuang Oil group exhibited more pronounced epithelial tissue coverage over the wound,reduced inflammatory cell infiltration,and increased collagen deposition and fibroblast proliferation.transcriptomic analysis identified Pdk4,Ttn,Csrp3,Actn2,Myoz2,Tnnc2,Myod1,Myog,Myot,and Myf6 as key regulatory proteins involved in promoting wound healing.Conclusion:Sanhuang Oil promotes wound healing in diabetic ulcer mice,potentially by mitigating inflammation and regulating key targets such as Pdk4 to enhance fibroblast function.These findings provide novel insights into the multi-target,multi-pathway mechanism of Sanhuang Oil for treating diabetic foot ulcers.
基金financial support from the National Natural Science Foundation of China(Grant No.61971201)。
文摘High-resolution transmission electron microscopy(HRTEM)promises rapid atomic-scale dynamic structure imaging.Yet,the precision limitations of aberration parameters and the challenge of eliminating aberrations in Cs-corrected transmission electron microscopy constrain resolution.A machine learning algorithm is developed to determine the aberration parameters with higher precision from small,lattice-periodic crystal images.The proposed algorithm is then validated with simulated HRTEM images of graphene and applied to the experimental images of a molybdenum disulfide(MoS_(2))monolayer with 25 variables(14 aberrations)resolved in wide ranges.Using these measured parameters,the phases of the exit-wave functions are reconstructed for each image in a focal series of MoS_(2)monolayers.The images were acquired due to the unexpected movement of the specimen holder.Four-dimensional data extraction reveals time-varying atomic structures and ripple.In particular,the atomic evolution of the sulfur-vacancy point and line defects,as well as the edge structure near the amorphous,is visualized as the resolution has been improved from about 1.75?to 0.9 A.This method can help salvage important transmission electron microscope images and is beneficial for the images obtained from electron microscopes with average stability.
基金supported by the National Basic Research Program of China(973 Program)under Grant 2012CB719901the National Natural Science Foundation of China under Grant 41074005the 2013 Doctoral Innovation Funds of Southwest Jiaotong University
文摘Ground subsidence is one of the key factors damaging transportation facilities, e.g., road networks consisting of highways and railways. In this paper, we propose to apply the persistent scatterer synthetic aperture radar interferometry (PS-InSAR) approach that uses high- resolution TerraSAR-X (TSX) imagery to extract the regional scale subsidence rates (i.e., average annual sub- sidence in mm/year) along road networks. The primary procedures involve interferometric pair selection, interfer- ogram generation, persistent scatterer (PS) detection, PS networking, phase parameterization, and subsidence rate estimation. The Xiqing District in southwest Tianjin (China) is selected as the study area. This district contains one railway line and several highway lines. A total of 15 TSX images covering this area between April 2009 and June 2010 are utilized to obtain the subsidence rates by using the PS-InSAR (PSI) approach. The subsidence rates derived from PSI range from -68.7 to -1.3 mm/year. These findings show a significantly uneven subsidence pattern along the road network. Comparison between the PSI-derived subsidence rates and the leveling data obtained along the highways shows that the mean and standard deviation (SD) of the discrepancies between the two types of subsidence rates are 0.1 and 4-3.2 mm/year, respectively. The results indicate that the high-resolution TSX PSI is capable of providing comprehensive and detailed subsidence information regarding road networks with millimeter-level accuracy. Further inspections under geo- logical conditions and land-use categories in the study area indicate that the observed subsidence is highly related to aquifer compression due to groundwater pumping. Therefore, measures should be taken to mitigate groundwater extraction for the study area.
基金the Natural Science Foundation of Zhejiang Province(Grant No.LR19E090001)the Natural Science Foundation of China(Grant Nos.42077252,42011530122,and 51979272).
文摘Nonlinear flow behavior of fluids through three-dimensional(3D)discrete fracture networks(DFNs)considering effects of fracture number,surface roughness and fracture aperture was experimentally and numerically investigated.Three physical models of DFNs were 3D-printed and then computed tomography(CT)-scanned to obtain the specific geometry of fractures.The validity of numerically simulating the fluid flow through DFNs was verified via comparison with flow tests on the 3D-printed models.A parametric study was then implemented to establish quantitative relations between the coefficients/parameters in Forchheimer’s law and geometrical parameters.The results showed that the 3D-printing technique can well reproduce the geometry of single fractures with less precision when preparing complex fracture networks,numerical modeling precision of which can be improved via CT-scanning as evidenced by the well fitted results between fluid flow tests and numerical simulations using CT-scanned digital models.Streamlines in DFNs become increasingly tortuous as the fracture number and roughness increase,resulting in stronger inertial effects and greater curvatures of hydraulic pressure-low rate relations,which can be well characterized by the Forchheimer’s law.The critical hydraulic gradient for the onset of nonlinear flow decreases with the increasing aperture,fracture number and roughness,following a power function.The increases in fracture aperture and number provide more paths for fluid flow,increasing both the viscous and inertial permeabilities.The value of the inertial permeability is approximately four orders of magnitude greater than the viscous permeability,following a power function with an exponent a of 3,and a proportional coefficient b mathematically correlated with the geometrical parameters.
基金supported by the National Natural Science Foundation of China(61772179)Hunan Provincial Natural Science Foundation of China(2022JJ50016,2023JJ50095)+1 种基金the Science and Technology Plan Project of Hunan Province(2016TP1020)Double First-Class University Project of Hunan Province(Xiangjiaotong[2018]469,[2020]248).
文摘The objective of image-based virtual try-on is to seamlessly integrate clothing onto a target image, generating a realistic representation of the character in the specified attire. However, existing virtual try-on methods frequently encounter challenges, including misalignment between the body and clothing, noticeable artifacts, and the loss of intricate garment details. To overcome these challenges, we introduce a two-stage high-resolution virtual try-on framework that integrates an attention mechanism, comprising a garment warping stage and an image generation stage. During the garment warping stage, we incorporate a channel attention mechanism to effectively retain the critical features of the garment, addressing challenges such as the loss of patterns, colors, and other essential details commonly observed in virtual try-on images produced by existing methods. During the image generation stage, with the aim of maximizing the utilization of the information proffered by the input image, the input features undergo double sampling within the normalization procedure, thereby enhancing the detail fidelity and clothing alignment efficacy of the output image. Experimental evaluations conducted on high-resolution datasets validate the effectiveness of the proposed method. Results demonstrate significant improvements in preserving garment details, reducing artifacts, and achieving superior alignment between the clothing and body compared to baseline methods, establishing its advantage in generating realistic and high-quality virtual try-on images.
基金Supported by the Earmarked Fund for Hebei Agriculture Research System(HBCT2024260407)。
文摘[Objective]The paper aimed to effectively reduce the occurrence of bacterial resistance associated with breeding practices and to mitigate food safety risks by controlling the illegal use of veterinary drugs in self-formulated feed at the source.[Method]A screening database comprising 274 illegally added chemical drugs in self-formulated feed was established utilizing ultra-performance liquid chromatography coupled with quadrupole/electrostatic field orbitrap high-resolution mass spectrometry(HPLC-Q-Exactive Focus/MS).Subsequently,253 batches of self-formulated feed samples from various farms in Hebei Province were screened and quantitatively analyzed.[Result]The screening results indicated the presence of 8 pharmaceutical components across 10 batches of self-formulated feed samples,with a detection rate of 3.2%and concentrations ranging from 0.06 to 28851.8μg/g.[Conclusion]The application of high-resolution mass spectrometry is feasible and highly significant for the risk monitoring of illegally added drugs in self-formulated feed.
基金The National Natural Science Foundation of China under contract No.42425606the Basic Scientific Fund for the National Public Research Institute of China(Shu-Xingbei Young Talent Program)under contract No.2023S01+1 种基金the Ocean Decade International Cooperation Center Scientific and Technological Cooperation Project under contract No.GHKJ2024005China-Korea Joint Ocean Research Center Project under contract Nos PI-20240101(China)and 20220407(Korea).
文摘In oceanic and atmospheric science,finer resolutions have become a prevailing trend in all aspects of development.For high-resolution fluid flow simulations,the computational costs of widely used numerical models increase significantly with the resolution.Artificial intelligence methods have attracted increasing attention because of their high precision and fast computing speeds compared with traditional numerical model methods.The resolution-independent Fourier neural operator(FNO)presents a promising solution to the still challenging problem of high-resolution fluid flow simulations based on low-resolution data.Accordingly,we assess the potential of FNO for high-resolution fluid flow simulations using the vorticity equation as an example.We assess and compare the performance of FNO in multiple high-resolution tests varying the amounts of data and the evolution durations.When assessed with finer resolution data(even up to number of grid points with 1280×1280),the FNO model,trained at low resolution(number of grid points with 64×64)and with limited data,exhibits a stable overall error and good accuracy.Additionally,our work demonstrates that the FNO model takes less time than the traditional numerical method for high-resolution simulations.This suggests that FNO has the prospect of becoming a cost-effective and highly precise model for high-resolution simulations in the future.Moreover,FNO can make longer high-resolution predictions while training with less data by superimposing vorticity fields from previous time steps as input.A suitable initial learning rate can be set according to the frequency principle,and the time intervals of the dataset need to be adjusted according to the spatial resolution of the input when training the FNO model.Our findings can help optimize FNO for future fluid flow simulations.
文摘While algorithms have been created for land usage in urban settings,there have been few investigations into the extraction of urban footprint(UF).To address this research gap,the study employs several widely used image classification method classified into three categories to evaluate their segmentation capabilities for extracting UF across eight cities.The results indicate that pixel-based methods only excel in clear urban environments,and their overall accuracy is not consistently high.RF and SVM perform well but lack stability in object-based UF extraction,influenced by feature selection and classifier performance.Deep learning enhances feature extraction but requires powerful computing and faces challenges with complex urban layouts.SAM excels in medium-sized urban areas but falters in intricate layouts.Integrating traditional and deep learning methods optimizes UF extraction,balancing accuracy and processing efficiency.Future research should focus on adapting algorithms for diverse urban landscapes to enhance UF extraction accuracy and applicability.
基金funded by the General Program of National Natural Science Foundation of China(Grant No.42377467).
文摘Understanding vegetation water availability can be important for managing vegetation and combating climate change.Changes in vegetation water availability throughout China remains poorly understood,especially at a high spatial resolution.Standardized Precipitation Evapotranspiration Index(SPEI)is an ideal water availability index for assessing the spatiotemporal characteristics of drought and investigating the vegetation-water availability relationship.However,no high-resolution and long-term SPEI datasets over China are available.To fill this gap,we developed a new model based on machine learning to obtain high-resolution(1 km)SPEI data by combining climate variables with topographical and geographical features.Here,we analyzed the long-term drought over the past century(1901–2020)and vegetation-water availability relationship in the past two decades(2000–2020).The century-long drought trend analyses indicated an overall drying trend across China with increasing drought frequency,duration,and severity during the past century.We found that drought events in 1901–1961 showed a larger increase than that in 1961–2020,with the Qinghai-Xizang Plateau showing a significant drying trend during 1901–1960 but a wetting trend during 1961–2020.There were 13.90%and 28.21%of vegetation in China showing water deficit and water surplus respectively during 2000–2020.The water deficit area significantly shrank from 2000 to 2020 across China,which is dominated by the significant decrease in water deficit areas in South China.Among temperature,precipitation,and vegetation abundance,temperature is the most important factor for the vegetation-water availability dynamics in China over the past two decades,with high temperature contributing to water deficit.Our findings are important for water and vegetation management under a warming climate.
基金Supported by Tianjin Key Medical Discipline(Specialty)Construction Project,No.TJYXZDXK-3-012B.
文摘BACKGROUND Rectal cancer is a common malignant tumor of the digestive system,with older patients representing the predominantly affected population.Magnetic resonance imaging(MRI)has been widely applied in preoperative tumor assessment;however,the value of high-resolution MRI(HR-MRI)combined with dynamic contrast-enhanced(DCE)scanning in the preoperative diagnosis of rectal cancer in older patients remains unclear.AIM To evaluate the value of HR-MRI combined with DCE scanning in the preoperative diagnosis of rectal cancer in older patients.METHODS This retrospective study included 148 consecutive older female patients with rectal cancer who were treated at our hospital between December 2020 and December 2024.Clinical data and HR-MRI and DCE scan findings were collected.Histopathological examination after surgical resection served as the gold standard.The diagnostic accuracy of MRI for preoperative T and N staging was calculated.Consistency,sensitivity,and specificity between HR-MRI combined with DCE scanning and pathological staging were analyzed using the k test.Among the 148 patients,the overall accuracy of T staging was 84.5%.Sensitivity for T1,T2,T3,and T4 staging was 75.00%,62.50%,89.47%,and 90.48%,respectively,whereas specificity was 100.00%,94.35%,79.25%,and 96.06%,respectively.T staging based on HR-MRI combined with DCE scanning showed good agreement with pathological staging(k=0.8176,P<0.001).For N staging,sensitivity and specificity were 54.88%and 84.85%for N0,36.96%and 72.55%for N1,and 70.00%and 73.44%for N2,respectively;agreement with pathological N staging was poor(k=0.259,P<0.001).CONCLUSION HR-MRI combined with DCE scanning demonstrates high diagnostic accuracy for T staging of rectal cancer in older patients and can provide a theoretical basis for treatment planning.However,its diagnostic accuracy for N staging requires improvement.
文摘High-resolution sub-meter satellite data play an increasingly crucial role in the 3D real-scene China construction initiative.Current research on 3D reconstruction using high-resolution satellite data primarily focuses on two approaches:Multi-stereo fusion and multi-view matching.While algorithms based on these two methodologies for multi-view image 3D reconstruction have reached relative maturity,no systematic comparison has been conducted specifically on satellite data to evaluate the relative merits of multi-stereo fusion versus multi-view matching methods.This paper conducts a comparative analysis of the practical accuracy of both approaches using high-resolution satellite datasets from diverse geographical regions.To ensure fairness in accuracy comparison,both methodologies employ non-local dense matching for cost optimization.Results demonstrate that the multi-stereo fusion method outperforms multi-view matching in all evaluation metrics,exhibiting approximately 1.2%higher average matching accuracy and 10.7%superior elevation precision in the experimental datasets.Therefore,for 3D modeling applications using satellite data,we recommend adopting the multi-stereo fusion approach for digital surface model(DSM)product generation.
基金Supported by the National Natural Science Foundation of China(U24B2031)National Key Research and Development Project(2018YFA0702504)"14th Five-Year Plan"Science and Technology Project of CNOOC(KJGG2022-0201)。
文摘During drilling operations,the low resolution of seismic data often limits the accurate characterization of small-scale geological bodies near the borehole and ahead of the drill bit.This study investigates high-resolution seismic data processing technologies and methods tailored for drilling scenarios.The high-resolution processing of seismic data is divided into three stages:pre-drilling processing,post-drilling correction,and while-drilling updating.By integrating seismic data from different stages,spatial ranges,and frequencies,together with information from drilled wells and while-drilling data,and applying artificial intelligence modeling techniques,a progressive high-resolution processing technology of seismic data based on multi-source information fusion is developed,which performs simple and efficient seismic information updates during drilling.Case studies show that,with the gradual integration of multi-source information,the resolution and accuracy of seismic data are significantly improved,and thin-bed weak reflections are more clearly imaged.The updated seismic information while-drilling demonstrates high value in predicting geological bodies ahead of the drill bit.Validation using logging,mud logging,and drilling engineering data ensures the fidelity of the processing results of high-resolution seismic data.This provides clearer and more accurate stratigraphic information for drilling operations,enhancing both drilling safety and efficiency.
基金National Natural Science Foundation of China(1180500311947102+4 种基金12004005)Natural Science Foundation of Anhui Province(2008085MA162008085QA26)University Synergy Innovation Program of Anhui Province(GXXT-2022-039)State Key Laboratory of Advanced Electromagnetic Technology(Grant No.AET 2024KF006)。
文摘High-resolution flow field data has important applications in meteorology,aerospace engineering,high-energy physics and other fields.Experiments and numerical simulations are two main ways to obtain high-resolution flow field data,while the high experiment cost and computing resources for simulation hinder the specificanalysis of flow field evolution.With the development of deep learning technology,convolutional neural networks areused to achieve high-resolution reconstruction of the flow field.In this paper,an ordinary convolutional neuralnetwork and a multi-time-path convolutional neural network are established for the ablative Rayleigh-Taylorinstability.These two methods can reconstruct the high-resolution flow field in just a few seconds,and further greatlyenrich the application of high-resolution reconstruction technology in fluid instability.Compared with the ordinaryconvolutional neural network,the multi-time-path convolutional neural network model has smaller error and canrestore more details of the flow field.The influence of low-resolution flow field data obtained by the two poolingmethods on the convolutional neural networks model is also discussed.
文摘As digital image techniques have been widely used, the requirements for high-resolution images become increasingly stringent. Traditional single-frame interpolation techniques cannot add new high frequency information to the expanded images, and cannot improve resolution in deed. Multiframe-based techniques are effective ways for high-resolution image reconstruction, but their computation complexities and the difficulties in achieving image sequences limit their applications. An original method using an artificial neural network is proposed in this paper. Using the inherent merits in neural network, we can establish the mapping between high frequency components in low-resolution images and high-resolution images. Example applications and their results demonstrated the images reconstructed by our method are aesthetically and quantitatively (using the criteria of MSE and MAE) superior to the images acquired by common methods. Even for infrared images this method can give satisfactory results with high definition. In addition, a single-layer linear neural network is used in this paper, the computational complexity is very low, and this method can be realized in real time.
基金Supported by Key Research and Development Program of Shaanxi Province,China,No.2024SF-YBXM-078.
文摘BACKGROUND Non-suicidal self-injury(NSSI)is common among adolescents with depressive disorders and poses a major public health challenge.Rumination,a key cognitive feature of depression,includes different subtypes that may relate to NSSI through distinct psychological mechanisms.However,how these subtypes interact with specific NSSI behaviors remains unclear.AIM To examine associations between rumination subtypes and specific NSSI behaviors in adolescents.METHODS We conducted a cross-sectional study with 305 hospitalized adolescents diagnosed with depressive disorders.The subjects ranged from 12-18 years in age.Rumi-nation subtypes were assessed using the Ruminative Response Scale,and 12 NSSI behaviors were evaluated using a validated questionnaire.Network analysis was applied to explore symptom-level associations and identify central symptoms.RESULTS The network analysis revealed close connections between rumination subtypes and NSSI behaviors.Brooding was linked to behaviors such as hitting objects and burning.Scratching emerged as the most influential NSSI symptom.Symptomfocused rumination served as a key bridge connecting rumination and NSSI.CONCLUSION Symptom-focused rumination and scratching were identified as potential intervention targets.These findings highlight the psychological significance of specific cognitive-behavioral links in adolescent depression and suggest directions for tailored prevention and treatment.However,the cross-sectional,single-site design limits causal inference and generalizability.Future longitudinal and multi-center studies are needed to confirm causal pathways and verify the generalizability of the findings to broader adolescent populations.
基金supported by grants from the National Natural Science Foundation of China(82004252)the Project of Administration of Traditional Chinese Medicine of Guangdong Province(202405112017596500)the Basic and Applied Basic Research Foundation of Guangzhou Municipal Science and Technology Bureau(202102020533).
文摘Background:Wenqing Yin(WQY)is a classic prescription used to treat skin diseases like atopic dermatitis(AD)in China,and the aim of this study is to investigate the therapeutic effects and molecular mechanisms of WQY on AD.Methods:The DNFB-induced mouse models of AD were established to investigate the therapeutic effects of WQY on AD.The symptoms of AD in the ears and backs of the mice were assessed,while inflammatory factors in the ear were quantified using quantitative real-time-polymerase chain reaction(qRT-PCR),and the percentages of CD4^(+)and CD8^(+)cells in the spleen were analyzed through flow cytometry.The compounds in WQY were identified using ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS)analysis and the key targets and pathways of WQY to treat AD were predicted by network pharmacology.Subsequently,the key genes were tested and verified by qRT-PCR,and the potential active components and target proteins were verified by molecular docking.Results:WQY relieved the AD symptoms and histopathological injuries in the ear and back skin of mice with AD.Meanwhile,WQY significantly reduced the levels of inflammatory factors IL-6 and IL-1βin ear tissue,as well as the ratio of CD4^(+)/CD8^(+)cells in spleen.Additionally,a total of 142 compounds were identified from the water extract of WQY by UPLC-Orbitrap-MS/MS.39 key targets related to AD were screened out by network pharmacology methods.The KEGG analysis indicated that the effects of WQY were primarily mediated through pathways associated with Toll-like receptor signaling and T cell receptor signaling.Moreover,the results of qRT-PCR demonstrated that WQY significantly reduced the mRNA expressions of IL-4,IL-10,GATA3 and FOXP3,and molecular docking simulation verified that the active components of WQY had excellent binding abilities with IL-4,IL-10,GATA3 and FOXP3 proteins.Conclusion:The present study demonstrated that WQY effectively relieved AD symptoms in mice,decreased the inflammatory factors levels,regulated the balance of CD4^(+)and CD8^(+)cells,and the mechanism may be associated with the suppression of Th2 and Treg cell immune responses.
基金supported by Istanbul Technical University(Project No.45698)supported through the“Young Researchers’Career Development Project-training of doctoral students”of the Croatian Science Foundation.
文摘This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for identifying critical failure modes and their root causes,while BN introduces flexibility in probabilistic reasoning,enabling dynamic updates based on new evidence.This dual methodology overcomes the limitations of static FTA models,offering a comprehensive framework for system reliability analysis.Critical failures,including External Leakage(ELU),Failure to Start(FTS),and Overheating(OHE),were identified as key risks.By incorporating redundancy into high-risk components such as pumps and batteries,the likelihood of these failures was significantly reduced.For instance,redundant pumps reduced the probability of ELU by 31.88%,while additional batteries decreased the occurrence of FTS by 36.45%.The results underscore the practical benefits of combining FTA and BN for enhancing system reliability,particularly in maritime applications where operational safety and efficiency are critical.This research provides valuable insights for maintenance planning and highlights the importance of redundancy in critical systems,especially as the industry transitions toward more autonomous vessels.
基金supported by the Brain Pool Program through the National Research Foundation of Korea(NRF)and funded by the Ministry of Science and ICT[Grant numbers:2020H1D3A1A04081353,2020M1A5A1110607,2018R1A5A1024958,and RS-2023-00291696].
文摘The most reliable archive of atmospheric CO_(2) information comprises ice core records spanning the last 800 ka(thousand years ago).The connection between temperature and greenhouse gases,as deduced from ice core records,may help better simulate CO_(2) variations.This research aimed to explore the model methods to precisely predict the atmospheric CO_(2) concentrations and fill the CO_(2) data gaps with CH4 concentration and temperature proxies(δD andδ18O)from Antarctica ice cores,employing Artificial Neural Network(ANN)and Wavelet Transform(WT)techniques.This study was divided into three sections to examine various timescales and resolutions.First,coarse-resolution CO_(2) records from the Vostok and EPICA Dronning Maud Land cores from 70–120 ka were used.Second,the models were applied to the Dome Fuji core for 9–120 ka.Finally,a high-resolution West Antarctic Ice Sheet(WAIS)Divide ice core record,focusing on the 9–70 ka,was employed.The results showed that between 70–120 ka,the hybrid method surpasses the traditional ANN approach.The hybrid method maintained superior performance in the last phase by utilizing high-resolution WAIS record.The results indicated improved accuracy(r=0.98),reinforcing the notion that hybrid methods yield better outcomes than those relying solely on AI methods.