High-purity indium finds extensive application in the aerospace,electronics,medical,energy,and national defense sectors.Its purity and impurity contents significantly influence its performance in these applications.Hi...High-purity indium finds extensive application in the aerospace,electronics,medical,energy,and national defense sectors.Its purity and impurity contents significantly influence its performance in these applications.High-purity indium was prepared by combining zone refining with vacuum distillation.Results show that the average removal efficiency of impurity Sb can approach 95%,while the removal efficiency of impurities Sn and Bi can reach over 95%,and the removal efficiency of Si,Fe,Ni,and Pb can reach over 85%.Ultimately,the amount of Sn and Sb impurities is reduced to 2.0 and 4.1μg/kg,respectively,and that of most impurities,including Fe,Ni,Pb,and Bi,is reduced to levels below the instrumental detection limit.The average impurity removal efficiency is 90.9%,and the indium purity reaches 7N9.展开更多
A high-purity Ti sheet with dense preexisting twins(introduced by 10%cold rolling)was subjected to isochronal annealing at 500–800°C for 1 h and isothermal annealing at 600°C for 0.17–100 h,respectively.By...A high-purity Ti sheet with dense preexisting twins(introduced by 10%cold rolling)was subjected to isochronal annealing at 500–800°C for 1 h and isothermal annealing at 600°C for 0.17–100 h,respectively.By mainly utilizing electron backscatter diffraction(EBSD)and electron channel contrast(ECC)imaging techniques,the microstructure and texture evolution during the isochronal and isothermal annealing were investigated systematically.Results show that recrystallization nuclei appear in the specimen annealed at 600°C for 1 h.In contrast,recrystallization cannot be initiated for those annealed at lower temperatures or for a shorter time.With the increase in temperature or time,the fraction of the recrystallized structure increases with gradual grain coarsening.Nearly complete recrystallization is reached after 800°C-1 h or 600°C-100 h annealing.Due to the distribution heterogeneity of microstructure and stored energy induced by the dense preexisting twins,recrystallization nucleation preferentially occurs in some specific regions(twin-twin or twin-grain boundary junctions).Then,they selectively consume twin lamellar structures,leading to non-uniform grain growth.It is demonstrated that the recrystallization nucleation is dominated by the strain-induced boundary migration mechanism,allowing scattered texture components corresponding to the twin lamellar structures to be gradually encroached by those untwinned structures with the initial bimodal basal texture(BBT).Eventually,a strong BBT is always obtained after sufficient recrystallization.展开更多
High-purity antimony(Sb)is essential for industries like semiconductors and photovoltaics,driving research on its production.This review summarizes research advances in production and preparation techniques for high-p...High-purity antimony(Sb)is essential for industries like semiconductors and photovoltaics,driving research on its production.This review summarizes research advances in production and preparation techniques for high-purity Sb.Three process flowcharts to produce high-purity Sb are described according to different raw materials.Various process parameters of vacuum distillation,zone refining purification techniques and research progress in the field of high-purity Sb are discussed.Numerical simulation,atomic scale simulation,and research progress of alloying elements in the field of high-purity Sb are highlighted.It is shown that for the difficult removal of As element in Sb,the addition of Al makes the regional refining process more effective in reducing the arsenic content.Finally,the purification of high-purity Sb is summarized,providing insights into achieving efficient and environmentally friendly high-purity Sb production and outlining future directions.展开更多
High-purity silver(Ag)is extensively utilized in electronics,aerospace,and other advanced industries due to its excellent thermal conductivity,electrical conductivity,and machinability.However,the prohibitive material...High-purity silver(Ag)is extensively utilized in electronics,aerospace,and other advanced industries due to its excellent thermal conductivity,electrical conductivity,and machinability.However,the prohibitive material cost poses substantial challenges for optimizing thermal processing parameters through repetitive experimental trials.In this work,hot compression experiments on high-purity silver were conducted using a Gleeble-3800 thermal simulator.The high temperature deformation behaviors,dynamic recovery(DRV)and dynamic recrystallization(DRX)of high-purity silver were studied by constructing an Arrhenius constitutive equation and developing thermal processing maps.The results show that plastic instability of high-purity silver occurs at high strain rates and the optimized hot processing parameters are the strain rate below 0.001 s^(−1) and the temperature of 340−400℃.Microstructural observations exhibit that DRV prefers to occur at lower deformation temperatures(e.g.,250℃).This is attributed to the low stacking fault energy of high-purity silver,which facilitates the decomposition of dislocations into partial dislocations and promotes high-density dislocation accumulation.Furthermore,DRX in high-purity silver becomes increasingly pronounced with increasing deformation temperature and reaches saturation at 350℃.展开更多
The rapid growth of semiconductor,photovoltaic,and other emerging industries has led to a sharp increase in the demand for high-purity quartz in China,particularly 4N5-grade(99.995%pure SiO_(2)).However,heavy reliance...The rapid growth of semiconductor,photovoltaic,and other emerging industries has led to a sharp increase in the demand for high-purity quartz in China,particularly 4N5-grade(99.995%pure SiO_(2)).However,heavy reliance on imported high-purity quartz poses a significant risk to the security of key national strategic industries.To address this challenge,China is focusing on identifying domestic sources of high-purity quartz and developing efficient evaluation methods.This study investigates the inclusion content in three types of quartz:pegmatite,vein quartz,and white granite.A grading system based on the transmittance of quartz grains was established by analyz-ing the number of inclusions.Five quartz ore samples from different regions were purified,and the resulting concentrates were analyzed using inductively coupled plasma mass spectrometry(ICP-MS).The relationships among the inclusion content of raw quartz,impurity composition of purified quartz,and quality of sintered fused quartz products were examined.The findings demonstrate that quartz with fewer inclusions results in lower impurity levels after purification,higher SiO_(2)purity,and more translucent glass,as confirmed by firing tests.Herein,this study establishes a clear connection between quartz inclusions and the overall quality of high-purity quartz.The pro-posed approach enables the rapid assessment of quartz deposit quality by identifying inclusions,offering a practical and efficient method for locating high-quality quartz resources.展开更多
The effects of various contaminants in the electrolytic refinement of indium were investigated using a glow discharge mass spectrometer(GDMS).The effects of several factors such as the indium ion(In3+)concentration,th...The effects of various contaminants in the electrolytic refinement of indium were investigated using a glow discharge mass spectrometer(GDMS).The effects of several factors such as the indium ion(In3+)concentration,the sodium chloride(NaCl)concentration,the current density,the gelatin concentration,the pH,and the electrode distance,were examined.Significant variations in impurity levels concerning gelatin concentration were observed.Both the gelatin and In3+concentration were moderately positively correlated with the Pb content.The Sb concentration was associated positively with the NaCl concentration,while the Ti concentration had an adverse correlation with the NaCl concentration.The Bi element content was positively linked to the electrode distance.As the current density increased,Cu,Pb,and Bi impurities initially rose and then eventually declined.Notably,a critical current density of 45 A·m^(-2) was identified in this behavior.展开更多
Iron-rich electrolytic manganese residue(IREMR)is an industrial waste produced during the processing of electrolytic metal manganese,and it contains certain amounts of Fe and Mn resources and other heavy metals.In thi...Iron-rich electrolytic manganese residue(IREMR)is an industrial waste produced during the processing of electrolytic metal manganese,and it contains certain amounts of Fe and Mn resources and other heavy metals.In this study,the slurry electrolysis technique was used to recover high-purity Fe powder from IREMR.The effects of IREMR and H2SO4 mass ratio,current density,reaction temper-ature,and electrolytic time on the leaching and current efficiencies of Fe were studied.According to the results,high-purity Fe powder can be recovered from the cathode plate,and the slurry electrolyte can be recycled.The leaching efficiency,current efficiency,and purity of Fe reached 92.58%,80.65%,and 98.72wt%,respectively,at a 1:2.5 mass ratio of H2SO4 and IREMR,reaction temperature of 60℃,electric current density of 30 mA/cm^(2),and reaction time of 8 h.In addition,vibrating sample magnetometer(VSM)analysis showed that the coercivity of electrolytic iron powder was 54.5 A/m,which reached the advanced magnetic grade of electrical pure-iron powder(DT4A coercivity standard).The slurry electrolytic method provides fundamental support for the industrial application of Fe resource recovery in IRMER.展开更多
The isolation of circulating tumor cells(CTCs)from complex biological samples is of paramount signifi-cance for advancing cancer diagnosis,prognosis,and treatment.However,the low concentration of CTCs and nonspecific ...The isolation of circulating tumor cells(CTCs)from complex biological samples is of paramount signifi-cance for advancing cancer diagnosis,prognosis,and treatment.However,the low concentration of CTCs and nonspecific adhesion of white blood cells(WBCs)present challenges that hinder the efficiency and purity of captured CTCs.Microfluidic-based strategies utilize precise fluid control at the micron level to incorporate specific micro/nanostructures or recognition molecules,enabling effective CTCs separation.Moreover,by employing surface modification designs that exhibit exceptional anti-adhesion properties against WBCs,the purity of isolated CTCs can be further enhanced.This review offers an in-depth explo-ration of recent advancements,challenges,and opportunities associated with microfluidic-based CTCs iso-lation from biological samples.Firstly,we will comprehensively introduce the microfluidic-based strate-gies for achieving high-efficiency CTCs isolation,which includes the morphological design of microchan-nels for physical force-based CTCs isolation and the specific modification of microchannel surfaces for affinity-based CTCs isolation.Subsequently,a review of recent research advances in microfluidic-based high-purity CTCs isolation is presented,focusing on strategies that decrease the nonspecific adhesion of WBCs through surface micro-/nanostructure construction or chemical and biological modification.Finally,we will summarize the article by providing the prospective opportunities and challenges for the future development of microfluidic-based CTCs isolation.展开更多
Biodegradable magnesium(Mg)and its alloys exhibit excellent biocompatibility and mechanical compatibility,demonstrating tremendous potential for applications in orthopedics.However,the rapid degradation rate has limit...Biodegradable magnesium(Mg)and its alloys exhibit excellent biocompatibility and mechanical compatibility,demonstrating tremendous potential for applications in orthopedics.However,the rapid degradation rate has limited their clinical application.Polycaprolactone(PCL)is commonly employed as a polymer coating to impede the rapid degradation of Mg.Unfortunately,its long-term anti-corrosion capability and bioactivity are inadequate.To address these issues,polydopamine(PDA)-modified zeolitic imidazolate framework-8(PZIF-8)bioactive nanoparticles are fabricated and incorporated into the PCL coating.The PZIF-8 particles,featuring catechol motifs,can enhance the compactness of the PCL coating,reduce its defects,and possess biomineralization ability,thereby effectively improving its anti-corrosive and bioactive properties.Moreover,the active substances released from the degradation of the PZIF-8 particles such as Zn^(2+)and PDA are beneficial for osteogenesis.The corrosion tests indicate that the corrosion current density of PCL-treated sample decreases by more than one order of magnitude and the amount of H_(2)released decreases from 0.23±0.12 to 0.08±0.08 ml cm^(-2)after doping with the PZIF-8.Furthermore,the improved corrosion resistance and released PDA and Zn^(2+)from the coating can promote osteogenic differentiation by up-regulating the expression of alkaline phosphatase activity,related osteogenic genes,and proteins.In addition,in vivo implantation experiments in rabbit femur defects further offer strong evidence that the doping of PZIF-8 nanoparticles accelerates bone reconstruction of the PCL coating.In summary,this work implies a new strategy to fabricate a PCL-based coating on Mg-based implants by introducing the PZIF-8 particles for orthopedic applications.展开更多
High-purity(HP)magnesium(Mg)has emerged as a promising biomaterial for supporting functional bone tissue.Our previous study found that mechanical stresses and the surrounding fibrotic tissue(subcuta-neous)both play cr...High-purity(HP)magnesium(Mg)has emerged as a promising biomaterial for supporting functional bone tissue.Our previous study found that mechanical stresses and the surrounding fibrotic tissue(subcuta-neous)both play crucial roles in the degradation of HP Mg.However,due to challenges in the degradation and regeneration process in vivo,it remains unclear how stress affects HP Mg degradation in bone en-vironments,limiting its further application.In this study,novel loading devices were designed and the effects of tensile and compressive stresses on HP Mg degradation in vivo and in vitro bone environments were quantitatively analyzed.In addition,bone osteointegration around HP Mg was explored preliminar-ily.Tensile stress increases the degradation rate of HP Mg in vivo and in vitro.HP Mg degradation in vivo is more sensitive to stress factors than in vitro,but the sensitivity decreases with corrosion time.The volume loss rate of HP Mg is multilinear with the applied stress and degradation time.The volume of bone tissue surrounding HP Mg is larger in the no-stress group compared to the stressed groups,which is more pronounced with increasing implantation time.These results provide valuable insights for optimiz-ing the design of HP Mg-based implants considering load conditions.This will help to achieve a balance between the degradation rate of the implant and the regeneration rate of the surrounding bone.展开更多
To detect radioactive substances with low activity levels,an anticoincidence detector and a high-purity germanium(HPGe)detector are typically used simultaneously to suppress Compton scattering background,thereby resul...To detect radioactive substances with low activity levels,an anticoincidence detector and a high-purity germanium(HPGe)detector are typically used simultaneously to suppress Compton scattering background,thereby resulting in an extremely low detection limit and improving the measurement accuracy.However,the complex and expensive hardware required does not facilitate the application or promotion of this method.Thus,a method is proposed in this study to discriminate the digital waveform of pulse signals output using an HPGe detector,whereby Compton scattering background is suppressed and a low minimum detectable activity(MDA)is achieved without using an expensive and complex anticoincidence detector and device.The electric-field-strength and energy-deposition distributions of the detector are simulated to determine the relationship between pulse shape and energy-deposition location,as well as the characteristics of energy-deposition distributions for fulland partial-energy deposition events.This relationship is used to develop a pulse-shape-discrimination algorithm based on an artificial neural network for pulse-feature identification.To accurately determine the relationship between the deposited energy of gamma(γ)rays in the detector and the deposition location,we extract four shape parameters from the pulse signals output by the detector.Machine learning is used to input the four shape parameters into the detector.Subsequently,the pulse signals are identified and classified to discriminate between partial-and full-energy deposition events.Some partial-energy deposition events are removed to suppress Compton scattering.The proposed method effectively decreases the MDA of an HPGeγ-energy dispersive spectrometer.Test results show that the Compton suppression factors for energy spectra obtained from measurements on ^(152)Eu,^(137)Cs,and ^(60)Co radioactive sources are 1.13(344 keV),1.11(662 keV),and 1.08(1332 keV),respectively,and that the corresponding MDAs are 1.4%,5.3%,and 21.6%lower,respectively.展开更多
The 20th Central Committee of the Communist Party of China(CPC)convened its fourth plenary session in Beijing from October 20 to 23.Participants at the session deliberated over and adopted the Recommendations of the C...The 20th Central Committee of the Communist Party of China(CPC)convened its fourth plenary session in Beijing from October 20 to 23.Participants at the session deliberated over and adopted the Recommendations of the CPC Central Committee for Formulating the 15th Five-Year Plan for Economic and Social Development,according to a communique of the session released on October 23.The Political Bureau of the CPC Central Committee presided over the meeting.展开更多
As a major principle underlying the Communist Party of China's(CPC)governance in the new era and a core piece of its holistic approach to national security,ensuring both development and security emphasizes compreh...As a major principle underlying the Communist Party of China's(CPC)governance in the new era and a core piece of its holistic approach to national security,ensuring both development and security emphasizes comprehensive governance from a long-term perspective and influences the world with its global vision.It keeps pace with the times by prioritizing innovative areas and is of great theoretical and practical significance.On the new journey ahead,we must firmly ensure both development and security.More importantly,we must ensure both high-quality development and high-level security,safeguarding the former through the latter.This is an urgent requirement we face in today's world,which has entered a period of turbulence and transformation characterized by increasing complexity.Confronted with the formidable tasks of promoting reform and development while maintaining stability at home and the grave challenges brought about by international turbulence and changes,we must earnestly implement the guiding principles of the 20th CPC National Congress and the third plenary session of the 20th Party Central Committee.We should ensure secure and sustainable development,accelerate efforts to modernize China's national security system and capacity,foster high-level security,and improve the mechanisms for preserving national security in foreign-related affairs.In short,we should strive to achieve a positive interplay between high-quality development and high-level security,so as to effectively safeguard Chinese modernization.展开更多
High-purity titanium powder was prepared by molten salt electrorefining from sponge titanium in NaCl-KCl-TiClx salts. The titanium valence, purity and electrocrystallization during electrolysis process were studied. T...High-purity titanium powder was prepared by molten salt electrorefining from sponge titanium in NaCl-KCl-TiClx salts. The titanium valence, purity and electrocrystallization during electrolysis process were studied. The XPS analysis showed that the titanium valences are mainly +4, +3 and +2 at the earlier, medium and later stages of electrolysis, respectively. During the electrolysis process, the contents of impurities Si, Cr, Mn, Al vary little, and the contents of impurities Fe, Cu, Ni decrease markedly, while the contents of impurities O, N, H increase obviously. The residual impurities are usually distributed in small tunnel of dendritic crystals. Enhancing the electrolysis temperature and prolonging the electrolysis time can increase the titanium particle size. The TEM analysis showed that the electrodeposited titanium is not a single crystal, but contains many nanostructured grains and subgrains, with grain size of 100-500 nm. The electrolysis mechanisms were also discussed.展开更多
在线展示广告发展迅猛,按点击付费(cost per click,CPC)的保量合同是在线展示广告的一种重要合同形式。基于实际,在制定广告投放决策时曝光供应量通常是不确定的,其概率分布难以精确获知,仅知部分分布信息。本文利用分布鲁棒优化框架,...在线展示广告发展迅猛,按点击付费(cost per click,CPC)的保量合同是在线展示广告的一种重要合同形式。基于实际,在制定广告投放决策时曝光供应量通常是不确定的,其概率分布难以精确获知,仅知部分分布信息。本文利用分布鲁棒优化框架,构建寻求以已知信息为特征的不确定集,并在最坏情形下寻求最优广告投放策略。建立分布鲁棒机会约束模型并给出求解算法,进行了仿真分析。数值算例结果显示,设计的广告投放优化模型和相应的求解算法具有较好的表现。展开更多
基金National Key Research and Development Program of China(2023YFC2907904)National Natural Science Foundation of China(52374364)。
文摘High-purity indium finds extensive application in the aerospace,electronics,medical,energy,and national defense sectors.Its purity and impurity contents significantly influence its performance in these applications.High-purity indium was prepared by combining zone refining with vacuum distillation.Results show that the average removal efficiency of impurity Sb can approach 95%,while the removal efficiency of impurities Sn and Bi can reach over 95%,and the removal efficiency of Si,Fe,Ni,and Pb can reach over 85%.Ultimately,the amount of Sn and Sb impurities is reduced to 2.0 and 4.1μg/kg,respectively,and that of most impurities,including Fe,Ni,Pb,and Bi,is reduced to levels below the instrumental detection limit.The average impurity removal efficiency is 90.9%,and the indium purity reaches 7N9.
基金financially supported by the Cultivation Project of CQUT for Research and Innovation Group(No.2023TDZ006)the Graduate Student Innovation Program of CQUT(No.CYS23648)the Postdoctoral Science Foundation of China(No.2021M690174)。
文摘A high-purity Ti sheet with dense preexisting twins(introduced by 10%cold rolling)was subjected to isochronal annealing at 500–800°C for 1 h and isothermal annealing at 600°C for 0.17–100 h,respectively.By mainly utilizing electron backscatter diffraction(EBSD)and electron channel contrast(ECC)imaging techniques,the microstructure and texture evolution during the isochronal and isothermal annealing were investigated systematically.Results show that recrystallization nuclei appear in the specimen annealed at 600°C for 1 h.In contrast,recrystallization cannot be initiated for those annealed at lower temperatures or for a shorter time.With the increase in temperature or time,the fraction of the recrystallized structure increases with gradual grain coarsening.Nearly complete recrystallization is reached after 800°C-1 h or 600°C-100 h annealing.Due to the distribution heterogeneity of microstructure and stored energy induced by the dense preexisting twins,recrystallization nucleation preferentially occurs in some specific regions(twin-twin or twin-grain boundary junctions).Then,they selectively consume twin lamellar structures,leading to non-uniform grain growth.It is demonstrated that the recrystallization nucleation is dominated by the strain-induced boundary migration mechanism,allowing scattered texture components corresponding to the twin lamellar structures to be gradually encroached by those untwinned structures with the initial bimodal basal texture(BBT).Eventually,a strong BBT is always obtained after sufficient recrystallization.
文摘High-purity antimony(Sb)is essential for industries like semiconductors and photovoltaics,driving research on its production.This review summarizes research advances in production and preparation techniques for high-purity Sb.Three process flowcharts to produce high-purity Sb are described according to different raw materials.Various process parameters of vacuum distillation,zone refining purification techniques and research progress in the field of high-purity Sb are discussed.Numerical simulation,atomic scale simulation,and research progress of alloying elements in the field of high-purity Sb are highlighted.It is shown that for the difficult removal of As element in Sb,the addition of Al makes the regional refining process more effective in reducing the arsenic content.Finally,the purification of high-purity Sb is summarized,providing insights into achieving efficient and environmentally friendly high-purity Sb production and outlining future directions.
基金Project(52274369)supported by the National Natural Science Foundation of China。
文摘High-purity silver(Ag)is extensively utilized in electronics,aerospace,and other advanced industries due to its excellent thermal conductivity,electrical conductivity,and machinability.However,the prohibitive material cost poses substantial challenges for optimizing thermal processing parameters through repetitive experimental trials.In this work,hot compression experiments on high-purity silver were conducted using a Gleeble-3800 thermal simulator.The high temperature deformation behaviors,dynamic recovery(DRV)and dynamic recrystallization(DRX)of high-purity silver were studied by constructing an Arrhenius constitutive equation and developing thermal processing maps.The results show that plastic instability of high-purity silver occurs at high strain rates and the optimized hot processing parameters are the strain rate below 0.001 s^(−1) and the temperature of 340−400℃.Microstructural observations exhibit that DRV prefers to occur at lower deformation temperatures(e.g.,250℃).This is attributed to the low stacking fault energy of high-purity silver,which facilitates the decomposition of dislocations into partial dislocations and promotes high-density dislocation accumulation.Furthermore,DRX in high-purity silver becomes increasingly pronounced with increasing deformation temperature and reaches saturation at 350℃.
基金financially supported by the Consulting Research Project of the Chinese Academy of Engineering,China(Nos.2024-XBZD-10 and 2024-XZ-20).
文摘The rapid growth of semiconductor,photovoltaic,and other emerging industries has led to a sharp increase in the demand for high-purity quartz in China,particularly 4N5-grade(99.995%pure SiO_(2)).However,heavy reliance on imported high-purity quartz poses a significant risk to the security of key national strategic industries.To address this challenge,China is focusing on identifying domestic sources of high-purity quartz and developing efficient evaluation methods.This study investigates the inclusion content in three types of quartz:pegmatite,vein quartz,and white granite.A grading system based on the transmittance of quartz grains was established by analyz-ing the number of inclusions.Five quartz ore samples from different regions were purified,and the resulting concentrates were analyzed using inductively coupled plasma mass spectrometry(ICP-MS).The relationships among the inclusion content of raw quartz,impurity composition of purified quartz,and quality of sintered fused quartz products were examined.The findings demonstrate that quartz with fewer inclusions results in lower impurity levels after purification,higher SiO_(2)purity,and more translucent glass,as confirmed by firing tests.Herein,this study establishes a clear connection between quartz inclusions and the overall quality of high-purity quartz.The pro-posed approach enables the rapid assessment of quartz deposit quality by identifying inclusions,offering a practical and efficient method for locating high-quality quartz resources.
基金supported by the National Natural Science Foundation of China(52074180)the Science and Technology Major Project of Yunnan Province(202302AB080020)+2 种基金the Independent Research Project of State Key Laboratory of Advanced Special Steel,Shanghai Key Laboratory of Advanced Ferrometallurgy,Shanghai University(SKLASS 2023-Z07)the Science and Technology Commission of Shanghai Municipality(19DZ2270200)the Program for Professor of Special Appointment(Eastern Scholar)at SIHL,Shanghai Sailing Program(19YF1416500).
文摘The effects of various contaminants in the electrolytic refinement of indium were investigated using a glow discharge mass spectrometer(GDMS).The effects of several factors such as the indium ion(In3+)concentration,the sodium chloride(NaCl)concentration,the current density,the gelatin concentration,the pH,and the electrode distance,were examined.Significant variations in impurity levels concerning gelatin concentration were observed.Both the gelatin and In3+concentration were moderately positively correlated with the Pb content.The Sb concentration was associated positively with the NaCl concentration,while the Ti concentration had an adverse correlation with the NaCl concentration.The Bi element content was positively linked to the electrode distance.As the current density increased,Cu,Pb,and Bi impurities initially rose and then eventually declined.Notably,a critical current density of 45 A·m^(-2) was identified in this behavior.
基金supported by the Key Research and Development Program of Guangxi Province,China (No.AB23075174)the National Natural Science Foundation of China (No.52174386)the Science and Technology Plan Project of Sichuan Province,China (No.2022YFS0459).
文摘Iron-rich electrolytic manganese residue(IREMR)is an industrial waste produced during the processing of electrolytic metal manganese,and it contains certain amounts of Fe and Mn resources and other heavy metals.In this study,the slurry electrolysis technique was used to recover high-purity Fe powder from IREMR.The effects of IREMR and H2SO4 mass ratio,current density,reaction temper-ature,and electrolytic time on the leaching and current efficiencies of Fe were studied.According to the results,high-purity Fe powder can be recovered from the cathode plate,and the slurry electrolyte can be recycled.The leaching efficiency,current efficiency,and purity of Fe reached 92.58%,80.65%,and 98.72wt%,respectively,at a 1:2.5 mass ratio of H2SO4 and IREMR,reaction temperature of 60℃,electric current density of 30 mA/cm^(2),and reaction time of 8 h.In addition,vibrating sample magnetometer(VSM)analysis showed that the coercivity of electrolytic iron powder was 54.5 A/m,which reached the advanced magnetic grade of electrical pure-iron powder(DT4A coercivity standard).The slurry electrolytic method provides fundamental support for the industrial application of Fe resource recovery in IRMER.
基金supported by the National Natural Science Foundation of China(Nos.52025132,22005255,21975209,21621091,22021001,T2241022)the National Science Foundation of Fujian Province of China(No.2022J02059)+2 种基金the Fundamental Research Funds for the Central Universities of China(No.20720220085)the 111 Project(Nos.B17027,B16029)the Science and Technology Projects of Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province(No.RD2022070601),the New Cornerstone Science Foundation through the XPLORER PRIZE.
文摘The isolation of circulating tumor cells(CTCs)from complex biological samples is of paramount signifi-cance for advancing cancer diagnosis,prognosis,and treatment.However,the low concentration of CTCs and nonspecific adhesion of white blood cells(WBCs)present challenges that hinder the efficiency and purity of captured CTCs.Microfluidic-based strategies utilize precise fluid control at the micron level to incorporate specific micro/nanostructures or recognition molecules,enabling effective CTCs separation.Moreover,by employing surface modification designs that exhibit exceptional anti-adhesion properties against WBCs,the purity of isolated CTCs can be further enhanced.This review offers an in-depth explo-ration of recent advancements,challenges,and opportunities associated with microfluidic-based CTCs iso-lation from biological samples.Firstly,we will comprehensively introduce the microfluidic-based strate-gies for achieving high-efficiency CTCs isolation,which includes the morphological design of microchan-nels for physical force-based CTCs isolation and the specific modification of microchannel surfaces for affinity-based CTCs isolation.Subsequently,a review of recent research advances in microfluidic-based high-purity CTCs isolation is presented,focusing on strategies that decrease the nonspecific adhesion of WBCs through surface micro-/nanostructure construction or chemical and biological modification.Finally,we will summarize the article by providing the prospective opportunities and challenges for the future development of microfluidic-based CTCs isolation.
基金financially supported by the Guangzhou Science and Technology Project(Nos.2021A0505030042 and 201904010060)Guangdong Basic and Applied Basic Research Foundation(No.2020B1515120078)+2 种基金National Natural Science Foundation of China(Nos.81401766 and 32101059)Natural Science Foundation of Guangdong Province(No.2022A1515010266)Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration and Shenzhen People’s Hospital(No.ZDSYS20200811143752005)。
文摘Biodegradable magnesium(Mg)and its alloys exhibit excellent biocompatibility and mechanical compatibility,demonstrating tremendous potential for applications in orthopedics.However,the rapid degradation rate has limited their clinical application.Polycaprolactone(PCL)is commonly employed as a polymer coating to impede the rapid degradation of Mg.Unfortunately,its long-term anti-corrosion capability and bioactivity are inadequate.To address these issues,polydopamine(PDA)-modified zeolitic imidazolate framework-8(PZIF-8)bioactive nanoparticles are fabricated and incorporated into the PCL coating.The PZIF-8 particles,featuring catechol motifs,can enhance the compactness of the PCL coating,reduce its defects,and possess biomineralization ability,thereby effectively improving its anti-corrosive and bioactive properties.Moreover,the active substances released from the degradation of the PZIF-8 particles such as Zn^(2+)and PDA are beneficial for osteogenesis.The corrosion tests indicate that the corrosion current density of PCL-treated sample decreases by more than one order of magnitude and the amount of H_(2)released decreases from 0.23±0.12 to 0.08±0.08 ml cm^(-2)after doping with the PZIF-8.Furthermore,the improved corrosion resistance and released PDA and Zn^(2+)from the coating can promote osteogenic differentiation by up-regulating the expression of alkaline phosphatase activity,related osteogenic genes,and proteins.In addition,in vivo implantation experiments in rabbit femur defects further offer strong evidence that the doping of PZIF-8 nanoparticles accelerates bone reconstruction of the PCL coating.In summary,this work implies a new strategy to fabricate a PCL-based coating on Mg-based implants by introducing the PZIF-8 particles for orthopedic applications.
基金supported by the National Natural Science Foundation of China(Nos.T2288101,12172034,U20A20390,11827803,12202036)the Beijing Municipal Natural Science Foundation(No.7212205)+1 种基金the 111 Project(No.B13003)the Fundamental Research Funds for the Central Universities.
文摘High-purity(HP)magnesium(Mg)has emerged as a promising biomaterial for supporting functional bone tissue.Our previous study found that mechanical stresses and the surrounding fibrotic tissue(subcuta-neous)both play crucial roles in the degradation of HP Mg.However,due to challenges in the degradation and regeneration process in vivo,it remains unclear how stress affects HP Mg degradation in bone en-vironments,limiting its further application.In this study,novel loading devices were designed and the effects of tensile and compressive stresses on HP Mg degradation in vivo and in vitro bone environments were quantitatively analyzed.In addition,bone osteointegration around HP Mg was explored preliminar-ily.Tensile stress increases the degradation rate of HP Mg in vivo and in vitro.HP Mg degradation in vivo is more sensitive to stress factors than in vitro,but the sensitivity decreases with corrosion time.The volume loss rate of HP Mg is multilinear with the applied stress and degradation time.The volume of bone tissue surrounding HP Mg is larger in the no-stress group compared to the stressed groups,which is more pronounced with increasing implantation time.These results provide valuable insights for optimiz-ing the design of HP Mg-based implants considering load conditions.This will help to achieve a balance between the degradation rate of the implant and the regeneration rate of the surrounding bone.
基金This work was supported by the National Key R&D Program of China(Nos.2022YFF0709503,2022YFB1902700,2017YFC0602101)the Key Research and Development Program of Sichuan province(No.2023YFG0347)the Key Research and Development Program of Sichuan province(No.2020ZDZX0007).
文摘To detect radioactive substances with low activity levels,an anticoincidence detector and a high-purity germanium(HPGe)detector are typically used simultaneously to suppress Compton scattering background,thereby resulting in an extremely low detection limit and improving the measurement accuracy.However,the complex and expensive hardware required does not facilitate the application or promotion of this method.Thus,a method is proposed in this study to discriminate the digital waveform of pulse signals output using an HPGe detector,whereby Compton scattering background is suppressed and a low minimum detectable activity(MDA)is achieved without using an expensive and complex anticoincidence detector and device.The electric-field-strength and energy-deposition distributions of the detector are simulated to determine the relationship between pulse shape and energy-deposition location,as well as the characteristics of energy-deposition distributions for fulland partial-energy deposition events.This relationship is used to develop a pulse-shape-discrimination algorithm based on an artificial neural network for pulse-feature identification.To accurately determine the relationship between the deposited energy of gamma(γ)rays in the detector and the deposition location,we extract four shape parameters from the pulse signals output by the detector.Machine learning is used to input the four shape parameters into the detector.Subsequently,the pulse signals are identified and classified to discriminate between partial-and full-energy deposition events.Some partial-energy deposition events are removed to suppress Compton scattering.The proposed method effectively decreases the MDA of an HPGeγ-energy dispersive spectrometer.Test results show that the Compton suppression factors for energy spectra obtained from measurements on ^(152)Eu,^(137)Cs,and ^(60)Co radioactive sources are 1.13(344 keV),1.11(662 keV),and 1.08(1332 keV),respectively,and that the corresponding MDAs are 1.4%,5.3%,and 21.6%lower,respectively.
文摘The 20th Central Committee of the Communist Party of China(CPC)convened its fourth plenary session in Beijing from October 20 to 23.Participants at the session deliberated over and adopted the Recommendations of the CPC Central Committee for Formulating the 15th Five-Year Plan for Economic and Social Development,according to a communique of the session released on October 23.The Political Bureau of the CPC Central Committee presided over the meeting.
文摘As a major principle underlying the Communist Party of China's(CPC)governance in the new era and a core piece of its holistic approach to national security,ensuring both development and security emphasizes comprehensive governance from a long-term perspective and influences the world with its global vision.It keeps pace with the times by prioritizing innovative areas and is of great theoretical and practical significance.On the new journey ahead,we must firmly ensure both development and security.More importantly,we must ensure both high-quality development and high-level security,safeguarding the former through the latter.This is an urgent requirement we face in today's world,which has entered a period of turbulence and transformation characterized by increasing complexity.Confronted with the formidable tasks of promoting reform and development while maintaining stability at home and the grave challenges brought about by international turbulence and changes,we must earnestly implement the guiding principles of the 20th CPC National Congress and the third plenary session of the 20th Party Central Committee.We should ensure secure and sustainable development,accelerate efforts to modernize China's national security system and capacity,foster high-level security,and improve the mechanisms for preserving national security in foreign-related affairs.In short,we should strive to achieve a positive interplay between high-quality development and high-level security,so as to effectively safeguard Chinese modernization.
基金Project(20110942K)supported by Open Fund of State Key Laboratory of Powder Metallurgy,ChinaProject(51021063)supported by the National Natural Science Foundation of China
文摘High-purity titanium powder was prepared by molten salt electrorefining from sponge titanium in NaCl-KCl-TiClx salts. The titanium valence, purity and electrocrystallization during electrolysis process were studied. The XPS analysis showed that the titanium valences are mainly +4, +3 and +2 at the earlier, medium and later stages of electrolysis, respectively. During the electrolysis process, the contents of impurities Si, Cr, Mn, Al vary little, and the contents of impurities Fe, Cu, Ni decrease markedly, while the contents of impurities O, N, H increase obviously. The residual impurities are usually distributed in small tunnel of dendritic crystals. Enhancing the electrolysis temperature and prolonging the electrolysis time can increase the titanium particle size. The TEM analysis showed that the electrodeposited titanium is not a single crystal, but contains many nanostructured grains and subgrains, with grain size of 100-500 nm. The electrolysis mechanisms were also discussed.
文摘在线展示广告发展迅猛,按点击付费(cost per click,CPC)的保量合同是在线展示广告的一种重要合同形式。基于实际,在制定广告投放决策时曝光供应量通常是不确定的,其概率分布难以精确获知,仅知部分分布信息。本文利用分布鲁棒优化框架,构建寻求以已知信息为特征的不确定集,并在最坏情形下寻求最优广告投放策略。建立分布鲁棒机会约束模型并给出求解算法,进行了仿真分析。数值算例结果显示,设计的广告投放优化模型和相应的求解算法具有较好的表现。