Mobile robots represented by smart wheelchairs can assist elderly people with mobility difficulties.This paper proposes a multi-mode semi-autonomous navigation system based on a local semantic map for mobile robots,wh...Mobile robots represented by smart wheelchairs can assist elderly people with mobility difficulties.This paper proposes a multi-mode semi-autonomous navigation system based on a local semantic map for mobile robots,which can assist users to implement accurate navigation(e.g.,docking)in the environment without prior maps.In order to overcome the problem of repeated oscillations during the docking of traditional local path planning algorithms,this paper adopts a mode-switching method and uses feedback control to perform docking when approaching semantic goals.At last,comparative experiments were carried out in the real environment.Results show that our method is superior in terms of safety,comfort and docking accuracy.展开更多
With the intensifying competition in the integrated circuit(IC)industry,the high turnover rate of integrated circuit engineers has become a prominent issue affecting the technological continuity of high-precision,spec...With the intensifying competition in the integrated circuit(IC)industry,the high turnover rate of integrated circuit engineers has become a prominent issue affecting the technological continuity of high-precision,specialized,and innovative enterprises.As a representative of such enterprises,JL Technology has faced challenges to its R&D efficiency due to talent loss in recent years.This study takes this enterprise as a case to explore feasible paths to reduce turnover rates through optimizing training and career development systems.The research designs a method combining learning maps and talent maps,utilizes a competency model to clarify the direction for engineers’skill improvement,implements talent classification management using a nine-grid model,and achieves personalized training through Individual Development Plans(IDPs).Analysis of the enterprise’s historical data reveals that the main reasons for turnover are unclear career development paths and insufficient resources for skill improvement.After pilot implementation,the turnover rate in core departments decreased by 12%,and employee satisfaction with training increased by 24%.The results indicate that matching systematic talent reviews with dynamic learning resources can effectively enhance engineers’sense of belonging.This study provides a set of highly operational management tools for small and medium-sized high-precision,specialized,and innovative technology enterprises,verifies their applicability in such enterprises,and offers replicable experiences for similar enterprises to optimize their talent strategies[1].展开更多
Map data display is the basic information representation mode under embedded real-time navigation. After a navigation display data set (NDIS_SET) with several dimensions and corresponding mathematical description fo...Map data display is the basic information representation mode under embedded real-time navigation. After a navigation display data set (NDIS_SET) with several dimensions and corresponding mathematical description formula are designed, a series of rules and algorithms are advanced to optimize embedded navigation data and promote data index and input efficiency. A new parallel display algorithm with navigation data named N PDIS is then presented to adapt to limited embedded resources of computation and memory after a normal navigation data display algorithm named NDIS and related problems are analyzed, N_PDIS can synchronously create two preparative bitmapa by two parallel threads and switch one of them to screen automatically. Compared with NDIS, the results show that N_PDIS is more effective in improving display efficiency.展开更多
A high-precision map(HPM)is the key infrastructure to realizing the function of automated driving(AD)and ensuring its safety.However,the current laws and regulations on HPMs in China can lead to serious legal complian...A high-precision map(HPM)is the key infrastructure to realizing the function of automated driving(AD)and ensuring its safety.However,the current laws and regulations on HPMs in China can lead to serious legal compliance problems.Thus,proper measures should be taken to remove these barriers.Starting with a complete view of the current legal obstacles to HPMs in China,this study first explains why these legal obstacles exist and the types of legal interests they are trying to protect.It then analyzes whether new technology could be used as an alternative to resolve these concerns.Factors such as national security,AD industry needs,and personal data protection,as well as the flexibility of applying technology,are discussed and analyzed hierarchically for this purpose.This study proposes that China should adhere to national security and AD industry development,pass new technical regulations that redefine the scope of national security regarding geographic information in the field of HPMs,and establish a national platform under the guidance and monitoring of the government to integrate scattered resources and promote the development of HPMs via crowdsourcing.Regarding the legal obstacles with higher technical plasticity,priority should be given to technical solutions such as“available but invisible”technology.Compared with the previous research,this study reveals the current legal barriers in China that have different levels of relevance to national security and different technical plasticity.It also proposes original measures to remove them,such as coordinating national security with the development of the AD industry,reshaping the boundary of national security and industrial interests,and giving priority to technical solutions for legal barriers that have strong technical plasticity.展开更多
Navigation systems play an important role in many vital disciplines. Determining the location of a user relative to its physical environment is an important part of many indoor-based navigation services such as user n...Navigation systems play an important role in many vital disciplines. Determining the location of a user relative to its physical environment is an important part of many indoor-based navigation services such as user navigation, enhanced 911 (E911), law enforcement, location-based and marketing services. Indoor navigation applications require a reliable, trustful and continuous navigation solution that overcomes the challenge of Global Navigation Satellite System (GNSS) signal unavailability. To compensate for this issue, other navigation systems such as Inertial Navigation System (INS) are introduced, however, over time there is a significant amount of drift especially in common with low-cost commercial sensors. In this paper, a map aided navigation solution is developed. This research develops an aiding system that utilizes geospatial data to assist the navigation solution by providing virtual boundaries for the navigation trajectories and limits its possibilities only when it is logical to locate the user on a map. The algorithm develops a Pedestrian Dead Reckoning (PDR) based on smart-phone accelerometer and magnetometer sensors to provide the navigation solution. Geospatial model for two indoor environments with a developed map matching algorithm was used to match and project navigation position estimates on the geospatial map. The developed algorithms were field tested in indoor environments and yielded accurate matching results as well as a significant enhancement to positional accuracy. The achieved results demonstrate that the contribution of the developed map aided system enhances the reliability, usability, and accuracy of navigation trajectories in indoor environments.展开更多
Autonomous navigation for intelligent mobile robots has gained significant attention,with a focus on enabling robots to generate reliable policies based on maintenance of spatial memory.In this paper,we propose a lear...Autonomous navigation for intelligent mobile robots has gained significant attention,with a focus on enabling robots to generate reliable policies based on maintenance of spatial memory.In this paper,we propose a learning-based visual navigation pipeline that uses topological maps as memory configurations.We introduce a unique online topology construction approach that fuses odometry pose estimation and perceptual similarity estimation.This tackles the issues of topological node redundancy and incorrect edge connections,which stem from the distribution gap between the spatial and perceptual domains.Furthermore,we propose a differentiable graph extraction structure,the topology multi-factor transformer(TMFT).This structure utilizes graph neural networks to integrate global memory and incorporates a multi-factor attention mechanism to underscore elements closely related to relevant target cues for policy generation.Results from photorealistic simulations on image-goal navigation tasks highlight the superior navigation performance of our proposed pipeline compared to existing memory structures.Comprehensive validation through behavior visualization,interpretability tests,and real-world deployment further underscore the adapt-ability and efficacy of our method.展开更多
Taking autonomous driving and driverless as the research object,we discuss and define intelligent high-precision map.Intelligent high-precision map is considered as a key link of future travel,a carrier of real-time p...Taking autonomous driving and driverless as the research object,we discuss and define intelligent high-precision map.Intelligent high-precision map is considered as a key link of future travel,a carrier of real-time perception of traffic resources in the entire space-time range,and the criterion for the operation and control of the whole process of the vehicle.As a new form of map,it has distinctive features in terms of cartography theory and application requirements compared with traditional navigation electronic maps.Thus,it is necessary to analyze and discuss its key features and problems to promote the development of research and application of intelligent high-precision map.Accordingly,we propose an information transmission model based on the cartography theory and combine the wheeled robot’s control flow in practical application.Next,we put forward the data logic structure of intelligent high-precision map,and analyze its application in autonomous driving.Then,we summarize the computing mode of“Crowdsourcing+Edge-Cloud Collaborative Computing”,and carry out key technical analysis on how to improve the quality of crowdsourced data.We also analyze the effective application scenarios of intelligent high-precision map in the future.Finally,we present some thoughts and suggestions for the future development of this field.展开更多
Integrating Global Navigation Satellite Systems(GNSS)in Simultaneous Localization and Mapping(SLAM)systems draws increasing attention to a global and continuous localization solution.Nonetheless,in dense urban environ...Integrating Global Navigation Satellite Systems(GNSS)in Simultaneous Localization and Mapping(SLAM)systems draws increasing attention to a global and continuous localization solution.Nonetheless,in dense urban environments,GNSS-based SLAM systems will suffer from the Non-Line-Of-Sight(NLOS)measurements,which might lead to a sharp deterioration in localization results.In this paper,we propose to detect the sky area from the up-looking camera to improve GNSS measurement reliability for more accurate position estimation.We present Sky-GVINS:a sky-aware GNSS-Visual-Inertial system based on a recent work called GVINS.Specifically,we adopt a global threshold method to segment the sky regions and non-sky regions in the fish-eye sky-pointing image and then project satellites to the image using the geometric relationship between satellites and the camera.After that,we reject satellites in non-sky regions to eliminate NLOS signals.We investigated various segmentation algorithms for sky detection and found that the Otsu algorithm reported the highest classification rate and computational efficiency,despite the algorithm's simplicity and ease of implementation.To evaluate the effectiveness of Sky-GVINS,we built a ground robot and conducted extensive real-world experiments on campus.Experimental results show that our method improves localization accuracy in both open areas and dense urban environments compared to the baseline method.Finally,we also conduct a detailed analysis and point out possible further directions for future research.For detailed information,visit our project website at https://github.com/SJTU-ViSYS/Sky-GVINS.展开更多
GPS (Global Positioning System) has been widely used in car navigation systems. Most car navigation systems estimate the car position from GPS and DR (dead reckoning). However, the unknown GPS noise characteristic and...GPS (Global Positioning System) has been widely used in car navigation systems. Most car navigation systems estimate the car position from GPS and DR (dead reckoning). However, the unknown GPS noise characteristic and the unbounded DR accumulation of errors over time make the position information with undesirable position errors. The map matching can improve the position accuracy and availability of the vehicular position system. In this paper, general principle of map matching is investigated according to segmentation and feature extraction, and a map matching algorithm based on D-S (Dempster-Shafer) evidence reasoning for GPS integrated navigation system is proposed, which can find the exact road on which a car moves. For the experiments, a car navigation system is developed with some sensors and the field test demonstrates the effectiveness and applicability of the algorithm for the car location and navigation.展开更多
This paper deals with the error analysis of a novel navigation algorithm that uses as input the sequence of images acquired from a moving camera and a Digital Terrain (or Elevation) Map (DTM/DEM). More specifically, i...This paper deals with the error analysis of a novel navigation algorithm that uses as input the sequence of images acquired from a moving camera and a Digital Terrain (or Elevation) Map (DTM/DEM). More specifically, it has been shown that the optical flow derived from two consecutive camera frames can be used in combination with a DTM to estimate the position, orientation and ego-motion parameters of the moving camera. As opposed to previous works, the proposed approach does not require an intermediate explicit reconstruction of the 3D world. In the present work the sensitivity of the algorithm outlined above is studied. The main sources for errors are identified to be the optical-flow evaluation and computation, the quality of the information about the terrain, the structure of the observed terrain and the trajectory of the camera. By assuming appropriate characterization of these error sources, a closed form expression for the uncertainty of the pose and motion of the camera is first developed and then the influence of these factors is confirmed using extensive numerical simulations. The main conclusion of this paper is to establish that the proposed navigation algorithm generates accurate estimates for reasonable scenarios and error sources, and thus can be effectively used as part of a navigation system of autonomous vehicles.展开更多
Terrain referenced navigation estimates an aircraft navigation status by utilizing a radar altimeter measuring a distance between the aircraft and terrain elevation. Accurate digital elevation map is essential to esti...Terrain referenced navigation estimates an aircraft navigation status by utilizing a radar altimeter measuring a distance between the aircraft and terrain elevation. Accurate digital elevation map is essential to estimate the aircraft states correctly. However, the elevation map cannot represent the real terrain perfectly and there exists map error between the estimated and the true maps. In this paper, an influence of the map error on measurement equation is analyzed and a technique to incorporate the error in the filter is proposed. The map error is divided into two sources, accuracy error and resolution error. The effectiveness of the suggested technique is verified by simulation results. The method modifies a sensor noise covariance only so there is no additional computational burden from the conventional filter.展开更多
To facilitate scene understanding and robot navigation in large scale urban environment, a two-layer enhanced geometric map(EGMap) is designed using videos from a monocular onboard camera. The 2D layer of EGMap consis...To facilitate scene understanding and robot navigation in large scale urban environment, a two-layer enhanced geometric map(EGMap) is designed using videos from a monocular onboard camera. The 2D layer of EGMap consists of a 2D building boundary map from top-down view and a 2D road map, which can support localization and advanced map-matching when compared with standard polyline-based maps. The 3D layer includes features such as 3D road model,and building facades with coplanar 3D vertical and horizontal line segments, which can provide the 3D metric features to localize the vehicles and flying-robots in 3D space. Starting from the 2D building boundary and road map, EGMap is initially constructed using feature fusion with geometric constraints under a line feature-based simultaneous localization and mapping(SLAM) framework iteratively and progressively. Then, a local bundle adjustment algorithm is proposed to jointly refine the camera localizations and EGMap features. Furthermore, the issues of uncertainty, memory use, time efficiency and obstacle effect in EGMap construction are discussed and analyzed. Physical experiments show that EGMap can be successfully constructed in large scale urban environment and the construction method is demonstrated to be very accurate and robust.展开更多
According to the characteristics of gravity passive navigation, this paper presents a novel gravity passive navigation system (GPNS), which consists of the rate azimuth platform (RAP), gravity sensor, digitally st...According to the characteristics of gravity passive navigation, this paper presents a novel gravity passive navigation system (GPNS), which consists of the rate azimuth platform (RAP), gravity sensor, digitally stored gravity maps, depth sensor and relative log. The algorithm of rate azimuth platform inertial navigation system, error state-space equations, measurement equations and GPNS optimal filter are described. In view of the measurements made by an onboard gravity sensor the Eotvos effect is introduced in the gravity measurement equation of a GPNS optimal filter. A GPNS is studied with the Matlab/Simulink tools; simulation results demonstrate that a GPNS has small errors in platform attitude and position. Because the inertial navigation platform is the rate azimuth platform in the GPNS and gravity sensor is mounted on the rate azimuth platform, the cost of the GPNS is lower than existing GPNS's and according to the above results the GPNS meets the need to maintain accuracy navigation for underwater vehicles over long intervals.展开更多
There are about 253 million people with visual impairment worldwide.Many of them use a white cane and/or a guide dog as the mobility tool for daily travel.Despite decades of efforts,electronic navigation aid that can ...There are about 253 million people with visual impairment worldwide.Many of them use a white cane and/or a guide dog as the mobility tool for daily travel.Despite decades of efforts,electronic navigation aid that can replace white cane is still research in progress.In this paper,we propose an RGB-D camera based visual positioning system(VPS)for real-time localization of a robotic navigation aid(RNA)in an architectural floor plan for assistive navigation.The core of the system is the combination of a new 6-DOF depth-enhanced visual-inertial odometry(DVIO)method and a particle filter localization(PFL)method.DVIO estimates RNA’s pose by using the data from an RGB-D camera and an inertial measurement unit(IMU).It extracts the floor plane from the camera’s depth data and tightly couples the floor plane,the visual features(with and without depth data),and the IMU’s inertial data in a graph optimization framework to estimate the device’s 6-DOF pose.Due to the use of the floor plane and depth data from the RGB-D camera,DVIO has a better pose estimation accuracy than the conventional VIO method.To reduce the accumulated pose error of DVIO for navigation in a large indoor space,we developed the PFL method to locate RNA in the floor plan.PFL leverages geometric information of the architectural CAD drawing of an indoor space to further reduce the error of the DVIO-estimated pose.Based on VPS,an assistive navigation system is developed for the RNA prototype to assist a visually impaired person in navigating a large indoor space.Experimental results demonstrate that:1)DVIO method achieves better pose estimation accuracy than the state-of-the-art VIO method and performs real-time pose estimation(18 Hz pose update rate)on a UP Board computer;2)PFL reduces the DVIO-accrued pose error by 82.5%on average and allows for accurate wayfinding(endpoint position error≤45 cm)in large indoor spaces.展开更多
The autonomous navigation of an Unmanned Aerial Vehicle(UAV)relies heavily on the navigation sensors.The UAV’s level of autonomy depends upon the various navigation systems,such as state measurement,mapping,and obsta...The autonomous navigation of an Unmanned Aerial Vehicle(UAV)relies heavily on the navigation sensors.The UAV’s level of autonomy depends upon the various navigation systems,such as state measurement,mapping,and obstacle avoidance.Selecting the correct components is a critical part of the design process.However,this can be a particularly difficult task,especially for novices as there are several technologies and components available on the market,each with their own individual advantages and disadvantages.For example,satellite-based navigation components should be avoided when designing indoor UAVs.Incorporating them in the design brings no added value to the final product and will simply lead to increased cost and power consumption.Another issue is the number of vendors on the market,each trying to sell their hardware solutions which often incorporate similar technologies.The aim of this paper is to serve as a guide,proposing various methods to support the selection of fit-for-purpose technologies and components whilst avoiding system layout conflicts.The paper presents a study of the various navigation technologies and supports engineers in the selection of specific hardware solutions based on given requirements.The selection methods are based on easy-to-follow flow charts.A comparison of the various hardware components specifications is also included as part of this work.展开更多
Global Navigation Satellite System(GNSS)can provide all-weather,all-time,high-precision positioning,navigation and timing services,which plays an important role in national security,national economy,public life and ot...Global Navigation Satellite System(GNSS)can provide all-weather,all-time,high-precision positioning,navigation and timing services,which plays an important role in national security,national economy,public life and other aspects.However,in environments with limited satellite signals such as urban canyons,tunnels,and indoor spaces,it is difficult to provide accurate and reliable positioning services only by satellite navigation.Multi-source sensor integrated navigation can effectively overcome the limitations of single-sensor navigation through the fusion of different types of sensor data such as Inertial Measurement Unit(IMU),vision sensor,and LiDAR,and provide more accurate,stable and robust navigation information in complex environments.We summarizes the research status of multi-source sensor integrated navigation technology,and focuses on the representative innovations and applications of integrated navigation and positioning technology by major domestic scientific research institutions in China during 2019—2023.展开更多
The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation sy...The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation system is in charge of storing incremental data,and the spatio-temporal data model for storing incremental data does affect the efficiency of the response of the data center to the requirements of incremental data from the vehicle terminal.According to the analysis on the shortcomings of several typical spatio-temporal data models used in the data center and based on the base map with overlay model,the reverse map with overlay model (RMOM) was put forward for the data center to make rapid response to incremental data request.RMOM supports the data center to store not only the current complete road network data,but also the overlays of incremental data from the time when each road network changed to the current moment.Moreover,the storage mechanism and index structure of the incremental data were designed,and the implementation algorithm of RMOM was developed.Taking navigational road network in Guangzhou City as an example,the simulation test was conducted to validate the efficiency of RMOM.Results show that the navigation database in the data center can response to the requirements of incremental data by only one query with RMOM,and costs less time.Compared with the base map with overlay model,the data center does not need to temporarily overlay incremental data with RMOM,so time-consuming of response is significantly reduced.RMOM greatly improves the efficiency of response and provides strong support for the real-time situation of navigational road network.展开更多
基金the Technology Project Managed by the State Grid Corporation of China(No.5108-202218280A-2-249-XG)。
文摘Mobile robots represented by smart wheelchairs can assist elderly people with mobility difficulties.This paper proposes a multi-mode semi-autonomous navigation system based on a local semantic map for mobile robots,which can assist users to implement accurate navigation(e.g.,docking)in the environment without prior maps.In order to overcome the problem of repeated oscillations during the docking of traditional local path planning algorithms,this paper adopts a mode-switching method and uses feedback control to perform docking when approaching semantic goals.At last,comparative experiments were carried out in the real environment.Results show that our method is superior in terms of safety,comfort and docking accuracy.
文摘With the intensifying competition in the integrated circuit(IC)industry,the high turnover rate of integrated circuit engineers has become a prominent issue affecting the technological continuity of high-precision,specialized,and innovative enterprises.As a representative of such enterprises,JL Technology has faced challenges to its R&D efficiency due to talent loss in recent years.This study takes this enterprise as a case to explore feasible paths to reduce turnover rates through optimizing training and career development systems.The research designs a method combining learning maps and talent maps,utilizes a competency model to clarify the direction for engineers’skill improvement,implements talent classification management using a nine-grid model,and achieves personalized training through Individual Development Plans(IDPs).Analysis of the enterprise’s historical data reveals that the main reasons for turnover are unclear career development paths and insufficient resources for skill improvement.After pilot implementation,the turnover rate in core departments decreased by 12%,and employee satisfaction with training increased by 24%.The results indicate that matching systematic talent reviews with dynamic learning resources can effectively enhance engineers’sense of belonging.This study provides a set of highly operational management tools for small and medium-sized high-precision,specialized,and innovative technology enterprises,verifies their applicability in such enterprises,and offers replicable experiences for similar enterprises to optimize their talent strategies[1].
文摘Map data display is the basic information representation mode under embedded real-time navigation. After a navigation display data set (NDIS_SET) with several dimensions and corresponding mathematical description formula are designed, a series of rules and algorithms are advanced to optimize embedded navigation data and promote data index and input efficiency. A new parallel display algorithm with navigation data named N PDIS is then presented to adapt to limited embedded resources of computation and memory after a normal navigation data display algorithm named NDIS and related problems are analyzed, N_PDIS can synchronously create two preparative bitmapa by two parallel threads and switch one of them to screen automatically. Compared with NDIS, the results show that N_PDIS is more effective in improving display efficiency.
基金the Research on Governing Princi-ples and Mechanism of Autonomous Driving Supported by the Shanghai Science and Technology Committee(No.20511101703)the Research on Key Applicable Techniques and Legal Social Problem about Autonomous Driving Electronic Vehicles Sup-ported by the Ministry of Science and Technology(No.2018YFB0105202-05)。
文摘A high-precision map(HPM)is the key infrastructure to realizing the function of automated driving(AD)and ensuring its safety.However,the current laws and regulations on HPMs in China can lead to serious legal compliance problems.Thus,proper measures should be taken to remove these barriers.Starting with a complete view of the current legal obstacles to HPMs in China,this study first explains why these legal obstacles exist and the types of legal interests they are trying to protect.It then analyzes whether new technology could be used as an alternative to resolve these concerns.Factors such as national security,AD industry needs,and personal data protection,as well as the flexibility of applying technology,are discussed and analyzed hierarchically for this purpose.This study proposes that China should adhere to national security and AD industry development,pass new technical regulations that redefine the scope of national security regarding geographic information in the field of HPMs,and establish a national platform under the guidance and monitoring of the government to integrate scattered resources and promote the development of HPMs via crowdsourcing.Regarding the legal obstacles with higher technical plasticity,priority should be given to technical solutions such as“available but invisible”technology.Compared with the previous research,this study reveals the current legal barriers in China that have different levels of relevance to national security and different technical plasticity.It also proposes original measures to remove them,such as coordinating national security with the development of the AD industry,reshaping the boundary of national security and industrial interests,and giving priority to technical solutions for legal barriers that have strong technical plasticity.
文摘Navigation systems play an important role in many vital disciplines. Determining the location of a user relative to its physical environment is an important part of many indoor-based navigation services such as user navigation, enhanced 911 (E911), law enforcement, location-based and marketing services. Indoor navigation applications require a reliable, trustful and continuous navigation solution that overcomes the challenge of Global Navigation Satellite System (GNSS) signal unavailability. To compensate for this issue, other navigation systems such as Inertial Navigation System (INS) are introduced, however, over time there is a significant amount of drift especially in common with low-cost commercial sensors. In this paper, a map aided navigation solution is developed. This research develops an aiding system that utilizes geospatial data to assist the navigation solution by providing virtual boundaries for the navigation trajectories and limits its possibilities only when it is logical to locate the user on a map. The algorithm develops a Pedestrian Dead Reckoning (PDR) based on smart-phone accelerometer and magnetometer sensors to provide the navigation solution. Geospatial model for two indoor environments with a developed map matching algorithm was used to match and project navigation position estimates on the geospatial map. The developed algorithms were field tested in indoor environments and yielded accurate matching results as well as a significant enhancement to positional accuracy. The achieved results demonstrate that the contribution of the developed map aided system enhances the reliability, usability, and accuracy of navigation trajectories in indoor environments.
基金supported in part by the National Natural Science Foundation of China (62225309,62073222,U21A20480,62361166632)。
文摘Autonomous navigation for intelligent mobile robots has gained significant attention,with a focus on enabling robots to generate reliable policies based on maintenance of spatial memory.In this paper,we propose a learning-based visual navigation pipeline that uses topological maps as memory configurations.We introduce a unique online topology construction approach that fuses odometry pose estimation and perceptual similarity estimation.This tackles the issues of topological node redundancy and incorrect edge connections,which stem from the distribution gap between the spatial and perceptual domains.Furthermore,we propose a differentiable graph extraction structure,the topology multi-factor transformer(TMFT).This structure utilizes graph neural networks to integrate global memory and incorporates a multi-factor attention mechanism to underscore elements closely related to relevant target cues for policy generation.Results from photorealistic simulations on image-goal navigation tasks highlight the superior navigation performance of our proposed pipeline compared to existing memory structures.Comprehensive validation through behavior visualization,interpretability tests,and real-world deployment further underscore the adapt-ability and efficacy of our method.
基金National Key Research and Development Program(No.2018YFB1305001)Major Consulting and Research Project of Chinese Academy of Engineering(No.2018-ZD-02-07)。
文摘Taking autonomous driving and driverless as the research object,we discuss and define intelligent high-precision map.Intelligent high-precision map is considered as a key link of future travel,a carrier of real-time perception of traffic resources in the entire space-time range,and the criterion for the operation and control of the whole process of the vehicle.As a new form of map,it has distinctive features in terms of cartography theory and application requirements compared with traditional navigation electronic maps.Thus,it is necessary to analyze and discuss its key features and problems to promote the development of research and application of intelligent high-precision map.Accordingly,we propose an information transmission model based on the cartography theory and combine the wheeled robot’s control flow in practical application.Next,we put forward the data logic structure of intelligent high-precision map,and analyze its application in autonomous driving.Then,we summarize the computing mode of“Crowdsourcing+Edge-Cloud Collaborative Computing”,and carry out key technical analysis on how to improve the quality of crowdsourced data.We also analyze the effective application scenarios of intelligent high-precision map in the future.Finally,we present some thoughts and suggestions for the future development of this field.
基金supported by National Key R&D Plan of China[2022YFB3903800]and NSFC[62073214].
文摘Integrating Global Navigation Satellite Systems(GNSS)in Simultaneous Localization and Mapping(SLAM)systems draws increasing attention to a global and continuous localization solution.Nonetheless,in dense urban environments,GNSS-based SLAM systems will suffer from the Non-Line-Of-Sight(NLOS)measurements,which might lead to a sharp deterioration in localization results.In this paper,we propose to detect the sky area from the up-looking camera to improve GNSS measurement reliability for more accurate position estimation.We present Sky-GVINS:a sky-aware GNSS-Visual-Inertial system based on a recent work called GVINS.Specifically,we adopt a global threshold method to segment the sky regions and non-sky regions in the fish-eye sky-pointing image and then project satellites to the image using the geometric relationship between satellites and the camera.After that,we reject satellites in non-sky regions to eliminate NLOS signals.We investigated various segmentation algorithms for sky detection and found that the Otsu algorithm reported the highest classification rate and computational efficiency,despite the algorithm's simplicity and ease of implementation.To evaluate the effectiveness of Sky-GVINS,we built a ground robot and conducted extensive real-world experiments on campus.Experimental results show that our method improves localization accuracy in both open areas and dense urban environments compared to the baseline method.Finally,we also conduct a detailed analysis and point out possible further directions for future research.For detailed information,visit our project website at https://github.com/SJTU-ViSYS/Sky-GVINS.
文摘GPS (Global Positioning System) has been widely used in car navigation systems. Most car navigation systems estimate the car position from GPS and DR (dead reckoning). However, the unknown GPS noise characteristic and the unbounded DR accumulation of errors over time make the position information with undesirable position errors. The map matching can improve the position accuracy and availability of the vehicular position system. In this paper, general principle of map matching is investigated according to segmentation and feature extraction, and a map matching algorithm based on D-S (Dempster-Shafer) evidence reasoning for GPS integrated navigation system is proposed, which can find the exact road on which a car moves. For the experiments, a car navigation system is developed with some sensors and the field test demonstrates the effectiveness and applicability of the algorithm for the car location and navigation.
文摘This paper deals with the error analysis of a novel navigation algorithm that uses as input the sequence of images acquired from a moving camera and a Digital Terrain (or Elevation) Map (DTM/DEM). More specifically, it has been shown that the optical flow derived from two consecutive camera frames can be used in combination with a DTM to estimate the position, orientation and ego-motion parameters of the moving camera. As opposed to previous works, the proposed approach does not require an intermediate explicit reconstruction of the 3D world. In the present work the sensitivity of the algorithm outlined above is studied. The main sources for errors are identified to be the optical-flow evaluation and computation, the quality of the information about the terrain, the structure of the observed terrain and the trajectory of the camera. By assuming appropriate characterization of these error sources, a closed form expression for the uncertainty of the pose and motion of the camera is first developed and then the influence of these factors is confirmed using extensive numerical simulations. The main conclusion of this paper is to establish that the proposed navigation algorithm generates accurate estimates for reasonable scenarios and error sources, and thus can be effectively used as part of a navigation system of autonomous vehicles.
文摘Terrain referenced navigation estimates an aircraft navigation status by utilizing a radar altimeter measuring a distance between the aircraft and terrain elevation. Accurate digital elevation map is essential to estimate the aircraft states correctly. However, the elevation map cannot represent the real terrain perfectly and there exists map error between the estimated and the true maps. In this paper, an influence of the map error on measurement equation is analyzed and a technique to incorporate the error in the filter is proposed. The map error is divided into two sources, accuracy error and resolution error. The effectiveness of the suggested technique is verified by simulation results. The method modifies a sensor noise covariance only so there is no additional computational burden from the conventional filter.
基金National Natural Science Foundation of China(61305107,U1333109)the Fundamental Research Funds for the Central Universities(3122016B006)the Scientific Research Funds for Civil Aviation University of China(2012QD23X)
文摘To facilitate scene understanding and robot navigation in large scale urban environment, a two-layer enhanced geometric map(EGMap) is designed using videos from a monocular onboard camera. The 2D layer of EGMap consists of a 2D building boundary map from top-down view and a 2D road map, which can support localization and advanced map-matching when compared with standard polyline-based maps. The 3D layer includes features such as 3D road model,and building facades with coplanar 3D vertical and horizontal line segments, which can provide the 3D metric features to localize the vehicles and flying-robots in 3D space. Starting from the 2D building boundary and road map, EGMap is initially constructed using feature fusion with geometric constraints under a line feature-based simultaneous localization and mapping(SLAM) framework iteratively and progressively. Then, a local bundle adjustment algorithm is proposed to jointly refine the camera localizations and EGMap features. Furthermore, the issues of uncertainty, memory use, time efficiency and obstacle effect in EGMap construction are discussed and analyzed. Physical experiments show that EGMap can be successfully constructed in large scale urban environment and the construction method is demonstrated to be very accurate and robust.
文摘According to the characteristics of gravity passive navigation, this paper presents a novel gravity passive navigation system (GPNS), which consists of the rate azimuth platform (RAP), gravity sensor, digitally stored gravity maps, depth sensor and relative log. The algorithm of rate azimuth platform inertial navigation system, error state-space equations, measurement equations and GPNS optimal filter are described. In view of the measurements made by an onboard gravity sensor the Eotvos effect is introduced in the gravity measurement equation of a GPNS optimal filter. A GPNS is studied with the Matlab/Simulink tools; simulation results demonstrate that a GPNS has small errors in platform attitude and position. Because the inertial navigation platform is the rate azimuth platform in the GPNS and gravity sensor is mounted on the rate azimuth platform, the cost of the GPNS is lower than existing GPNS's and according to the above results the GPNS meets the need to maintain accuracy navigation for underwater vehicles over long intervals.
基金supported by the NIBIB and the NEI of the National Institutes of Health(R01EB018117)。
文摘There are about 253 million people with visual impairment worldwide.Many of them use a white cane and/or a guide dog as the mobility tool for daily travel.Despite decades of efforts,electronic navigation aid that can replace white cane is still research in progress.In this paper,we propose an RGB-D camera based visual positioning system(VPS)for real-time localization of a robotic navigation aid(RNA)in an architectural floor plan for assistive navigation.The core of the system is the combination of a new 6-DOF depth-enhanced visual-inertial odometry(DVIO)method and a particle filter localization(PFL)method.DVIO estimates RNA’s pose by using the data from an RGB-D camera and an inertial measurement unit(IMU).It extracts the floor plane from the camera’s depth data and tightly couples the floor plane,the visual features(with and without depth data),and the IMU’s inertial data in a graph optimization framework to estimate the device’s 6-DOF pose.Due to the use of the floor plane and depth data from the RGB-D camera,DVIO has a better pose estimation accuracy than the conventional VIO method.To reduce the accumulated pose error of DVIO for navigation in a large indoor space,we developed the PFL method to locate RNA in the floor plan.PFL leverages geometric information of the architectural CAD drawing of an indoor space to further reduce the error of the DVIO-estimated pose.Based on VPS,an assistive navigation system is developed for the RNA prototype to assist a visually impaired person in navigating a large indoor space.Experimental results demonstrate that:1)DVIO method achieves better pose estimation accuracy than the state-of-the-art VIO method and performs real-time pose estimation(18 Hz pose update rate)on a UP Board computer;2)PFL reduces the DVIO-accrued pose error by 82.5%on average and allows for accurate wayfinding(endpoint position error≤45 cm)in large indoor spaces.
文摘The autonomous navigation of an Unmanned Aerial Vehicle(UAV)relies heavily on the navigation sensors.The UAV’s level of autonomy depends upon the various navigation systems,such as state measurement,mapping,and obstacle avoidance.Selecting the correct components is a critical part of the design process.However,this can be a particularly difficult task,especially for novices as there are several technologies and components available on the market,each with their own individual advantages and disadvantages.For example,satellite-based navigation components should be avoided when designing indoor UAVs.Incorporating them in the design brings no added value to the final product and will simply lead to increased cost and power consumption.Another issue is the number of vendors on the market,each trying to sell their hardware solutions which often incorporate similar technologies.The aim of this paper is to serve as a guide,proposing various methods to support the selection of fit-for-purpose technologies and components whilst avoiding system layout conflicts.The paper presents a study of the various navigation technologies and supports engineers in the selection of specific hardware solutions based on given requirements.The selection methods are based on easy-to-follow flow charts.A comparison of the various hardware components specifications is also included as part of this work.
基金National Key R&D Program of China(No.2021YFB2501102)。
文摘Global Navigation Satellite System(GNSS)can provide all-weather,all-time,high-precision positioning,navigation and timing services,which plays an important role in national security,national economy,public life and other aspects.However,in environments with limited satellite signals such as urban canyons,tunnels,and indoor spaces,it is difficult to provide accurate and reliable positioning services only by satellite navigation.Multi-source sensor integrated navigation can effectively overcome the limitations of single-sensor navigation through the fusion of different types of sensor data such as Inertial Measurement Unit(IMU),vision sensor,and LiDAR,and provide more accurate,stable and robust navigation information in complex environments.We summarizes the research status of multi-source sensor integrated navigation technology,and focuses on the representative innovations and applications of integrated navigation and positioning technology by major domestic scientific research institutions in China during 2019—2023.
基金Under the auspices of National High Technology Research and Development Program of China (No.2007AA12Z242)
文摘The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation system is in charge of storing incremental data,and the spatio-temporal data model for storing incremental data does affect the efficiency of the response of the data center to the requirements of incremental data from the vehicle terminal.According to the analysis on the shortcomings of several typical spatio-temporal data models used in the data center and based on the base map with overlay model,the reverse map with overlay model (RMOM) was put forward for the data center to make rapid response to incremental data request.RMOM supports the data center to store not only the current complete road network data,but also the overlays of incremental data from the time when each road network changed to the current moment.Moreover,the storage mechanism and index structure of the incremental data were designed,and the implementation algorithm of RMOM was developed.Taking navigational road network in Guangzhou City as an example,the simulation test was conducted to validate the efficiency of RMOM.Results show that the navigation database in the data center can response to the requirements of incremental data by only one query with RMOM,and costs less time.Compared with the base map with overlay model,the data center does not need to temporarily overlay incremental data with RMOM,so time-consuming of response is significantly reduced.RMOM greatly improves the efficiency of response and provides strong support for the real-time situation of navigational road network.