Spherical objects are widely used in target localization applications,and the existing sphere localization methods with cameras or total stations both have some limitations.A new high-precision sphere localization met...Spherical objects are widely used in target localization applications,and the existing sphere localization methods with cameras or total stations both have some limitations.A new high-precision sphere localization method with a theodolite is proposed in this paper.From the view point of the theodolite,the contour points of a sphere with a known radius are measured as latitude-longitude coordinates.It is observed that the center of the target sphere is located on a cylindrical surface constructed with the latitude-longitude coordinates,and therefore the latitude-longitude coordinates of at least three contour points can be used to construct a set of ternary quadratic equations.The Gröbner basis method is used to compute at most four real solutions of the sphere center coordinates.To distinguish the only meaningful solution from the other possible real solutions,a pre-processing of the measured longitude values is also proposed.The factors affecting the positioning accuracy of the sphere center are evaluated in simulation experiments,which are used to obtain an empirical estimation model of the positioning error.Real data experiments are also performed and the results show that the proposed method can achieve high localization precision.展开更多
Rydberg atoms have been widely investigated due to their large size,long radiative lifetime,huge polarizability and strong dipole-dipole interactions.The position information of Rydberg atoms provides more possibiliti...Rydberg atoms have been widely investigated due to their large size,long radiative lifetime,huge polarizability and strong dipole-dipole interactions.The position information of Rydberg atoms provides more possibilities for quantum optics research,which can be obtained under the localization method.We study the behavior of three-dimensional(3D)Rydberg atom localization in a four-level configuration with the measurement of the spatial optical absorption.The atomic localization precision depends strongly on the detuning and Rabi frequency of the involved laser fields.A 100%probability of finding the Rydberg atom at a specific 3D position is achieved with precision of~0.031λ.This work demonstrates the possibility for achieving the 3D atom localization of the Rydberg atom in the experiment.展开更多
In the present paper, we investigate the behavior of two-dimensional atom localization in a five-level M-scheme atomic system driven by two orthogonal standing-wave fields. We find that the precision and resolution of...In the present paper, we investigate the behavior of two-dimensional atom localization in a five-level M-scheme atomic system driven by two orthogonal standing-wave fields. We find that the precision and resolution of the atom localization depends on the probe field detuning significantly. And because of the effect of the microwave field, an atom can be located at a particular position via adjusting the system parameters.展开更多
A scheme is used to explore the behavior of three-dimensional(3D)atom localization in a Y-type hot atomic system.We can obtain the position information of the atom due to the position-dependent atom–field interaction...A scheme is used to explore the behavior of three-dimensional(3D)atom localization in a Y-type hot atomic system.We can obtain the position information of the atom due to the position-dependent atom–field interaction.We study the influences of the system parameters and the temperature on the atom localization.More interestingly,the atom can be localized in a subspace when the temperature is equal to 323 K.Moreover,a method is proposed to tune multiparameter for localizing the atom in a subspace.The result is helpful to achieve atom nanolithography,photonic crystal and measure the center-of-mass wave function of moving atoms.展开更多
Herein,we propose a scheme for the realization of two-dimensional atomic localization in aλ-type three-level atomic medium such that the atom interacts with the two orthogonal standing-wave fields and a probe field.B...Herein,we propose a scheme for the realization of two-dimensional atomic localization in aλ-type three-level atomic medium such that the atom interacts with the two orthogonal standing-wave fields and a probe field.Because of the spatially dependent atom-field interaction,the information about the position of the atom can be obtained by monitoring the probe transmission spectra of the weak probe field for the first time.A single and double sharp localized peaks are observed in the one-wavelength domain.We have theoretically archived high-resolution and high-precision atomic localization within a region smaller thanλ/25×λ/25.The results may have potential applications in the field of nano-lithography and advance laser cooling technology.展开更多
Spectrum-based fault localization (SBFL) generates a ranked list of suspicious elements by using the program execution spectrum, but the excessive number of elements ranked in parallel results in low localization accu...Spectrum-based fault localization (SBFL) generates a ranked list of suspicious elements by using the program execution spectrum, but the excessive number of elements ranked in parallel results in low localization accuracy. Most researchers consider intra-class dependencies to improve localization accuracy. However, some studies show that inter-class method call type faults account for more than 20%, which means such methods still have certain limitations. To solve the above problems, this paper proposes a two-phase software fault localization based on relational graph convolutional neural networks (Two-RGCNFL). Firstly, in Phase 1, the method call dependence graph (MCDG) of the program is constructed, the intra-class and inter-class dependencies in MCDG are extracted by using the relational graph convolutional neural network, and the classifier is used to identify the faulty methods. Then, the GraphSMOTE algorithm is improved to alleviate the impact of class imbalance on classification accuracy. Aiming at the problem of parallel ranking of element suspicious values in traditional SBFL technology, in Phase 2, Doc2Vec is used to learn static features, while spectrum information serves as dynamic features. A RankNet model based on siamese multi-layer perceptron is constructed to score and rank statements in the faulty method. This work conducts experiments on 5 real projects of Defects4J benchmark. Experimental results show that, compared with the traditional SBFL technique and two baseline methods, our approach improves the Top-1 accuracy by 262.86%, 29.59% and 53.01%, respectively, which verifies the effectiveness of Two-RGCNFL. Furthermore, this work verifies the importance of inter-class dependencies through ablation experiments.展开更多
The fast growth of mobile autonomous machines from traditional equipment to unmanned autonomous vehicles has fueled the demand for accurate and reliable localization solutions in diverse application domains.Ultra Wide...The fast growth of mobile autonomous machines from traditional equipment to unmanned autonomous vehicles has fueled the demand for accurate and reliable localization solutions in diverse application domains.Ultra Wide Band(UWB)technology has emerged as a promising candidate for addressing this need,offering high precision,immunity to multipath interference,and robust performance in challenging environments.In this comprehensive survey,we systematically explore UWB-based localization for mobile autonomous machines,spanning from fundamental principles to future trends.To the best of our knowledge,this review paper stands as the pioneer in systematically dissecting the algorithms of UWB-based localization for mobile autonomous machines,covering a spectrum from bottom-ranging schemes to advanced sensor fusion,error mitigation,and optimization techniques.By synthesizing existing knowledge,evaluating current methodologies,and highlighting future trends,this review aims to catalyze progress and innovation in the field,unlocking new opportunities for mobile autonomous machine applications across diverse industries and domains.Thus,it serves as a valuable resource for researchers,practitioners,and stakeholders interested in advancing the state-of-the-art UWB-based localization for mobile autonomous machines.展开更多
The proposed hybrid optimization algorithm integrates particle swarm optimizatio(PSO)with Ant Colony Optimization(ACO)to improve a number of pitfalls within PSO methods traditionally considered and/or applied to indus...The proposed hybrid optimization algorithm integrates particle swarm optimizatio(PSO)with Ant Colony Optimization(ACO)to improve a number of pitfalls within PSO methods traditionally considered and/or applied to industrial robots.Particle Swarm Optimization may frequently suffer from local optima and inaccuracies in identifying the geometric parameters,which are necessary for applications requiring high-accuracy performances.The proposed approach integrates pheromone-based learning of ACO with the D-H method of developing an error model;hence,the global search effectiveness together with the convergence accuracy is further improved.Comparison studies of the hybrid PSO-ACO algorithm show higher precision and effectiveness in the optimization of geometric error parameters compared to the traditional methods.This is a remarkable reduction of localization errors,thus yielding accuracy and reliability in industrial robotic systems,as the results show.This approach improves performance in those applications that demand high geometric calibration by reducing the geometric error.The paper provides an overview of input for developing robotics and automation,giving importance to precision in industrial engineering.The proposed hybrid methodology is a good way to enhance the working accuracy and effectiveness of industrial robots and shall enable their wide application to complex tasks that require a high degree of accuracy.展开更多
Ecological monitoring vehicles are equipped with a range of sensors and monitoring devices designed to gather data on ecological and environmental factors.These vehicles are crucial in various fields,including environ...Ecological monitoring vehicles are equipped with a range of sensors and monitoring devices designed to gather data on ecological and environmental factors.These vehicles are crucial in various fields,including environmental science research,ecological and environmental monitoring projects,disaster response,and emergency management.A key method employed in these vehicles for achieving high-precision positioning is LiDAR(lightlaser detection and ranging)-Visual Simultaneous Localization and Mapping(SLAM).However,maintaining highprecision localization in complex scenarios,such as degraded environments or when dynamic objects are present,remains a significant challenge.To address this issue,we integrate both semantic and texture information from LiDAR and cameras to enhance the robustness and efficiency of data registration.Specifically,semantic information simplifies the modeling of scene elements,reducing the reliance on dense point clouds,which can be less efficient.Meanwhile,visual texture information complements LiDAR-Visual localization by providing additional contextual details.By incorporating semantic and texture details frompaired images and point clouds,we significantly improve the quality of data association,thereby increasing the success rate of localization.This approach not only enhances the operational capabilities of ecological monitoring vehicles in complex environments but also contributes to improving the overall efficiency and effectiveness of ecological monitoring and environmental protection efforts.展开更多
This work presents a method for the three-dimensional localization of individual shallow NV center in diamond,leveraging the near-field quenching effect of a gold tip.Our experimental setup involves the use of an atom...This work presents a method for the three-dimensional localization of individual shallow NV center in diamond,leveraging the near-field quenching effect of a gold tip.Our experimental setup involves the use of an atomic force microscope to precisely move the gold tip close to the NV center,while simultaneously employing a home-made confocal microscope to monitor the fluorescence of the NV center.This approach allows for lateral super-resolution,achieving a full width at half maximum(FWHM)of 38.0 nm and a location uncertainty of 0.7 nm.Additionally,we show the potential of this method for determining the depth of the NV centers.We also attempt to determine the depth of the NV centers in combination with finite-difference time-domain(FDTD)simulations.Compared to other depth determination methods,this approach allows for simultaneous lateral and longitudinal localization of individual NV centers,and holds promise for facilitating manipulation of the local environment surrounding the NV center.展开更多
Automatic Dependent Surveillance-Broadcast(ADS-B)technology,with its open signal sharing,faces substantial security risks from false signals and spoofing attacks when broadcasting Unmanned Aerial Vehicle(UAV)informati...Automatic Dependent Surveillance-Broadcast(ADS-B)technology,with its open signal sharing,faces substantial security risks from false signals and spoofing attacks when broadcasting Unmanned Aerial Vehicle(UAV)information.This paper proposes a security position verification technique based on Multilateration(MLAT)to detect false signals,ensuring UAV safety and reliable airspace operations.First,the proposed method estimates the current position of the UAV by calculating the Time Difference of Arrival(TDOA),Time Sum of Arrival(TSOA),and Angle of Arrival(AOA)information.Then,this estimated position is compared with the ADS-B message to eliminate false UAV signals.Furthermore,a localization model based on TDOA/TSOA/AOA is established by utilizing reliable reference sources for base station time synchronization.Additionally,an improved Chan-Taylor algorithm is developed,incorporating the Constrained Weighted Least Squares(CWLS)method to initialize UAV position calculations.Finally,a false signal detection method is proposed to distinguish between true and false positioning targets.Numerical simulation results indicate that,at a positioning error threshold of 150 m,the improved Chan-Taylor algorithm based on TDOA/TSOA/AOA achieves 100%accuracy coverage,significantly enhancing localization precision.And the proposed false signal detection method achieves a detection accuracy rate of at least 90%within a 50-meter error range.展开更多
Surface-enhanced Raman spectroscopy(SERS)has evolved from a laboratory technique to a practical tool for ultra-sensitive detection,particularly in the biomedical field,where precise molecular identification is crucial...Surface-enhanced Raman spectroscopy(SERS)has evolved from a laboratory technique to a practical tool for ultra-sensitive detection,particularly in the biomedical field,where precise molecular identification is crucial.Despite significant advancements,a gap remains in the literature,as no comprehensive review systematically addresses the high-precision construction of SERS substrates for ultrasensitive biomedical detection.This review fills that gap by exploring recent progress in fabricating high-precision SERS substrates,emphasizing their role in enabling ultrasensitive bio-medical sensors.We carefully examine the key to these advancements is the precision engineering of substrates,including noble metals,semiconductors,carbon-based materials,and two-dimensional materials,which is essential for achieving the high sensitivity required for ultrasensitive detection.Applications in biomedical diagnostics and molecular analysis are highlighted.Finally,we address the challenges in SERS substrate preparation and outline future directions,focusing on improvement strategies,design concepts,and expanding applications for these advanced materials.展开更多
Large-aperture optical components are of paramount importance in domains such as integrated circuits,photolithography,aerospace,and inertial confinement fusion.However,measuring their surface profiles relies predomina...Large-aperture optical components are of paramount importance in domains such as integrated circuits,photolithography,aerospace,and inertial confinement fusion.However,measuring their surface profiles relies predominantly on the phase-shifting approach,which involves collecting multiple interferograms and imposes stringent demands on environmental stability.These issues significantly hinder its ability to achieve real-time and dynamic high-precision measurements.Therefore,this study proposes a high-precision large-aperture single-frame interferometric surface profile measurement(LA-SFISPM)method based on deep learning and explores its capability to realize dynamic measurements with high accuracy.The interferogram is matched to the phase by training the data measured using the small aperture.The consistency of the surface features of the small and large apertures is enhanced via contrast learning and feature-distribution alignment.Hence,high-precision phase reconstruction of large-aperture optical components can be achieved without using a phase shifter.The experimental results show that for the tested mirror withΦ=820 mm,the surface profile obtained from LA-SFISPM is subtracted point-by-point from the ground truth,resulting in a maximum single-point error of 4.56 nm.Meanwhile,the peak-to-valley(PV)value is 0.0758λ,and the simple repeatability of root mean square(SR-RMS)value is 0.00025λ,which aligns well with the measured results obtained by ZYGO.In particular,a significant reduction in the measurement time(reduced by a factor of 48)is achieved compared with that of the traditional phase-shifting method.Our proposed method provides an efficient,rapid,and accurate method for obtaining the surface profiles of optical components with different diameters without employing a phase-shifting approach,which is highly desired in large-aperture interferometric measurement systems.展开更多
The elliptic integral method(EIM) is an efficient analytical approach for analyzing large deformations of elastic beams. However, it faces the following challenges.First, the existing EIM can only handle cases with kn...The elliptic integral method(EIM) is an efficient analytical approach for analyzing large deformations of elastic beams. However, it faces the following challenges.First, the existing EIM can only handle cases with known deformation modes. Second,the existing EIM is only applicable to Euler beams, and there is no EIM available for higher-precision Timoshenko and Reissner beams in cases where both force and moment are applied at the end. This paper proposes a general EIM for Reissner beams under arbitrary boundary conditions. On this basis, an analytical equation for determining the sign of the elliptic integral is provided. Based on the equation, we discover a class of elliptic integral piecewise points that are distinct from inflection points. More importantly, we propose an algorithm that automatically calculates the number of inflection points and other piecewise points during the nonlinear solution process, which is crucial for beams with unknown or changing deformation modes.展开更多
This paper investigates the mechanisms underlying the localization of Buddhism among the Kalmyks during Tsarist rule.It identifies and analyzes three interconnected processes:(1)the evolving framework of Tsarist polic...This paper investigates the mechanisms underlying the localization of Buddhism among the Kalmyks during Tsarist rule.It identifies and analyzes three interconnected processes:(1)the evolving framework of Tsarist policies aimed at administrative integration and religious regulation;(2)Kalmyk adaptive strategies,particularly the development of unique institutional responses(Supreme Lama election,Chief Bagshi,Dayanqi,and Temple Adherent systems)to navigate state constraints;and(3)spontaneous processes of cultural hybridity are manifested in material culture(e.g.,the Khoshut temple)and religious narratives(e.g.,Ulyanov’s reinvention of prophecies in Prophecies of Buddha).Utilizing the concept of“conjuncture practice”to frame these interactions,the study demonstrates how localization operated through a combination of regulatory pressure,community-level adaptation,and cultural synthesis,ultimately forging a distinct Kalmyk Buddhist expression within the imperial context.展开更多
With the intensifying competition in the integrated circuit(IC)industry,the high turnover rate of integrated circuit engineers has become a prominent issue affecting the technological continuity of high-precision,spec...With the intensifying competition in the integrated circuit(IC)industry,the high turnover rate of integrated circuit engineers has become a prominent issue affecting the technological continuity of high-precision,specialized,and innovative enterprises.As a representative of such enterprises,JL Technology has faced challenges to its R&D efficiency due to talent loss in recent years.This study takes this enterprise as a case to explore feasible paths to reduce turnover rates through optimizing training and career development systems.The research designs a method combining learning maps and talent maps,utilizes a competency model to clarify the direction for engineers’skill improvement,implements talent classification management using a nine-grid model,and achieves personalized training through Individual Development Plans(IDPs).Analysis of the enterprise’s historical data reveals that the main reasons for turnover are unclear career development paths and insufficient resources for skill improvement.After pilot implementation,the turnover rate in core departments decreased by 12%,and employee satisfaction with training increased by 24%.The results indicate that matching systematic talent reviews with dynamic learning resources can effectively enhance engineers’sense of belonging.This study provides a set of highly operational management tools for small and medium-sized high-precision,specialized,and innovative technology enterprises,verifies their applicability in such enterprises,and offers replicable experiences for similar enterprises to optimize their talent strategies[1].展开更多
Bio-inspired visual systems have garnered significant attention in robotics owing to their energy efficiency,rapid dynamic response,and environmental adaptability.Among these,event cameras-bio-inspired sensors that as...Bio-inspired visual systems have garnered significant attention in robotics owing to their energy efficiency,rapid dynamic response,and environmental adaptability.Among these,event cameras-bio-inspired sensors that asynchronously report pixel-level brightness changes called’events’,stand out because of their ability to capture dynamic changes with minimal energy consumption,making them suitable for challenging conditions,such as low light or high-speed motion.However,current mapping and localization methods for event cameras depend primarily on point and line features,which struggle in sparse or low-feature environments and are unsuitable for static or slow-motion scenarios.We addressed these challenges by proposing a bio-inspired vision mapping and localization method using active LED markers(ALMs)combined with reprojection error optimization and asynchronous Kalman fusion.Our approach replaces traditional features with ALMs,thereby enabling accurate tracking under dynamic and low-feature conditions.The global mapping accuracy significantly improved by minimizing the reprojection error,with corner errors reduced from 16.8 cm to 3.1 cm after 400 iterations.The asynchronous Kalman fusion of multiple camera pose estimations from ALMs ensures precise localization with a high temporal efficiency.This method achieved a mean translation error of 0.078 m and a rotational error of 5.411°while evaluating dynamic motion.In addition,the method supported an output rate of 4.5 kHz while maintaining high localization accuracy in UAV spiral flight experiments.These results demonstrate the potential of the proposed approach for real-time robot localization in challenging environments.展开更多
Many applications for locating a radio signal source employ Global Navigation Satellite System(GNSS)to obtain a sensor’s position.By using GNSS,a sensor can also synchronize with other sensors.For a sensor that is eq...Many applications for locating a radio signal source employ Global Navigation Satellite System(GNSS)to obtain a sensor’s position.By using GNSS,a sensor can also synchronize with other sensors.For a sensor that is equipped with a GNSS receiver,it can be independent and is readily to be loaded on a flexible platform,such as an unmanned aerial vehicle(UAV).In this paper,we consider using such sensors and timeof-arrival(TOA)techniques to locate a radio signal source,and analyze the performance limit of source localization.Besides the performance analysis,this paper provides the geometric interpretation of the performance limit,which can illustrate how a sensor contributes to the source localization accuracy.The performance analysis and the geometric interpretation together give important insights into how to make better use of GNSS receiver for passive localization.Another contribution is we propose a modified closedform solution for this localization problem.Compared with previous literature,this solution takes both sensor position and synchronization uncertainty into account,and it does not need proper initial guess of source position and is computationally efficient.Our simulation results validate the efficiency of this solution.展开更多
Taking the Hotel Indigo Shanghai on the Bund as an example,this paper explores the localization of international high-end boutique hotels in China by using the methods of literature research and case study.The results...Taking the Hotel Indigo Shanghai on the Bund as an example,this paper explores the localization of international high-end boutique hotels in China by using the methods of literature research and case study.The results show that the localization of international high-end boutique hotels is embodied in brand building,spatial layout,service design and cultural activity planning,and that the perfect integration of international brand concept and local culture is an important factor for its success in the Chinese market.The research aims to provide reference for promoting the in-depth development and integration of international high-end boutique hotels in the Chinese market and the localization process of state-owned high-end boutique hotels in the future host country.展开更多
The utilization of nanostructures with diverse geometric shapes is essential for manipulating the energy of electromagnetic(EM) fields and achieving various applications in optics, such as nanofocusing. The plasmonic ...The utilization of nanostructures with diverse geometric shapes is essential for manipulating the energy of electromagnetic(EM) fields and achieving various applications in optics, such as nanofocusing. The plasmonic cone structure is highly representative in the field of nanofocusing applications, effectively guiding EM field energy to the tip of the cone and resulting in high local electric field and temperature effects. In certain chemical catalytic applications, an elevated temperature and a larger surface area may be required to enhance catalysis reactions. Here, we propose a hollow gold nanocone structure that can achieve higher temperature both at the tip and within its hollow region under the excitation of an EM field.Through rigorous finite element method(FEM) simulations, we investigated the EM field and temperature distribution of the hollow cone at various cone angles and identified those angles that yield higher local temperatures. Additionally, the analysis of the scattering cross section of hollow cones reveals that the presence of electric dipole component of the EM field corresponds to Fabry–Perot-like(FP-like) resonance in short wavelengths(600 nm–1200 nm), which predominantly contributes to the temperature localization. These findings provide novel insights into utilizing conical nanostructures for applications such as catalysis.展开更多
基金supported in part by the National Natural Science Foundation of China under Grants 61703373,61873246,U1504604in part by the Key research project of Henan Province Universities under Grant 19A413014.
文摘Spherical objects are widely used in target localization applications,and the existing sphere localization methods with cameras or total stations both have some limitations.A new high-precision sphere localization method with a theodolite is proposed in this paper.From the view point of the theodolite,the contour points of a sphere with a known radius are measured as latitude-longitude coordinates.It is observed that the center of the target sphere is located on a cylindrical surface constructed with the latitude-longitude coordinates,and therefore the latitude-longitude coordinates of at least three contour points can be used to construct a set of ternary quadratic equations.The Gröbner basis method is used to compute at most four real solutions of the sphere center coordinates.To distinguish the only meaningful solution from the other possible real solutions,a pre-processing of the measured longitude values is also proposed.The factors affecting the positioning accuracy of the sphere center are evaluated in simulation experiments,which are used to obtain an empirical estimation model of the positioning error.Real data experiments are also performed and the results show that the proposed method can achieve high localization precision.
基金the National R&D Program of China(Grant No.2017YFA0304203)the National Natural Science Foundation of China(Grant Nos.61875112,61705122,62075121,and 91736209)+1 种基金the Program for Sanjin Scholars of Shanxi Province,the Key Research and Development Program of Shanxi Province for International Cooperation(Grant No.201803D421034)Shanxi Scholarship Council of China(Grant Nos.2020-073),and 1331KSC.
文摘Rydberg atoms have been widely investigated due to their large size,long radiative lifetime,huge polarizability and strong dipole-dipole interactions.The position information of Rydberg atoms provides more possibilities for quantum optics research,which can be obtained under the localization method.We study the behavior of three-dimensional(3D)Rydberg atom localization in a four-level configuration with the measurement of the spatial optical absorption.The atomic localization precision depends strongly on the detuning and Rabi frequency of the involved laser fields.A 100%probability of finding the Rydberg atom at a specific 3D position is achieved with precision of~0.031λ.This work demonstrates the possibility for achieving the 3D atom localization of the Rydberg atom in the experiment.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60768001 and 10464002)
文摘In the present paper, we investigate the behavior of two-dimensional atom localization in a five-level M-scheme atomic system driven by two orthogonal standing-wave fields. We find that the precision and resolution of the atom localization depends on the probe field detuning significantly. And because of the effect of the microwave field, an atom can be located at a particular position via adjusting the system parameters.
文摘A scheme is used to explore the behavior of three-dimensional(3D)atom localization in a Y-type hot atomic system.We can obtain the position information of the atom due to the position-dependent atom–field interaction.We study the influences of the system parameters and the temperature on the atom localization.More interestingly,the atom can be localized in a subspace when the temperature is equal to 323 K.Moreover,a method is proposed to tune multiparameter for localizing the atom in a subspace.The result is helpful to achieve atom nanolithography,photonic crystal and measure the center-of-mass wave function of moving atoms.
基金supported by the Zhejiang Provincial Natural Science Foundation of China under Grant No.LD18A040001the National Key Research and Development Program of China(No.2017YFA0304202)the National Natural Science Foundation of China(Grant No.11974309)。
文摘Herein,we propose a scheme for the realization of two-dimensional atomic localization in aλ-type three-level atomic medium such that the atom interacts with the two orthogonal standing-wave fields and a probe field.Because of the spatially dependent atom-field interaction,the information about the position of the atom can be obtained by monitoring the probe transmission spectra of the weak probe field for the first time.A single and double sharp localized peaks are observed in the one-wavelength domain.We have theoretically archived high-resolution and high-precision atomic localization within a region smaller thanλ/25×λ/25.The results may have potential applications in the field of nano-lithography and advance laser cooling technology.
基金funded by the Youth Fund of the National Natural Science Foundation of China(Grant No.42261070).
文摘Spectrum-based fault localization (SBFL) generates a ranked list of suspicious elements by using the program execution spectrum, but the excessive number of elements ranked in parallel results in low localization accuracy. Most researchers consider intra-class dependencies to improve localization accuracy. However, some studies show that inter-class method call type faults account for more than 20%, which means such methods still have certain limitations. To solve the above problems, this paper proposes a two-phase software fault localization based on relational graph convolutional neural networks (Two-RGCNFL). Firstly, in Phase 1, the method call dependence graph (MCDG) of the program is constructed, the intra-class and inter-class dependencies in MCDG are extracted by using the relational graph convolutional neural network, and the classifier is used to identify the faulty methods. Then, the GraphSMOTE algorithm is improved to alleviate the impact of class imbalance on classification accuracy. Aiming at the problem of parallel ranking of element suspicious values in traditional SBFL technology, in Phase 2, Doc2Vec is used to learn static features, while spectrum information serves as dynamic features. A RankNet model based on siamese multi-layer perceptron is constructed to score and rank statements in the faulty method. This work conducts experiments on 5 real projects of Defects4J benchmark. Experimental results show that, compared with the traditional SBFL technique and two baseline methods, our approach improves the Top-1 accuracy by 262.86%, 29.59% and 53.01%, respectively, which verifies the effectiveness of Two-RGCNFL. Furthermore, this work verifies the importance of inter-class dependencies through ablation experiments.
文摘The fast growth of mobile autonomous machines from traditional equipment to unmanned autonomous vehicles has fueled the demand for accurate and reliable localization solutions in diverse application domains.Ultra Wide Band(UWB)technology has emerged as a promising candidate for addressing this need,offering high precision,immunity to multipath interference,and robust performance in challenging environments.In this comprehensive survey,we systematically explore UWB-based localization for mobile autonomous machines,spanning from fundamental principles to future trends.To the best of our knowledge,this review paper stands as the pioneer in systematically dissecting the algorithms of UWB-based localization for mobile autonomous machines,covering a spectrum from bottom-ranging schemes to advanced sensor fusion,error mitigation,and optimization techniques.By synthesizing existing knowledge,evaluating current methodologies,and highlighting future trends,this review aims to catalyze progress and innovation in the field,unlocking new opportunities for mobile autonomous machine applications across diverse industries and domains.Thus,it serves as a valuable resource for researchers,practitioners,and stakeholders interested in advancing the state-of-the-art UWB-based localization for mobile autonomous machines.
文摘The proposed hybrid optimization algorithm integrates particle swarm optimizatio(PSO)with Ant Colony Optimization(ACO)to improve a number of pitfalls within PSO methods traditionally considered and/or applied to industrial robots.Particle Swarm Optimization may frequently suffer from local optima and inaccuracies in identifying the geometric parameters,which are necessary for applications requiring high-accuracy performances.The proposed approach integrates pheromone-based learning of ACO with the D-H method of developing an error model;hence,the global search effectiveness together with the convergence accuracy is further improved.Comparison studies of the hybrid PSO-ACO algorithm show higher precision and effectiveness in the optimization of geometric error parameters compared to the traditional methods.This is a remarkable reduction of localization errors,thus yielding accuracy and reliability in industrial robotic systems,as the results show.This approach improves performance in those applications that demand high geometric calibration by reducing the geometric error.The paper provides an overview of input for developing robotics and automation,giving importance to precision in industrial engineering.The proposed hybrid methodology is a good way to enhance the working accuracy and effectiveness of industrial robots and shall enable their wide application to complex tasks that require a high degree of accuracy.
基金supported by the project“GEF9874:Strengthening Coordinated Approaches to Reduce Invasive Alien Species(lAS)Threats to Globally Significant Agrobiodiversity and Agroecosystems in China”funding from the Excellent Talent Training Funding Project in Dongcheng District,Beijing,with project number 2024-dchrcpyzz-9.
文摘Ecological monitoring vehicles are equipped with a range of sensors and monitoring devices designed to gather data on ecological and environmental factors.These vehicles are crucial in various fields,including environmental science research,ecological and environmental monitoring projects,disaster response,and emergency management.A key method employed in these vehicles for achieving high-precision positioning is LiDAR(lightlaser detection and ranging)-Visual Simultaneous Localization and Mapping(SLAM).However,maintaining highprecision localization in complex scenarios,such as degraded environments or when dynamic objects are present,remains a significant challenge.To address this issue,we integrate both semantic and texture information from LiDAR and cameras to enhance the robustness and efficiency of data registration.Specifically,semantic information simplifies the modeling of scene elements,reducing the reliance on dense point clouds,which can be less efficient.Meanwhile,visual texture information complements LiDAR-Visual localization by providing additional contextual details.By incorporating semantic and texture details frompaired images and point clouds,we significantly improve the quality of data association,thereby increasing the success rate of localization.This approach not only enhances the operational capabilities of ecological monitoring vehicles in complex environments but also contributes to improving the overall efficiency and effectiveness of ecological monitoring and environmental protection efforts.
基金supported by the National Natural Science Foundation of China(T2325023,92265204,12104447)the National Key R&D Program of China(2023YFF0718400)+1 种基金the Innovation Program for Quantum Science and Technology(2021ZD0302200)the Fundamental Research Funds for the Central Universities。
文摘This work presents a method for the three-dimensional localization of individual shallow NV center in diamond,leveraging the near-field quenching effect of a gold tip.Our experimental setup involves the use of an atomic force microscope to precisely move the gold tip close to the NV center,while simultaneously employing a home-made confocal microscope to monitor the fluorescence of the NV center.This approach allows for lateral super-resolution,achieving a full width at half maximum(FWHM)of 38.0 nm and a location uncertainty of 0.7 nm.Additionally,we show the potential of this method for determining the depth of the NV centers.We also attempt to determine the depth of the NV centers in combination with finite-difference time-domain(FDTD)simulations.Compared to other depth determination methods,this approach allows for simultaneous lateral and longitudinal localization of individual NV centers,and holds promise for facilitating manipulation of the local environment surrounding the NV center.
基金supported by the National Natural Science Foundation of China(Nos.U2441250,62301380,and 62231027)Natural Science Basic Research Program of Shaanxi,China(2024JC-JCQN-63)+3 种基金the Key Research and Development Program of Shaanxi,China(No.2023-YBGY-249)the Guangxi Key Research and Development Program,China(No.2022AB46002)the China Postdoctoral Science Foundation(No.2022M722504 and 2024T170696)the Innovation Capability Support Program of Shaanxi,China(No.2024RS-CXTD-01).
文摘Automatic Dependent Surveillance-Broadcast(ADS-B)technology,with its open signal sharing,faces substantial security risks from false signals and spoofing attacks when broadcasting Unmanned Aerial Vehicle(UAV)information.This paper proposes a security position verification technique based on Multilateration(MLAT)to detect false signals,ensuring UAV safety and reliable airspace operations.First,the proposed method estimates the current position of the UAV by calculating the Time Difference of Arrival(TDOA),Time Sum of Arrival(TSOA),and Angle of Arrival(AOA)information.Then,this estimated position is compared with the ADS-B message to eliminate false UAV signals.Furthermore,a localization model based on TDOA/TSOA/AOA is established by utilizing reliable reference sources for base station time synchronization.Additionally,an improved Chan-Taylor algorithm is developed,incorporating the Constrained Weighted Least Squares(CWLS)method to initialize UAV position calculations.Finally,a false signal detection method is proposed to distinguish between true and false positioning targets.Numerical simulation results indicate that,at a positioning error threshold of 150 m,the improved Chan-Taylor algorithm based on TDOA/TSOA/AOA achieves 100%accuracy coverage,significantly enhancing localization precision.And the proposed false signal detection method achieves a detection accuracy rate of at least 90%within a 50-meter error range.
基金supported by the projects funded by the Education Department of Shaanxi Provincial Government(NO.23JP116)the Natural Science Fund of Shaanxi Province(NO.2024JC-YBMS-396)+3 种基金the National Natural Science Foundation of China(NO.52171191,52371198,U22A20137)the Constructing National Independent Innovation Demonstration Zones(XM2024XTGXQ05)Shenzhen Science and Technology Innovation Program(JCYJ20220818102215033,GJHZ20210705142542015,JCYJ20220530160811027)Guangdong HUST Industrial Technology Research Institute,Guangdong Provincial Key Laboratory of Manufacturing Equipment Digitization(2023B1212060012).
文摘Surface-enhanced Raman spectroscopy(SERS)has evolved from a laboratory technique to a practical tool for ultra-sensitive detection,particularly in the biomedical field,where precise molecular identification is crucial.Despite significant advancements,a gap remains in the literature,as no comprehensive review systematically addresses the high-precision construction of SERS substrates for ultrasensitive biomedical detection.This review fills that gap by exploring recent progress in fabricating high-precision SERS substrates,emphasizing their role in enabling ultrasensitive bio-medical sensors.We carefully examine the key to these advancements is the precision engineering of substrates,including noble metals,semiconductors,carbon-based materials,and two-dimensional materials,which is essential for achieving the high sensitivity required for ultrasensitive detection.Applications in biomedical diagnostics and molecular analysis are highlighted.Finally,we address the challenges in SERS substrate preparation and outline future directions,focusing on improvement strategies,design concepts,and expanding applications for these advanced materials.
基金funded by the National Natural Science Foundation of China Instrumentation Program(52327806)Youth Fund of the National Nature Foundation of China(62405020)China Postdoctoral Science Foundation(2024M764131).
文摘Large-aperture optical components are of paramount importance in domains such as integrated circuits,photolithography,aerospace,and inertial confinement fusion.However,measuring their surface profiles relies predominantly on the phase-shifting approach,which involves collecting multiple interferograms and imposes stringent demands on environmental stability.These issues significantly hinder its ability to achieve real-time and dynamic high-precision measurements.Therefore,this study proposes a high-precision large-aperture single-frame interferometric surface profile measurement(LA-SFISPM)method based on deep learning and explores its capability to realize dynamic measurements with high accuracy.The interferogram is matched to the phase by training the data measured using the small aperture.The consistency of the surface features of the small and large apertures is enhanced via contrast learning and feature-distribution alignment.Hence,high-precision phase reconstruction of large-aperture optical components can be achieved without using a phase shifter.The experimental results show that for the tested mirror withΦ=820 mm,the surface profile obtained from LA-SFISPM is subtracted point-by-point from the ground truth,resulting in a maximum single-point error of 4.56 nm.Meanwhile,the peak-to-valley(PV)value is 0.0758λ,and the simple repeatability of root mean square(SR-RMS)value is 0.00025λ,which aligns well with the measured results obtained by ZYGO.In particular,a significant reduction in the measurement time(reduced by a factor of 48)is achieved compared with that of the traditional phase-shifting method.Our proposed method provides an efficient,rapid,and accurate method for obtaining the surface profiles of optical components with different diameters without employing a phase-shifting approach,which is highly desired in large-aperture interferometric measurement systems.
基金supported by the National Natural Science Foundation of China (Nos. 12172388 and 12472400)the Guangdong Basic and Applied Basic Research Foundation of China(No. 2025A1515011975)the Scientific Research Project of Guangdong Polytechnic Normal University of China (No. 2023SDKYA010)
文摘The elliptic integral method(EIM) is an efficient analytical approach for analyzing large deformations of elastic beams. However, it faces the following challenges.First, the existing EIM can only handle cases with known deformation modes. Second,the existing EIM is only applicable to Euler beams, and there is no EIM available for higher-precision Timoshenko and Reissner beams in cases where both force and moment are applied at the end. This paper proposes a general EIM for Reissner beams under arbitrary boundary conditions. On this basis, an analytical equation for determining the sign of the elliptic integral is provided. Based on the equation, we discover a class of elliptic integral piecewise points that are distinct from inflection points. More importantly, we propose an algorithm that automatically calculates the number of inflection points and other piecewise points during the nonlinear solution process, which is crucial for beams with unknown or changing deformation modes.
文摘This paper investigates the mechanisms underlying the localization of Buddhism among the Kalmyks during Tsarist rule.It identifies and analyzes three interconnected processes:(1)the evolving framework of Tsarist policies aimed at administrative integration and religious regulation;(2)Kalmyk adaptive strategies,particularly the development of unique institutional responses(Supreme Lama election,Chief Bagshi,Dayanqi,and Temple Adherent systems)to navigate state constraints;and(3)spontaneous processes of cultural hybridity are manifested in material culture(e.g.,the Khoshut temple)and religious narratives(e.g.,Ulyanov’s reinvention of prophecies in Prophecies of Buddha).Utilizing the concept of“conjuncture practice”to frame these interactions,the study demonstrates how localization operated through a combination of regulatory pressure,community-level adaptation,and cultural synthesis,ultimately forging a distinct Kalmyk Buddhist expression within the imperial context.
文摘With the intensifying competition in the integrated circuit(IC)industry,the high turnover rate of integrated circuit engineers has become a prominent issue affecting the technological continuity of high-precision,specialized,and innovative enterprises.As a representative of such enterprises,JL Technology has faced challenges to its R&D efficiency due to talent loss in recent years.This study takes this enterprise as a case to explore feasible paths to reduce turnover rates through optimizing training and career development systems.The research designs a method combining learning maps and talent maps,utilizes a competency model to clarify the direction for engineers’skill improvement,implements talent classification management using a nine-grid model,and achieves personalized training through Individual Development Plans(IDPs).Analysis of the enterprise’s historical data reveals that the main reasons for turnover are unclear career development paths and insufficient resources for skill improvement.After pilot implementation,the turnover rate in core departments decreased by 12%,and employee satisfaction with training increased by 24%.The results indicate that matching systematic talent reviews with dynamic learning resources can effectively enhance engineers’sense of belonging.This study provides a set of highly operational management tools for small and medium-sized high-precision,specialized,and innovative technology enterprises,verifies their applicability in such enterprises,and offers replicable experiences for similar enterprises to optimize their talent strategies[1].
基金Supported by Beijing Natural Science Foundation(Grant No.L231004)Young Elite Scientists Sponsorship Program by CAST(Grant No.2022QNRC001)+2 种基金Fundamental Research Funds for the Central Universities(Grant No.2025JBMC039)National Key Research and Development Program(Grant No.2022YFC2805200)National Natural Science Foundation of China(Grant No.52371338).
文摘Bio-inspired visual systems have garnered significant attention in robotics owing to their energy efficiency,rapid dynamic response,and environmental adaptability.Among these,event cameras-bio-inspired sensors that asynchronously report pixel-level brightness changes called’events’,stand out because of their ability to capture dynamic changes with minimal energy consumption,making them suitable for challenging conditions,such as low light or high-speed motion.However,current mapping and localization methods for event cameras depend primarily on point and line features,which struggle in sparse or low-feature environments and are unsuitable for static or slow-motion scenarios.We addressed these challenges by proposing a bio-inspired vision mapping and localization method using active LED markers(ALMs)combined with reprojection error optimization and asynchronous Kalman fusion.Our approach replaces traditional features with ALMs,thereby enabling accurate tracking under dynamic and low-feature conditions.The global mapping accuracy significantly improved by minimizing the reprojection error,with corner errors reduced from 16.8 cm to 3.1 cm after 400 iterations.The asynchronous Kalman fusion of multiple camera pose estimations from ALMs ensures precise localization with a high temporal efficiency.This method achieved a mean translation error of 0.078 m and a rotational error of 5.411°while evaluating dynamic motion.In addition,the method supported an output rate of 4.5 kHz while maintaining high localization accuracy in UAV spiral flight experiments.These results demonstrate the potential of the proposed approach for real-time robot localization in challenging environments.
基金supported by the National Natural Science Foundation of China(Grant No.61973181)Tsinghua University Initiative Scientific Research Program(Grant No.2018Z05JZY004).
文摘Many applications for locating a radio signal source employ Global Navigation Satellite System(GNSS)to obtain a sensor’s position.By using GNSS,a sensor can also synchronize with other sensors.For a sensor that is equipped with a GNSS receiver,it can be independent and is readily to be loaded on a flexible platform,such as an unmanned aerial vehicle(UAV).In this paper,we consider using such sensors and timeof-arrival(TOA)techniques to locate a radio signal source,and analyze the performance limit of source localization.Besides the performance analysis,this paper provides the geometric interpretation of the performance limit,which can illustrate how a sensor contributes to the source localization accuracy.The performance analysis and the geometric interpretation together give important insights into how to make better use of GNSS receiver for passive localization.Another contribution is we propose a modified closedform solution for this localization problem.Compared with previous literature,this solution takes both sensor position and synchronization uncertainty into account,and it does not need proper initial guess of source position and is computationally efficient.Our simulation results validate the efficiency of this solution.
基金Sponsored by application research project of social sciences of Jiangsu Province(24SZC-117).
文摘Taking the Hotel Indigo Shanghai on the Bund as an example,this paper explores the localization of international high-end boutique hotels in China by using the methods of literature research and case study.The results show that the localization of international high-end boutique hotels is embodied in brand building,spatial layout,service design and cultural activity planning,and that the perfect integration of international brand concept and local culture is an important factor for its success in the Chinese market.The research aims to provide reference for promoting the in-depth development and integration of international high-end boutique hotels in the Chinese market and the localization process of state-owned high-end boutique hotels in the future host country.
基金Project supported by the Science and Technology Department of Gansu Province, China (Grant No. 24RCKB011)the National Natural Science Foundation of China (Grant No. 12325511)。
文摘The utilization of nanostructures with diverse geometric shapes is essential for manipulating the energy of electromagnetic(EM) fields and achieving various applications in optics, such as nanofocusing. The plasmonic cone structure is highly representative in the field of nanofocusing applications, effectively guiding EM field energy to the tip of the cone and resulting in high local electric field and temperature effects. In certain chemical catalytic applications, an elevated temperature and a larger surface area may be required to enhance catalysis reactions. Here, we propose a hollow gold nanocone structure that can achieve higher temperature both at the tip and within its hollow region under the excitation of an EM field.Through rigorous finite element method(FEM) simulations, we investigated the EM field and temperature distribution of the hollow cone at various cone angles and identified those angles that yield higher local temperatures. Additionally, the analysis of the scattering cross section of hollow cones reveals that the presence of electric dipole component of the EM field corresponds to Fabry–Perot-like(FP-like) resonance in short wavelengths(600 nm–1200 nm), which predominantly contributes to the temperature localization. These findings provide novel insights into utilizing conical nanostructures for applications such as catalysis.