The Tibetan Plateau geographically contains internal and external drainage areas based on the distributions of river flows and catchments.The internal and external drainage areas display similar highelevations,while t...The Tibetan Plateau geographically contains internal and external drainage areas based on the distributions of river flows and catchments.The internal and external drainage areas display similar highelevations,while their topographic reliefs are not comparable;the former shows a large low-relief surface,whereas the latter is characterized by relatively high relief.The eastern Lhasa terrane is a key tectonic component of the Tibetan Plateau.It is characterized by high topography and relief,but the thermal history of its basement remains relatively poorly constrained.In this study we report new apatite fission track data from the eastern part of the central Lhasa terrane to constrain the thermo-tectonic evolution of the external drainage area in the southern Tibetan Plateau.Twenty-one new AFT ages and associated thermal history models reveal that the basement underlying the external drainage area in southern Tibet experienced three main phases of rapid cooling in the Cenozoic.The Paleocene-early Eocene(-60–48 Ma)cooling was likely induced by crustal shortening and associated rock exhumation,due to accelerated northward subduction of the NeoTethys oceanic lithosphere.A subsequent cooling pulse lasted from the late Eocene to early Oligocene(-40–28 Ma),possibly due to the thickening and consequential erosion of the Lhasa lithosphere resulted from the continuous northward indentation of the India plate into Eurasia.The most recent rapid cooling event occurred in the middle Miocene-early Pliocene(-16–4 Ma),likely induced by accelerated incision of the Lhasa River and local thrust faulting.Our AFT ages and published low-temperature thermochronological data reveal that the external drainage area experienced younger cooling events compared with the internal drainage area,and that the associated differentiated topographic evolution initiated at ca.30 Ma.The contributing factors for the formation of the high-relief topography mainly contain active surface uplift,fault activity,and the enhanced incision of the Yarlung River.展开更多
This article explores the leader-following consensus tracking(LFCK)control issues of multi-agent systems(MASs)in the presence of external disturbances and general directed fixed communication topology.Its purpose is t...This article explores the leader-following consensus tracking(LFCK)control issues of multi-agent systems(MASs)in the presence of external disturbances and general directed fixed communication topology.Its purpose is to enable all follower agents to achieve consensus tracking for the leader agent.Firstly,this article introduces an extended state observer for estimating each follower agent's unknown state and external disturbance.Subsequently,on the basis of the above-extended state observer and a dynamic event-triggered strategy,a distributed consensus tracking control protocol with disturbances restraint is developed,which can reduce the MAS's update frequency on the premise of ensuring the control protocol's effectiveness.Furthermore,the MAS's stability and the absence of Zeno behavior are analyzed and proved by the established Lyapunov functional and linear matrix inequality theory.Finally,the validity and feasibility of the proposed approach are validated through a group of comparative numerical simulation experiments.展开更多
A prototype of the forward tracking array consisting of three multiwire drift chambers(MWDC) for the external target experiment(CEE) at the Heavy Ion Research Facility at the Lanzhou-Cooling Storage Ring(HIRFL-CS...A prototype of the forward tracking array consisting of three multiwire drift chambers(MWDC) for the external target experiment(CEE) at the Heavy Ion Research Facility at the Lanzhou-Cooling Storage Ring(HIRFL-CSR) has been assembled and tested using cosmic rays. The signals from the anode wires are amplified and fed to a Flash-ADC to deliver the drift time and charge integration. The performances of the array prototype are investigated under various high voltages. For the tracking performances, after the space-time relation(STR)calibration and the detector displacement correction, the standard deviation of 223 μm of the residue is obtained.The performances of the forward MWDCs tracking array meets the requirements of CEE in design.展开更多
Human skin sensory system,featuring a sophisticated threedimensional(3D)distribution of mechanoreceptors within the skin,possesses an exceptional ability to perceive a diverse range of external mechanical stimuli and ...Human skin sensory system,featuring a sophisticated threedimensional(3D)distribution of mechanoreceptors within the skin,possesses an exceptional ability to perceive a diverse range of external mechanical stimuli and accurately recognize object attributes[1].展开更多
基金supported by National Key Research and Development Program of China(2022YFC2905001,2018YFC0604105)the Opening Foundation of Ministry of Natural Resources Key Laboratory for Mineral Deposits Research,Chengdu University of Technology(grant number:gzck202104)+2 种基金the Fund for Scientific Research-Flanders(FWO,Bilateral Project VS06520N)China Scholarship Council(201908320260,201806190214)support for W.Su and Z.He for their research stay in Belgium.S.Glorie is supported by an Australian Research Council Future Fellowship(FT210100906)。
文摘The Tibetan Plateau geographically contains internal and external drainage areas based on the distributions of river flows and catchments.The internal and external drainage areas display similar highelevations,while their topographic reliefs are not comparable;the former shows a large low-relief surface,whereas the latter is characterized by relatively high relief.The eastern Lhasa terrane is a key tectonic component of the Tibetan Plateau.It is characterized by high topography and relief,but the thermal history of its basement remains relatively poorly constrained.In this study we report new apatite fission track data from the eastern part of the central Lhasa terrane to constrain the thermo-tectonic evolution of the external drainage area in the southern Tibetan Plateau.Twenty-one new AFT ages and associated thermal history models reveal that the basement underlying the external drainage area in southern Tibet experienced three main phases of rapid cooling in the Cenozoic.The Paleocene-early Eocene(-60–48 Ma)cooling was likely induced by crustal shortening and associated rock exhumation,due to accelerated northward subduction of the NeoTethys oceanic lithosphere.A subsequent cooling pulse lasted from the late Eocene to early Oligocene(-40–28 Ma),possibly due to the thickening and consequential erosion of the Lhasa lithosphere resulted from the continuous northward indentation of the India plate into Eurasia.The most recent rapid cooling event occurred in the middle Miocene-early Pliocene(-16–4 Ma),likely induced by accelerated incision of the Lhasa River and local thrust faulting.Our AFT ages and published low-temperature thermochronological data reveal that the external drainage area experienced younger cooling events compared with the internal drainage area,and that the associated differentiated topographic evolution initiated at ca.30 Ma.The contributing factors for the formation of the high-relief topography mainly contain active surface uplift,fault activity,and the enhanced incision of the Yarlung River.
基金supported by Guangdong Major Project of Basic and Applied Basic Research(Grant No.2023B0303000016)the National Natural Science Foundation of China(Grant No.U21A20487)+5 种基金Shenzhen Technology Project(Grant Nos.JCYJ20220818101206014,JCYJ20220818101211025)the CAS Key Technology Talent Program,the National Outstanding Youth Talents Support Program(Grant No.61822304)Shanghai Municipal Science and Technology Major Project(Grant No.2021SHZDZX0100)Shanghai Municipal Commission of Science and Technology Project(Grant No.19511132101)the Projects of Major International(Regional)Joint Research Program of NSFC(Grant No.61720106011)the National Natural Science Foundation of China(Grant No.62372440)。
文摘This article explores the leader-following consensus tracking(LFCK)control issues of multi-agent systems(MASs)in the presence of external disturbances and general directed fixed communication topology.Its purpose is to enable all follower agents to achieve consensus tracking for the leader agent.Firstly,this article introduces an extended state observer for estimating each follower agent's unknown state and external disturbance.Subsequently,on the basis of the above-extended state observer and a dynamic event-triggered strategy,a distributed consensus tracking control protocol with disturbances restraint is developed,which can reduce the MAS's update frequency on the premise of ensuring the control protocol's effectiveness.Furthermore,the MAS's stability and the absence of Zeno behavior are analyzed and proved by the established Lyapunov functional and linear matrix inequality theory.Finally,the validity and feasibility of the proposed approach are validated through a group of comparative numerical simulation experiments.
基金Supported by Natural Science Foundation of China(11079025,11375094,U1332207)Tsinghua University Initiative Scientific Research Program
文摘A prototype of the forward tracking array consisting of three multiwire drift chambers(MWDC) for the external target experiment(CEE) at the Heavy Ion Research Facility at the Lanzhou-Cooling Storage Ring(HIRFL-CSR) has been assembled and tested using cosmic rays. The signals from the anode wires are amplified and fed to a Flash-ADC to deliver the drift time and charge integration. The performances of the array prototype are investigated under various high voltages. For the tracking performances, after the space-time relation(STR)calibration and the detector displacement correction, the standard deviation of 223 μm of the residue is obtained.The performances of the forward MWDCs tracking array meets the requirements of CEE in design.
文摘Human skin sensory system,featuring a sophisticated threedimensional(3D)distribution of mechanoreceptors within the skin,possesses an exceptional ability to perceive a diverse range of external mechanical stimuli and accurately recognize object attributes[1].