期刊文献+
共找到4,439篇文章
< 1 2 222 >
每页显示 20 50 100
Research status and progress of deep learning in automatic esophageal cancer detection
1
作者 Jing Chen Xin Fan +4 位作者 Qiao-Liang Chen Wei Ren Qi Li Dong Wang Jian He 《World Journal of Gastrointestinal Oncology》 2025年第5期57-66,共10页
Esophageal cancer(EC),a common malignant tumor of the digestive tract,requires early diagnosis and timely treatment to improve patient prognosis.Automated detection of EC using medical imaging has the potential to inc... Esophageal cancer(EC),a common malignant tumor of the digestive tract,requires early diagnosis and timely treatment to improve patient prognosis.Automated detection of EC using medical imaging has the potential to increase screening efficiency and diagnostic accuracy,thereby significantly improving long-term survival rates and the quality of life of patients.Recent advances in deep learning(DL),particularly convolutional neural networks,have demons-trated remarkable performance in medical imaging analysis.These techniques have shown significant progress in the automated identification of malignant tumors,quantitative analysis of lesions,and improvement in diagnostic accuracy and efficiency.This article comprehensively examines the research progress of DL in medical imaging for EC,covering various imaging modalities such as digital pathology,endoscopy,computed tomography,etc.It explores the clinical value and application prospects of DL in EC screening and diagnosis.Additionally,the article addresses several critical challenges that must be overcome for the clinical translation of DL techniques,including constructing high-quality datasets,promoting multimodal feature fusion,and optimizing artificial intelligence-clinical workflow integration.By providing a detailed overview of the current state of DL in EC imaging and highlighting the key challenges and future directions,this article aims to guide future research and facilitate the clinical implementation of DL technologies in EC management,ultimately contributing to better patient outcomes. 展开更多
关键词 Esophageal cancer Artificial intelligence Deep learning automatic detection Medical imaging
暂未订购
Artificial intelligence-aided semi-automatic joint trace detection from textured three-dimensional models of rock mass
2
作者 Seyedahmad Mehrishal Jineon Kim +1 位作者 Yulong Shao Jae Joon Song 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期1973-1985,共13页
It is of great importance to obtain precise trace data,as traces are frequently the sole visible and measurable parameter in most outcrops.The manual recognition and detection of traces on high-resolution three-dimens... It is of great importance to obtain precise trace data,as traces are frequently the sole visible and measurable parameter in most outcrops.The manual recognition and detection of traces on high-resolution three-dimensional(3D)models are relatively straightforward but time-consuming.One potential solution to enhance this process is to use machine learning algorithms to detect the 3D traces.In this study,a unique pixel-wise texture mapper algorithm generates a dense point cloud representation of an outcrop with the precise resolution of the original textured 3D model.A virtual digital image rendering was then employed to capture virtual images of selected regions.This technique helps to overcome limitations caused by the surface morphology of the rock mass,such as restricted access,lighting conditions,and shading effects.After AI-powered trace detection on two-dimensional(2D)images,a 3D data structuring technique was applied to the selected trace pixels.In the 3D data structuring,the trace data were structured through 2D thinning,3D reprojection,clustering,segmentation,and segment linking.Finally,the linked segments were exported as 3D polylines,with each polyline in the output corresponding to a trace.The efficacy of the proposed method was assessed using a 3D model of a real-world case study,which was used to compare the results of artificial intelligence(AI)-aided and human intelligence trace detection.Rosette diagrams,which visualize the distribution of trace orientations,confirmed the high similarity between the automatically and manually generated trace maps.In conclusion,the proposed semi-automatic method was easy to use,fast,and accurate in detecting the dominant jointing system of the rock mass. 展开更多
关键词 automatic trace detection Digital joint mapping Rock discontinuities characterization Three-dimensional(3D)trace network
在线阅读 下载PDF
High-precision automatic measurement of two-dimensional geometric features based on machine vision 被引量:6
3
作者 何博侠 何勇 +1 位作者 薛蓉 杨洪锋 《Journal of Southeast University(English Edition)》 EI CAS 2012年第4期428-433,共6页
To realize high-precision automatic measurement of two-dimensional geometric features on parts, a cooperative measurement system based on machine vision is constructed. Its hardware structure, functional composition a... To realize high-precision automatic measurement of two-dimensional geometric features on parts, a cooperative measurement system based on machine vision is constructed. Its hardware structure, functional composition and working principle are introduced. The mapping relationship between the feature image coordinates and the measuring space coordinates is established. The method of measuring path planning of small field of view (FOV) images is proposed. With the cooperation of the panoramic image of the object to be measured, the small FOV images with high object plane resolution are acquired automatically. Then, the auxiliary measuring characteristics are constructed and the parameters of the features to be measured are automatically extracted. Experimental results show that the absolute value of relative error is less than 0. 03% when applying the cooperative measurement system to gauge the hole distance of 100 mm nominal size. When the object plane resolving power of the small FOV images is 16 times that of the large FOV image, the measurement accuracy of small FOV images is improved by 14 times compared with the large FOV image. It is suitable for high-precision automatic measurement of two-dimensional complex geometric features distributed on large scale parts. 展开更多
关键词 machine vision two-dimensional geometric features high-precision measurement automatic measurement
在线阅读 下载PDF
An automatic seismic signal detection method based on fourth-order statistics and applications 被引量:2
4
作者 刘希强 蔡寅 +4 位作者 赵瑞 曲保安 赵银刚 冯志军 李红 《Applied Geophysics》 SCIE CSCD 2014年第2期128-138,252,共12页
Real-time, automatic, and accurate determination of seismic signals is critical for rapid earthquake reporting and early warning. In this study, we present a correction trigger function(CTF) for automatically detect... Real-time, automatic, and accurate determination of seismic signals is critical for rapid earthquake reporting and early warning. In this study, we present a correction trigger function(CTF) for automatically detecting regional seismic events and a fourth-order statistics algorithm with the Akaike information criterion(AIC) for determining the direct wave phase, based on the differences, or changes, in energy, frequency, and amplitude of the direct P- or S-waves signal and noise. Simulations suggest for that the proposed fourth-order statistics result in high resolution even for weak signal and noise variations at different amplitude, frequency, and polarization characteristics. To improve the precision of establishing the S-waves onset, first a specific segment of P-wave seismograms is selected and the polarization characteristics of the data are obtained. Second, the S-wave seismograms that contained the specific segment of P-wave seismograms are analyzed by S-wave polarization filtering. Finally, the S-wave phase onset times are estimated. The proposed algorithm was used to analyze regional earthquake data from the Shandong Seismic Network. The results suggest that compared with conventional methods, the proposed algorithm greatly decreased false and missed earthquake triggers, and improved the detection precision of direct P- and S-wave phases. 展开更多
关键词 Seismic signal P and S-waves automatic detection correction trigger function
在线阅读 下载PDF
Probabilistic Automatic Outlier Detection for Surface Air Quality Measurements from the China National Environmental Monitoring Network 被引量:13
5
作者 Huangjian WU Xiao TANG +4 位作者 Zifa WANG Lin WU Miaomiao LU Lianfang WEI Jiang ZHU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第12期1522-1532,共11页
Although quality assurance and quality control procedures are routinely applied in most air quality networks, outliers can still occur due to instrument malfunctions, the influence of harsh environments and the limita... Although quality assurance and quality control procedures are routinely applied in most air quality networks, outliers can still occur due to instrument malfunctions, the influence of harsh environments and the limitation of measuring methods. Such outliers pose challenges for data-powered applications such as data assimilation, statistical analysis of pollution characteristics and ensemble forecasting. Here, a fully automatic outlier detection method was developed based on the probability of residuals, which are the discrepancies between the observed and the estimated concentration values. The estimation can be conducted using filtering—or regressions when appropriate—to discriminate four types of outliers characterized by temporal and spatial inconsistency, instrument-induced low variances, periodic calibration exceptions, and less PM_(10) than PM_(2.5) in concentration observations, respectively. This probabilistic method was applied to detect all four types of outliers in hourly surface measurements of six pollutants(PM_(2.5), PM_(10),SO_2,NO_2,CO and O_3) from 1436 stations of the China National Environmental Monitoring Network during 2014-16. Among the measurements, 0.65%-5.68% are marked as outliers. with PM_(10) and CO more prone to outliers. Our method successfully identifies a trend of decreasing outliers from 2014 to 2016,which corresponds to known improvements in the quality assurance and quality control procedures of the China National Environmental Monitoring Network. The outliers can have a significant impact on the annual mean concentrations of PM_(2.5),with differences exceeding 10 μg m^(-3) at 66 sites. 展开更多
关键词 PROBABILISTIC automatic OUTLIER detection air quality observation low PASS filter spatial regression BIVARIATE normal distribution
在线阅读 下载PDF
CMS-YOLO:An Automated Multi-Category Brain Tumor Detection Algorithm Based on Improved YOLOv10s
6
作者 Li Li Xiao Wang +3 位作者 Ran Ding Linlin Luo Qinmu Wu Zhiqin He 《Computers, Materials & Continua》 2025年第10期1287-1309,共23页
Brain tumors are neoplastic diseases caused by the proliferation of abnormal cells in brain tissues,and their appearance may lead to a series of complex symptoms.However,current methods struggle to capture deeper brai... Brain tumors are neoplastic diseases caused by the proliferation of abnormal cells in brain tissues,and their appearance may lead to a series of complex symptoms.However,current methods struggle to capture deeper brain tumor image feature information due to the variations in brain tumor morphology,size,and complex background,resulting in low detection accuracy,high rate of misdiagnosis and underdiagnosis,and challenges in meeting clinical needs.Therefore,this paper proposes the CMS-YOLO network model for multi-category brain tumor detection,which is based on the You Only Look Once version 10(YOLOv10s)algorithm.This model innovatively integrates the Convolutional Medical UNet extended block(CMUNeXt Block)to design a brand-new CSP Bottleneck with 2 convolutions(C2f)structure,which significantly enhances the ability to extract features of the lesion area.Meanwhile,to address the challenge of complex backgrounds in brain tumor detection,a Multi-Scale Attention Aggregation(MSAA)module is introduced.The module integrates features of lesions at different scales,enabling the model to effectively capture multi-scale contextual information and enhance detection accuracy in complex scenarios.Finally,during the model training process,the Shape-IoU loss function is employed to replace the Complete-IoU(CIoU)loss function for optimizing bounding box regression.This ensures that the predicted bounding boxes generated by the model closely match the actual tumor contours,thereby further enhancing the detection precision.The experimental results show that the improved method achieves 94.80%precision,93.60%recall,96.20%score,and 79.60%on the MRI for Brain Tumor with Bounding Boxes dataset.Compared to the YOLOv10s model,this represents improvements of 1.0%,1.1%,1.0%,and 1.1%,respectively.The method can achieve automatic detection and localization of three distinct categories of brain tumors—glioma,meningioma,and pituitary tumor,which can accurately detect and identify brain tumors,assist doctors in early diagnosis,and promote the development of early treatment. 展开更多
关键词 Brain tumor deep learning automatic detection YOLOv10s CMUNeXt Block MSAA Shape-IoU
在线阅读 下载PDF
An Ensemble Detection Method for Shilling Attacks Based on Features of Automatic Extraction 被引量:3
7
作者 Yaojun Hao Fuzhi Zhang Jinbo Chao 《China Communications》 SCIE CSCD 2019年第8期130-146,共17页
Faced with the evolving attacks in recommender systems, many detection features have been proposed by human engineering and used in supervised or unsupervised detection methods. However, the detection features extract... Faced with the evolving attacks in recommender systems, many detection features have been proposed by human engineering and used in supervised or unsupervised detection methods. However, the detection features extracted by human engineering are usually aimed at some specific types of attacks. To further detect other new types of attacks, the traditional methods have to re-extract detection features with high knowledge cost. To address these limitations, the method for automatic extraction of robust features is proposed and then an Adaboost-based detection method is presented. Firstly, to obtain robust representation with prior knowledge, unlike uniform corruption rate in traditional mLDA(marginalized Linear Denoising Autoencoder), different corruption rates for items are calculated according to the ratings’ distribution. Secondly, the ratings sparsity is used to weight the mapping matrix to extract low-dimensional representation. Moreover, the uniform corruption rate is also set to the next layer in mSLDA(marginalized Stacked Linear Denoising Autoencoder) to extract the stable and robust user features. Finally, under the robust feature space, an Adaboost-based detection method is proposed to alleviate the imbalanced classification problem. Experimental results on the Netflix and Amazon review datasets indicate that the proposed method can effectively detect various attacks. 展开更多
关键词 shilling ATTACK ENSEMBLE detection FEATURES of automatic EXTRACTION marginalized LINEAR DENOISING autoencoder
在线阅读 下载PDF
An automatic detection of green tide using multi-windows with their adaptive threshold from Landsat TM/ETM plus image 被引量:4
8
作者 WANG Changying CHU Jialan +3 位作者 TAN Meng SHAO Fengjing SUI Yi LI Shujing 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第11期106-114,共9页
Since the atmospheric correction is a necessary preprocessing step of remote sensing image before detecting green tide, the introduced error directly affects the detection precision. Therefore, the detection method of... Since the atmospheric correction is a necessary preprocessing step of remote sensing image before detecting green tide, the introduced error directly affects the detection precision. Therefore, the detection method of green tide is presented from Landsat TM/ETM plus image which needs not the atmospheric correction. In order to achieve an automatic detection of green tide, a linear relationship(y =0.723 x+0.504) between detection threshold y and subtraction x(x=λnir–λred) is found from the comparing Landsat TM/ETM plus image with the field surveys.Using this relationship, green tide patches can be detected automatically from Landsat TM/ETM plus image.Considering there is brightness difference between different regions in an image, the image will be divided into a plurality of windows(sub-images) with a same size firstly, and then each window will be detected using an adaptive detection threshold determined according to the discovered linear relationship. It is found that big errors will appear in some windows, such as those covered by clouds seriously. To solve this problem, the moving step k of windows is proposed to be less than the window width n. Using this mechanism, most pixels will be detected[n/k]×[n/k] times except the boundary pixels, then every pixel will be assigned the final class(green tide or sea water) according to majority rule voting strategy. It can be seen from the experiments, the proposed detection method using multi-windows and their adaptive thresholds can detect green tide from Landsat TM/ETM plus image automatically. Meanwhile, it avoids the reliance on the accurate atmospheric correction. 展开更多
关键词 automatic detection green tide adaptive threshold Landsat TM/ETM plus image
在线阅读 下载PDF
A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver:Ⅰ. Automatic detection and analysis method 被引量:13
9
作者 RuoXian Zhou XuDong Gu +8 位作者 KeXin Yang GuangSheng Li BinBin Ni Juan Yi Long Chen FuTai Zhao ZhengYu Zhao Qi Wang LiQing Zhou 《Earth and Planetary Physics》 CSCD 2020年第2期120-130,共11页
As a dispersive wave mode produced by lightning strokes, tweek atmospherics provide important hints of lower ionospheric(i.e., D-region) electron density. Based on data accumulation from the WHU ELF/VLF receiver syste... As a dispersive wave mode produced by lightning strokes, tweek atmospherics provide important hints of lower ionospheric(i.e., D-region) electron density. Based on data accumulation from the WHU ELF/VLF receiver system, we develop an automatic detection module in terms of the maximum-entropy-spectral-estimation(MESE) method to identify unambiguous instances of low latitude tweeks.We justify the feasibility of our procedure through a detailed analysis of the data observed at the Suizhou Station(31.57°N, 113.32°E) on17 February 2016. A total of 3961 tweeks were registered by visual inspection;the automatic detection method captured 4342 tweeks, of which 3361 were correct ones, producing a correctness percentage of 77.4%(= 3361/4342) and a false alarm rate of 22.6%(= 981/4342).A Short-Time Fourier Transformation(STFT) was also applied to trace the power spectral profiles of identified tweeks and to evaluate the tweek propagation distance. It is found that the fitting accuracy of the frequency–time curve and the relative difference of propagation distance between the two methods through the slope and through the intercept can be used to further improve the accuracy of automatic tweek identification. We suggest that our automatic tweek detection and analysis method therefore supplies a valuable means to investigate features of low latitude tweek atmospherics and associated ionospheric parameters comprehensively. 展开更多
关键词 tweeks automatic detection WHU-VLF receiver
在线阅读 下载PDF
Enhancing manual P-phase arrival detection and automatic onset time picking in a noisy microseismic data in underground mines 被引量:4
10
作者 Mborah Charles Ge Maochen 《International Journal of Mining Science and Technology》 EI CSCD 2018年第4期683-691,共9页
Accurate detection and picking of the P-phase onset time in noisy microseismic data from underground mines remains a big challenge. Reliable P-phase onset time picking is necessary for accurate source location needed ... Accurate detection and picking of the P-phase onset time in noisy microseismic data from underground mines remains a big challenge. Reliable P-phase onset time picking is necessary for accurate source location needed for planning and rescue operations in the event of failures. In this paper, a new technique based on the discrete stationary wavelet transform (DSWT)and higher order statist!cs, is proposed for processing noisy data from underground mines. The objectives of this method are to (1) Improve manual detection and tPicking of P-phase onset; and (ii) provide an automatic means of detecting and picking P-phase onset me accurately. The DSWT is first used to filter the signal over several scales. The manual P-phase onset detection and picking are then obtained by computing the signal energy across selected scales with frequency bands that capture the signal of interest. The automatic P-phase onset, on the other hand, is achieved by using skewness- and kurtosis-based criterion applied to selected scales in a time-frequency domain. The method was tested using synthetic and field data from an underground limestone mine. Results were compared with results obtained by using the short-term to long-term average (STA/LTA) ratio and that by Reference Ge et al. (2009). The results show that the me!hod provides a more reliable estimate of the P-phase onset arrival than the STA]LTA method when the signal to noise ratio is very low. Also, the results obtained from the field data matched accurately with the results from Reference Ge et al. (2009). 展开更多
关键词 Manual P-phase detection automatic onset picking Noisy microseismic data Kurtosis Skewness
在线阅读 下载PDF
Non-coherent sequence detection scheme for satellite-based automatic identification system 被引量:1
11
作者 Haosu Zhou Jianxin Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第3期442-448,共7页
The satellite-based automatic identification system (AIS) receiver has to encounter the frequency offset caused by the Doppler effect and the oscillator instability. This paper proposes a non-coherent sequence detecti... The satellite-based automatic identification system (AIS) receiver has to encounter the frequency offset caused by the Doppler effect and the oscillator instability. This paper proposes a non-coherent sequence detection scheme for the satellite-based AIS signal transmitted over the white Gaussian noise channel. Based on the maximum likelihood estimation and a Viterbi decoder, the proposed scheme is capable of tolerating a frequency offset up to 5% of the symbol rate. The complexity of the proposed scheme is reduced by the state-complexity reduction, which is based on per-survivor processing. Simulation results prove that the proposed non-coherent sequence detection scheme has high robustness to frequency offset compared to the relative scheme when messages collision exists. 展开更多
关键词 non-coherent sequence detection scheme satellite based automatic identification system frequency offset messages collision Viterbi decoder
在线阅读 下载PDF
High-Precision Vital Signs Detection Method Based on Spectrum Refinement and Extended DCMA 被引量:1
12
作者 Mingxu Xiang Wu Ren +1 位作者 Weiming Li Zhenghui Xue 《Journal of Beijing Institute of Technology》 EI CAS 2022年第1期101-111,共11页
In this paper,the spectral estimation algorithm is extended to the detection of human vi-tal signs by mm-wave frequency modulated continuous wave(FMCW)radar,and a comprehensive algorithm based on spectrum refinement a... In this paper,the spectral estimation algorithm is extended to the detection of human vi-tal signs by mm-wave frequency modulated continuous wave(FMCW)radar,and a comprehensive algorithm based on spectrum refinement and the extended differentiate and cross multiply al-gorithm(DCMA)has been proposed.Firstly,the improved DFT algorithm is used to accurately obtain the distance window of human body.Secondly,phase ambiguity in phase extraction is avoided based on extended DCMA algorithm.Then,the spectrum range of refinement is determ-ined according to the peak position of the spectrum,and the respiratory and heartbeat frequency information is obtained by using chirp z-transform(CZT)algorithm to perform local spectrum re-finement.For verification,this paper has simulated the radar echo signal modulated by the simu-lated cardiopulmonary signal according to the proposed algorithm.By recovering the simulated car-diopulmonary signal,the high-precision respiratory and heartbeat frequency have been obtained.The results show that the proposed algorithm can effectively restore human breathing and heart-beat signals,and the relative error of frequency estimation is basically kept below 1.5%. 展开更多
关键词 vital signs detection frequency modulated continuous wave(FMCW)radar frequency spectrum refinement high-precision frequency estimation
暂未订购
Automatic Detection Instrument for the Ratio of Chlorine to Bromine in Oxidized Liquid of Bromine Production Based on Fuzzy Method
13
作者 Yu Naigong Wang Kaiyan 《仪器仪表学报》 EI CAS CSCD 北大核心 2006年第z1期159-161,共3页
In the process of bromine production,because of lag adjustment methods,there are problems of adjusting delay,raw material wastage and low growth rate.By considering the nature of bromine production,with the help of fu... In the process of bromine production,because of lag adjustment methods,there are problems of adjusting delay,raw material wastage and low growth rate.By considering the nature of bromine production,with the help of fuzzy data processing method,computer detection and display technique,we designed an automatic detection instrument for the ratio of chlorine to bromine in oxidized liquid of bromine production.This instrument can be used to detect the different parameters of raw materials adjustment and control in real time,and afford assurance that raw materials will be adjusted in time.This paper briefly introduces the working mechanism,hardware and software design of the instrument. 展开更多
关键词 BROMINE production fuzzy relation list RATIO of CHLORINE to BROMINE in OXIDIZED LIQUID OXIDIZING electric potential automatic detection
在线阅读 下载PDF
An Automatic HFO Detection Method Combining Visual Inspection Features with Multi-Domain Features
14
作者 Xiaochen Liu Lingli Hu +4 位作者 Chenglin Xu Shuai Xu Shuang Wang Zhong Chen Jizhong Shen 《Neuroscience Bulletin》 SCIE CAS CSCD 2021年第6期777-788,共12页
As an important promising biomarker,high frequency oscillations(HFOs)can be used to track epileptic activity and localize epileptogenic zones.However,visual marking of HFOs from a large amount of intracranial electroe... As an important promising biomarker,high frequency oscillations(HFOs)can be used to track epileptic activity and localize epileptogenic zones.However,visual marking of HFOs from a large amount of intracranial electroencephalogram(iEEG)data requires a great deal of time and effort from researchers,and is also very dependent on visual features and easily influenced by subjective factors.Therefore,we proposed an automatic epileptic HFO detection method based on visual features and non-intuitive multi-domain features.To eliminate the interference of continuous oscillatory activity in detected sporadic short HFO events,the iEEG signals adjacent to the detected events were set as the neighboring environmental range while the number of oscillations and the peak–valley differences were calculated as the environmental reference features.The proposed method was developed as a MatLab-based HFO detector to automatically detect HFOs in multi-channel,long-distance iEEG signals.The performance of our detector was evaluated on iEEG recordings from epileptic mice and patients with intractable epilepsy.More than 90%of the HFO events detected by this method were confirmed by experts,while the average missed-detection rate was<10%.Compared with recent related research,the proposed method achieved a synchronous improvement of sensitivity and specificity,and a balance between low false-alarm rate and high detection rate.Detection results demonstrated that the proposed method performs well in sensitivity,specificity,and precision.As an auxiliary tool,our detector can greatly improve the efficiency of clinical experts in inspecting HFO events during the diagnosis and treatment of epilepsy. 展开更多
关键词 EPILEPSY HFO automatic detection Combined features
原文传递
A review of automatic detection of epilepsy based on EEG signals
15
作者 Qirui Ren Xiaofan Sun +6 位作者 Xiangqu Fu Shuaidi Zhang Yiyang Yuan Hao Wu Xiaoran Li Xinghua Wang Feng Zhang 《Journal of Semiconductors》 EI CAS CSCD 2023年第12期8-30,共23页
Epilepsy is a common neurological disorder that occurs at all ages.Epilepsy not only brings physical pain to patients,but also brings a huge burden to the lives of patients and their families.At present,epilepsy detec... Epilepsy is a common neurological disorder that occurs at all ages.Epilepsy not only brings physical pain to patients,but also brings a huge burden to the lives of patients and their families.At present,epilepsy detection is still achieved through the observation of electroencephalography(EEG)by medical staff.However,this process takes a long time and consumes energy,which will create a huge workload to medical staff.Therefore,it is particularly important to realize the automatic detection of epilepsy.This paper introduces,in detail,the overall framework of EEG-based automatic epilepsy identification and the typical methods involved in each step.Aiming at the core modules,that is,signal acquisition analog front end(AFE),feature extraction and classifier selection,method summary and theoretical explanation are carried out.Finally,the future research directions in the field of automatic detection of epilepsy are prospected. 展开更多
关键词 EPILEPSY ELECTROENCEPHALOGRAPHY automatic detection analog front end feature extraction CLASSIFIER
在线阅读 下载PDF
Automatic fovea detection and choroid segmentation for choroidal thickness assessment in optical coherence tomography
16
作者 Chen Yu Lin Hung Ju Chen +3 位作者 Yi Kit Chan Wei Ping Hsia Yu Len Huang Chia Jen Chang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第10期1763-1771,共9页
AIM:To develop an automated model for subfoveal choroidal thickness(SFCT)detection in optical coherence tomography(OCT)images,addressing manual fovea location and choroidal contour challenges.METHODS:Two procedures we... AIM:To develop an automated model for subfoveal choroidal thickness(SFCT)detection in optical coherence tomography(OCT)images,addressing manual fovea location and choroidal contour challenges.METHODS:Two procedures were proposed:defining the fovea and segmenting the choroid.Fovea localization from B-scan OCT image sequence with three-dimensional reconstruction(LocBscan-3D)predicted fovea location using central foveal depression features,and fovea localization from two-dimensional en-face OCT(LocEN-2D)used a mask region-based convolutional neural network(Mask R-CNN)model for optic disc detection,and determined the fovea location based on optic disc relative position.Choroid segmentation also employed Mask R-CNN.RESULTS:For 53 eyes in 28 healthy subjects,LocBscan-3D’s mean difference between manual and predicted fovea locations was 170.0μm,LocEN-2D yielded 675.9μm.LocEN-2D performed better in non-high myopia group(P=0.02).SFCT measurements from Mask R-CNN aligned with manual values.CONCLUSION:Our models accurately predict SFCT in OCT images.LocBscan-3D excels in precise fovea localization even with high myopia.LocEN-2D shows high detection rates but lower accuracy especially in the high myopia group.Combining both models offers a robust SFCT assessment approach,promising efficiency and accuracy for large-scale studies and clinical use. 展开更多
关键词 subfoveal choroidal thickness optical coherence tomography automatic foveal detection automatic choroid segmentation
原文传递
Automatic System for Failure Detection in Hydro-Power Generators
17
作者 Luis Carlos Ribeiro Levy Ely de Lacerda de Oliveira +4 位作者 Erik Leandro Bonaldi Luiz Eduardo Borges da Silva Camila Paes Salomon Jonas G. Borges da Silva Germano Lambert-Torres 《Journal of Power and Energy Engineering》 2014年第4期36-46,共11页
This paper presents an automatic system for failure detection in hydro-power generators. The main idea of this system is to detect failure using current and voltage signals acquired without any type of internal interf... This paper presents an automatic system for failure detection in hydro-power generators. The main idea of this system is to detect failure using current and voltage signals acquired without any type of internal interference in the generator operation. The detected failures could be mechanical or electrical origins, such as: problems in bearings, unwanted vibrations, partial discharges, misalignment, unbalancing, among others. It is possible because the generator acts as a transducer for mechanical problems, and they appear in current and voltage signals. This automatic system based on electric signature analysis has been installed in Itapebi Power Plant generators since 2012. Some results are presented in this paper. 展开更多
关键词 automatic System ON-LINE Measurements Digital Signal Processing PREDICTIVE Maintenance FAILURE detection
在线阅读 下载PDF
Automatic detection method of bladder tumor cells based on color and shape features
18
作者 Zitong Zhao Yanbo Wang +6 位作者 Jiaqi Chen Mingjia Wang Shulong Feng Jin Yang Nan Song Jinyu Wang Ci Sun 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第6期1-13,共13页
Bladder urothelial carcinoma is the most common malignant tumor disease in urinary system,and its incidence rate ranks ninth in the world.In recent years,the continuous development of hyperspectral imaging technology ... Bladder urothelial carcinoma is the most common malignant tumor disease in urinary system,and its incidence rate ranks ninth in the world.In recent years,the continuous development of hyperspectral imaging technology has provided a new tool for the auxiliary diagnosis of bladder cancer.In this study,based on microscopic hyperspectral data,an automatic detection algorithm of bladder tumor cells combining color features and shape features is proposed.Support vector machine(SVM)is used to build classification models and compare the classification performance of spectral feature,spectral and shape fusion feature,and the fusion feature proposed in this paper on the same classifier.The results show that the sensitivity,specificity,and accuracy of our classification algorithm based on shape and color fusion features are 0.952,0.897,and 0.920,respectively,which are better than the classification algorithm only using spectral features.Therefore,this study can effectively extract the cell features of bladder urothelial carcinoma smear,thus achieving automatic,real-time,and noninvasive detection of bladder tumor cells,and then helping doctors improve the efficiency of pathological diagnosis of bladder urothelial cancer,and providing a reliable basis for doctors to choose treatment plans and judge the prognosis of the disease. 展开更多
关键词 Bladder tumor cells microscopic hyperspectral fusion feature support vector machine automatic detection.
原文传递
A Neuro-Fuzzy Approach for Automatic Detection of Breast Cancer Based on Raman Spectroscopy
19
作者 Francisco Javier Luna Rosas Julio Cesar Martinez Romo +3 位作者 Ricardo Mendoza Gonzalez Valentin Lopez Rivas Miguel Mora Gonzalez Gricelda Medina Veloz 《通讯和计算机(中英文版)》 2014年第2期158-167,共10页
关键词 自适应神经模糊推理系统 拉曼光谱 自动检测 乳腺癌 模糊方法 分类模式 ANFIS 前列腺癌
在线阅读 下载PDF
Automatic Digital Inclinometer Calibration System Based on Image Recognition
20
作者 FENG Zheming CHEN Gang +1 位作者 NAN Zhuojiang TAO Wei 《Journal of Shanghai Jiaotong university(Science)》 2025年第2期280-290,共11页
Traditional calibration method for the digital inclinometer relies on manual inspection,and results in its disadvantages of complicated process,low-efficiency and human errors easy to be introduced.To improve both the... Traditional calibration method for the digital inclinometer relies on manual inspection,and results in its disadvantages of complicated process,low-efficiency and human errors easy to be introduced.To improve both the calibration accuracy and efficiency of digital inclinometer,an automatic digital inclinometer calibration system was developed in this study,and a new display tube recognition algorithm was proposed.First,a high-precision automatic turntable was taken as the reference to calculate the indication error of the inclinometer.Then,the automatic inclinometer calibration control process and the digital inclinometer zero-setting function were formulated.For display tube recognition,a new display tube recognition algorithm combining threading method and feature extraction method was proposed.Finally,the calibration system was calibrated by photoelectric autocollimator and regular polygon mirror,and the calibration system error and repeatability were calculated via a series of experiments.The experimental results showed that the indication error of the proposed calibration system was less than 4",and the repeatability was 3.9".A digital inclinometer with the resolution of 0.1°was taken as a testing example,within the calibration points'range of[-90°,90°],the repeatability of the testing was 0.085°,and the whole testing process was less than 90 s.The digital inclinometer indication error is mainly introduced by the digital inclinometer resolution according to the uncertainty evaluation. 展开更多
关键词 digital inclinometer automatic calibration high-precision turntable number recognition
原文传递
上一页 1 2 222 下一页 到第
使用帮助 返回顶部