Network attached storage (NAS) with the properties of improved scalability, simplified management, low cost and balanced price performance, is desirable for high performance storage systems applied to extensive area...Network attached storage (NAS) with the properties of improved scalability, simplified management, low cost and balanced price performance, is desirable for high performance storage systems applied to extensive areas. Unfortunately, it also has some disadvantages such as increased network workload, and inconvenience in disaster recovery. To overcome these disadvantages, we propose a channel bonding technique and provide hot backup functions in the designed NAS system, named HUSTserver. Channel bonding means merging multiple Ethernet channels into integrated one, and that the data packets can be transferred through any available network channels in a parallel mode. The hot backup function provides automatic data mirroring among servers. In this paper, we first describe the whole system prototype from a software and hardware architecture view. Then, multiple Ethernet and hot backup technologies that distinguish HUSTserver from others are discussed in detail. The findings presented demonstrate that network bandwidth can be scaled by the use of multiple commodity networks. Dual parallel channels of commodity 100 Mbps Ethernet are both necessary and sufficient to support the data rates of multiple concurrent file transfers. And the hot backup function introduced in our system provides high data accessibility.展开更多
To address the poor mechanical properties of polydimethylsiloxane(PDMS)and enhance the understanding of the reinforcement mechanisms of aerogel network structures in rubber matrices,this study reinforced PDMS using an...To address the poor mechanical properties of polydimethylsiloxane(PDMS)and enhance the understanding of the reinforcement mechanisms of aerogel network structures in rubber matrices,this study reinforced PDMS using an ordered interconnected three-dimensional montmorillonite(MMT)aerogel network.The average pore diameter of the aerogels was successfully reduced from 11.53μm to 2.51μm by adjusting the ratio of poly(vinyl alcohol)(PVA)to MMT via directional freezing.Changes in the aerogel network were observed in field emission scanning electron microscope(FESEM)images.After vacuum impregnation,the aerogel network structure of the composites was observed using FESEM.Tensile tests indicated that as the pore diameter decreased,the elongation at break of the composites first increased to a peak of329.61%before decreasing,while the tensile strength and Young's modulus continuously increased to their maximum values of 6.29 MPa and24.67 MPa,respectively.Meanwhile,FESEM images of the tensile cracks and fracture surfaces showed that with a reduction in aerogel pore diameter,the degrees of crack deflection and interfacial debonding increased,presenting a rougher fracture surface.These phenomena enable the composites to dissipate substantial energy during tension,thus effectively improving the mechanical strength of the composites.The present work elucidates the bearing of ordered three-dimensional aerogel network structures on the performance of rubber matrices and provides crucial theoretical insights and technical guidance for the creation and optimization of high-performance PDMS-based composites.展开更多
Objective:To evaluate the quality of Lygodium japonicum(Thunb.)Sw.(L.japonicum,Hai Jin Sha)by comparing its components without stewed(W)and stewed(S)using ultra-high-performance liquid chromatography(UHPLC)and chemome...Objective:To evaluate the quality of Lygodium japonicum(Thunb.)Sw.(L.japonicum,Hai Jin Sha)by comparing its components without stewed(W)and stewed(S)using ultra-high-performance liquid chromatography(UHPLC)and chemometric analysis.Additionally,network pharmacology was employed to investigate the possible mechanisms of action of L.japonicum in the urinary calculi(UC)treatment.Methods:A fingerprinting method was established to identify components through UHPLC-tandem mass spectrometry.Chemometric techniques were used to compare the L.japonicum extraction methods.Furthermore,various network pharmacological approaches were used to identify and analyze the potential targets of the identified components in relation to UC.Results:The W and S extracts were distributed into two distinct clusters.Significant differences in the levels of protocatechuic aldehyde,caffeic acid,and p-coumaric acid were observed between S and W.Network pharmacology analysis revealed that the primary targets of L.japonicum in the UC treatment were serum albumin and epidermal growth factor receptors,with potential active components including protocatechuic acid and caffeic acid.Conclusion:This study comprehensively examined the therapeutic components of L.japonicum before and after boiling,shedding light on its potential mechanisms of action in UC treatment.These findings offer valuable insights into the development and utilization of L.japonicum resources.展开更多
High-entropy alloy(HEA)offer tunable composition and surface structures,enabling the creation of novel active sites that enhance catalytic performance in renewable energy application.However,the inherent surface compl...High-entropy alloy(HEA)offer tunable composition and surface structures,enabling the creation of novel active sites that enhance catalytic performance in renewable energy application.However,the inherent surface complexity and tendency for elemental segregation,which results in discrepancies between bulk and surface compositions,pose challenges for direct investigation via density functional theory.To address this,Monte Carlo simulations combined with molecular dynamics were employed to model surface segregation across a broad range of elements,including Cu,Ag,Au,Pt,Pd,and Al.The analysis revealed a trend in surface segregation propensity following the order Ag>Au>Al>Cu>Pd>Pt.To capture the correlation between surface site characteristics and the free energy of multi-dentate CO_(2)reduction intermediates,a graph neural network was designed,where adsorbates were transformed into pseudo-atoms at their centers of mass.This model achieved mean absolute errors of 0.08–0.15 eV for the free energies of C_(2)intermediates,enabling precise site activity quantification.Results indicated that increasing the concentration of Cu,Ag,and Al significantly boosts activity for CO and C_(2)formation,whereas Au,Pd,and Pt exhibit negative effects.By screening stable composition space,promising HEA bulk compositions for CO,HCOOH,and C_(2)products were predicted,offering superior catalytic activity compared to pure Cu catalysts.展开更多
Three-dimensional(3D)carbon networks have been explored as promising capacitive materials thanks to their unique structural features such as large ion-accessible surface area and interconnected porous networks,thus en...Three-dimensional(3D)carbon networks have been explored as promising capacitive materials thanks to their unique structural features such as large ion-accessible surface area and interconnected porous networks,thus enhancing both ions and electrons transport.Here,sustainable bacterial cellulose(BC)is used both precursor and template for facile synthesis of free-standing N,S-codoped 3Dcarbon networks(a-NSC)by the pyrolysis and activation of polyrhodanine coated BC.The synthesized a-NSC shows highly conductive interconnected porous networks(24S·cm^(-1)),large surface area(1 420m^2·g^(-1))with hierarchical meso-microporosity,and high-level heteroatoms codoping(N:3.1%in atom,S:3.2%in atom).Benefitting from these,a-NSC as binder-free electrode exhibits an ultrahigh specific capacitance of 340F·g^(-1)(24μF·cm^(-2))at the current density of 0.5A·g^(-1)in 6MKOH electrolyte,high-rate capability(71%at 20A·g^(-1))and excellent cycle stability.Furthermore,the assembled symmetrical supercapacitor displays a much short time constant of 0.35sin 1MTEABF4/AN electrolyte,obtaining a maximum energy density of 32.1W·h·kg^(-1 )at power density of 637W·kg^(-1).The in situ multi-heteroatoms doping enables biocellulose-derived carbon networks to exploit its full potentials in energy storage applications,which can be extended to other dimensional carbon nanostructures.展开更多
Sulfide-based all-solid-state lithium batteries suffer from electrochemo-mechanical damage to Ni-rich oxide-based cathode active materials(CAMs),primarily caused by severe volume changes,results in significant stress ...Sulfide-based all-solid-state lithium batteries suffer from electrochemo-mechanical damage to Ni-rich oxide-based cathode active materials(CAMs),primarily caused by severe volume changes,results in significant stress and strain,causes micro-cracks and interfacial contact loss at potentials>4.3 V(vs.Li/Li^(+)).Quantifying micro-cracks and voids in CAMs can reveal the degradation mechanisms of Ni-rich oxidebased cathodes during electrochemical cycling.Nonetheless,the origin of electrochemical-mechanical damage remains unclear.Herein,We have developed a multifunctional PEG-based soft buffer layer(SBL)on the surface of carbon black(CB).This layer functions as a percolation network in the single crystal LiNi_(0.83)Co_(0.07)Mn_(0.1)O_(2)and Li_(6)PS_(5)Cl composite cathode layer,ensuring superior ionic conductivity,reducing void formation and particle cracking,and promoting uniform utilization of the cathode active material in all-solid-state lithium batteries(ASSLBs).High-angle annular dark-field STEM combined with nanoscale X-ray holo-tomography and plasma-focused ion beam scanning electron microscopy confirmed that the PEG-based SBL mitigated strain induced by reaction heterogeneity in the cathode.This strain produces lattice stretches,distortions,and curved transition metal oxide layers near the surface,contributing to structural degradation at elevated voltages.Consequently,ASSLBs with a LiNi_(0.83)Co_(0.07)Mn_(0.1)O_(2)cathode containing LCCB-10(CB/PEG mass ratio:100/10)demonstrate a high areal capacity(2.53 mAh g^(-1)/0.32 mA g^(-1))and remarkable rate capability(0.58 mAh g^(-1)at 1.4 mA g^(-1)),with88%capacity retention over 1000 cycles.展开更多
[Objectives]To establish an HPLC method for the quantitative determination of multiple phenolic acid components in Tetracera asiatica medicinal material,providing a basis for establishing its quality standards.[Method...[Objectives]To establish an HPLC method for the quantitative determination of multiple phenolic acid components in Tetracera asiatica medicinal material,providing a basis for establishing its quality standards.[Methods]An Inertsil ODS-C 18 column(250 mm×4.6 mm,5μm)was used.The mobile phase consisted of acetonitrile-0.2% phosphoric acid solution(10:90).The flow rate was 1.0 mL/min.The detection wavelength was 274 nm.The column temperature was 25℃.The injection volume was 10μL.The content of three components,gallic acid,protocatechuic acid,and protocatechualdehyde,was determined in 13 batches of T.asiatica.[Results]Gallic acid showed good linearity within the range of 0.020-6.400μg/mL,protocatechuic acid within 0.201-6.432μg/mL,and protocatechualdehyde within 0.202-6.464μg/mL(r>0.9990).The average recovery rates ranged from 98.61%to 101.17%,with RSD s between 1.21%and 2.69%.[Conclusions]The quantitative determination method established in this study is simple and feasible,and can provide a basis for the quality evaluation of T.asiatica.展开更多
Realizing a lithium sulfide(Li_(2)S)cathode with both high energy density and a long lifespan requires an innovative cathode design that maximizes electrochemical performance and resists electrode deterioration.Herein...Realizing a lithium sulfide(Li_(2)S)cathode with both high energy density and a long lifespan requires an innovative cathode design that maximizes electrochemical performance and resists electrode deterioration.Herein,a high-loading Li_(2)S-based cathode with micrometric Li_(2)S particles composed of two-dimensional graphene(Gr)and one-dimensional carbon nanotubes(CNTs)in a compact geometry is developed,and the role of CNTs in stable cycling of high-capacity Li–S batteries is emphasized.In a dimensionally combined carbon matrix,CNTs embedded within the Gr sheets create robust and sustainable electron diffusion pathways while suppressing the passivation of the active carbon surface.As a unique point,during the first charging process,the proposed cathode is fully activated through the direct conversion of Li_(2)S into S_(8) without inducing lithium polysulfide formation.The direct conversion of Li_(2)S into S_(8) in the composite cathode is ubiquitously investigated using the combined study of in situ Raman spectroscopy,in situ optical microscopy,and cryogenic transmission electron microscopy.The composite cathode demonstrates unprecedented electrochemical properties even with a high Li_(2)S loading of 10 mg cm^(–2);in particular,the practical and safe Li–S full cell coupled with a graphite anode shows ultra-long-term cycling stability over 800 cycles.展开更多
Black phosphorus has been recognized as a prospective candidate anode material for sodium-ion batteries(SIBs)due to its ultrahigh theoretical capacity of 2596 mA·h/g and high electric conductivity of≈300 S/m.How...Black phosphorus has been recognized as a prospective candidate anode material for sodium-ion batteries(SIBs)due to its ultrahigh theoretical capacity of 2596 mA·h/g and high electric conductivity of≈300 S/m.However,its large volume expansion and contraction during sodiation/desodiation lead to poor cycling stability.In this work,a BP/graphite nanoparticle/nitrogen-doped multiwalled carbon nanotubes(BP/G/CNTs)composite with a dual-carbon conductive network is successfully fabricated as a promising anode material for SIBs through a simple two-step mechanical milling process.The unique structure can mitigate the eff ect of volume changes and provide additional electron conduction pathways during cycles.Furthermore,the formation of P–O–C bonds helps maintain the intimate connection between phosphorus and carbon,thereby improving the cycling and rate performance.As a result,the BP/G/CNTs composite delivers a high initial Coulombic efficiency(89.6%)and a high specific capacity for SIBs(1791.3 mA·h/g after 100 cycles at 519.2 mA/g and 1665.2 mA·h/g after 100 cycles at 1298 mA/g).Based on these results,the integrated strategy of one-and two-dimensional carbon materials can guide other anode materials for SIBs.展开更多
Covalent organic frameworks(COFs)have demonstrated great potential in chromatographic separation because of unique structure and superior performance.Herein,single-crystal three-dimensional(3D)COFs with regular morpho...Covalent organic frameworks(COFs)have demonstrated great potential in chromatographic separation because of unique structure and superior performance.Herein,single-crystal three-dimensional(3D)COFs with regular morphology,good monodispersity and high specific surface area,were used as a stationary phase for high-performance liquid chromatography(HPLC).The single-crystal 3D COFs packed column not only exhibits high efficiency in separating hydrophobic molecules involving substituted benzenes,halogenated benzenes,halogenated nitrobenzenes,aromatic amines,aromatic hydrocarbons(PAHs)and phthalate esters(PAEs),but also achieves baseline separation of acenaphthene and acenaphthylene with similar physical and chemical properties as well as environmental pollutants,which cannot be quickly separated on commercial C18 column and a polycrystalline 3D COFs packed column.Especially,the column efficiency of 17303-24255 plates/m was obtained for PAEs,and the resolution values for acenaphthene and acenaphthylene,and carbamazepine(CBZ)and carbamazepine-10,11-epoxide(CBZEP)were 1.7and 2.2,respectively.This successful application not only confirmed the great potential of the singlecrystal 3D COFs in HPLC separation of the organic molecules,but also facilitates the application of COFs in separation science.展开更多
Compared to subtractive manufacturing and casting,3D printing(additive manufacturing)offers advantages,such as the rapid production of complex structures,reduced material waste,and environmental friendliness.Direct in...Compared to subtractive manufacturing and casting,3D printing(additive manufacturing)offers advantages,such as the rapid production of complex structures,reduced material waste,and environmental friendliness.Direct ink writing(DIW)is one of the most popular 3D printing techniques owing to its ability to print multiple materials simultaneously and its high compatibility with printing inks.However,DIW presents significant challenges,particularly in the printing of high-performance polymers.The main challenges are as follows:1.The rigid structures and reaction kinetics of high-performance polymers make developing new inks difficult.2.The limited types of available high-performance polymers underscore the need for new DIW-suitable materials.3.Layer-by-layer stacking weakens interlayer bonding,affecting the mechanical properties of the printed product.4.The accuracy and speed of DIW printing are insufficient for large-scale manufacturing.After introducing the topic,the requirements for DIW printing inks are first reviewed,emphasizing the importance of thixotropic agents.Then,research progress regarding DIW printing of high-performance polymers is comprehensively reviewed according to the requirements of different polymer inks.Additionally,the applications of these materials across various fields are summarized.Finally,the challenges in DIW printing of high-performance polymers,along with corresponding solutions and future development prospects,are discussed in detail.展开更多
As electronic devices continue to evolve toward higher power densities,faster speeds,and smaller form factors,the demand for high-performance electronic packaging materials has become increasingly critical.These mater...As electronic devices continue to evolve toward higher power densities,faster speeds,and smaller form factors,the demand for high-performance electronic packaging materials has become increasingly critical.These materials serve as the physical and functional interface between semiconductor components and their operating environment,impacting the overall reliability,thermal management,mechanical protection,and electrical performance of modern electronic systems.This study investigates the development,formulation,and performance evaluation of advanced packaging materials,focusing on polymer-based composites,metal and ceramic matrix systems,and nanomaterial-enhanced formulations.A comprehensive analysis of key performance metrics-including thermal conductivity,electrical insulation,mechanical robustness,and environmental resistance-is presented,alongside strategies for material optimization through interface engineering and processing innovations.Furthermore,the study explores cutting-edge integration technologies such as 3D packaging compatibility,low-temperature co-firing,and high-density interconnects.The findings provide critical insights into the structure-property-processing relationships that define the effectiveness of next-generation packaging materials and offer a roadmap for material selection and system integration in high-reliability electronic applications.展开更多
Here,we present a regulation strategy involving heteroatom doping and structural construction to adjust zincophilic sites and electric field distribution,achieving a robust and dendrite-free Zn host anode.Theoretical ...Here,we present a regulation strategy involving heteroatom doping and structural construction to adjust zincophilic sites and electric field distribution,achieving a robust and dendrite-free Zn host anode.Theoretical calculations and experimental results confirm that sulfur atoms can provide moderate zincophilicity,while graphene-like nanosheets can even the electric field distribution,imparting the sulfurdoped graphene-like network(S-GP) with a longer lifespan(exceeding 500 h) and acceptable coulombic efficiency.Importantly,the S-GP host is used as the substrate for flexible Zn-ion batteries,exhibiting impressive electrochemical performance and great mechanical flexibility,indicating a broad application prospect in portable and wearable electronic devices.展开更多
Free-standing silicon anodes with high proportion of active materials have aroused great attention;however,the mechanical stability and electrochemical performance are severely suppressed.Herein,to resolve the appeal ...Free-standing silicon anodes with high proportion of active materials have aroused great attention;however,the mechanical stability and electrochemical performance are severely suppressed.Herein,to resolve the appeal issues,a free-standing anode with a"corrugated paper"shape on micro-scale and a topological crosslinking network on the submicron and nano-scale is designed.Essentially,an integrated three-dimensional electrode structure is constructed based on robust carbon nanotubes network with firmly anchored SiNPs via forming interlocking junctions.In which,the hierarchical interlocking structure is achieved by directional induction of the binder,which ensures well integration during cycling so that significantly enhances mechanical stability as well as electronic and ionic conductivity of electrodes.Benefiting from it,this anode exhibits outsta nding performance under harsh service conditions including high Si loading,ultrahigh areal capacity(33.2 mA h cm^(-2)),and high/low temperatures(-15-60℃),which significantly extends its practical prospect.Furthermore,the optimization mechanism of this electrode is explored to verify the crack-healing and structure-integration maintaining along cycling via a unique self-stabilization process.Thus,from both the fundamental and engineering views,this strategy offers a promising path to produce high-performance free-standing electrodes for flexible device applications especially facing volume effect challenges.展开更多
Metadata prefetching and data placement play a critical role in enhancing access performance for file systems operating over wide-area networks.However,developing effective strategies for metadata prefetching in envir...Metadata prefetching and data placement play a critical role in enhancing access performance for file systems operating over wide-area networks.However,developing effective strategies for metadata prefetching in environments with concurrent workloads and for data placement across distributed networks remains a significant challenge.This study introduces novel and efficient methodologies for metadata prefetching and data placement,leveraging fine-grained control of prefetching strategies and variable-sized data fragment writing to optimize the I/O bandwidth of distributed file systems.The proposed metadata prefetching technique employs dynamic workload analysis to identify dominant workload patterns and adaptively refines prefetching policies,thereby boosting metadata access efficiency under concurrent scenarios.Meanwhile,the data placement strategy improves write performance by storing data fragments locally within the nearest data center and transmitting only the fragment location metadata to the remote data center hosting the original file.Experimental evaluations using real-world system traces demonstrate that the proposed approaches reduce metadata access times by up to 33.5%and application data access times by 17.19%compared to state-of-the-art techniques.展开更多
End-host address mutation is one of the key network moving target defense mechanisms to defend against reconnaissance.However,frequently changing host addresses increases the transmission de-lay of active sessions,whi...End-host address mutation is one of the key network moving target defense mechanisms to defend against reconnaissance.However,frequently changing host addresses increases the transmission de-lay of active sessions,which may cause serious ram-ifications.In this paper,by leveraging the advanced DPDK technology,we proposed a high-performance MTD gateway framework,called HPMG,which can not only prevent adversaries from reconnaissance ef-fectively,but also retain high-speed data packet pro-cessing capabilities.Firstly,every moving target host is assigned three different IP addresses,called real IP,virtual IP,and external IP,to realize multi-level net-work address architecture.To delay the scanning tech-niques of adversaries,HPMG mutates virtual IP and virtual MAC addresses,and replies with fake host re-sponses.Besides,to be transparent to the end-hosts,HPMG keeps real IP and real MAC unchanged.Fi-nally,we optimized the forwarding and processing performance of the HPMG based on the fast path framework of DPDK.Our theoretical analysis,imple-mentation,and evaluation show that HPMG can effec-tively defend against reconnaissance attacks and de-crease the processing delay caused by address muta-tion.展开更多
Lithium-ion capacitors(LICs) hold promise as next-generation energy storage devices due to the synergy of the advantageous features of lithium-ion batteries(LIBs) and supercapacitors(SCs).Recently,the use of nanostruc...Lithium-ion capacitors(LICs) hold promise as next-generation energy storage devices due to the synergy of the advantageous features of lithium-ion batteries(LIBs) and supercapacitors(SCs).Recently,the use of nanostructured conjugated carboxylate organic anode materials in LICs has attracted tremendous attention due to their high capacity,excellent capacitive behavior,design flexibility,and environmental friendliness.Nevertheless,no studies have reported the use of non-conjugated organic compounds in LICs.In this study,we report for the first time that non-conjugated adipamide(ADIPAM) nanocrystals fabricated using a dissolution-recrystallization self-assembly technique serve as an excellent anode material for LICs.The unique ADIPAM nanocrystals-PVDF-Super P conductive integrated network architecture accelerates Li^(+) ion and electron diffusion and enhances lithium storage capability.Consequently,ADIPAM electrodes exhibit a high capacity of 705.8 mAh/g,exceptional cycling stability(308 mAh/g after 2100cycles at 5 A/g),and remarkable rate capability.Furthermore,a LIC full cell comprising the ADIPAM anode with a porous activated carbon cathode demonstrates a wide working window(4.5 V),high energy density(238.3 Wh/kg),and superb power density(22,500 W/kg).We believe this work may introduce a new approach to the design of non-conjugated organic materials for LICs.展开更多
Ever-increasing emissions of anthropogenic carbon dioxide(CO_(2))cause global environmental and climate challenges.Inspired by biological photosynthesis,developing effective strategies NeuNlto up-cycle CO_(2)into high...Ever-increasing emissions of anthropogenic carbon dioxide(CO_(2))cause global environmental and climate challenges.Inspired by biological photosynthesis,developing effective strategies NeuNlto up-cycle CO_(2)into high-value organics is crucial.Electrochemical CO_(2)reduction reaction(CO_(2)RR)is highly promising to convert CO_(2)into economically viable carbon-based chemicals or fuels under mild process conditions.Herein,mesoporous indium supported on multi-walled carbon nanotubes(mp-In@MWCNTs)is synthesized via a facile wet chemical method.The mp-In@MWCNTs electrocatalysts exhibit high CO_(2)RR performance in reducing CO_(2)into formate.An outstanding activity(current density-78.5 mA cm^(-2)),high conversion efficiency(Faradaic efficiency of formate over 90%),and persistent stability(∼30 h)for selective CO_(2)-to-formate conversion are observed.The outstanding CO_(2)RR process performance is attributed to the unique structures with mesoporous surfaces and a conductive network,which promote the adsorption and desorption of reactants and intermediates while improving electron transfer.These findings provide guiding principles for synthesizing conductive metal-based electrocatalysts for high-performance CO_(2)conversion.展开更多
As a critical infrastructure of cloud computing,data center networks(DCNs)directly determine the service performance of data centers,which provide computing services for various applications such as big data processin...As a critical infrastructure of cloud computing,data center networks(DCNs)directly determine the service performance of data centers,which provide computing services for various applications such as big data processing and artificial intelligence.However,current architectures of data center networks suffer from a long routing path and a low fault tolerance between source and destination servers,which is hard to satisfy the requirements of high-performance data center networks.Based on dual-port servers and Clos network structure,this paper proposed a novel architecture RClos to construct high-performance data center networks.Logically,the proposed architecture is constructed by inserting a dual-port server into each pair of adjacent switches in the fabric of switches,where switches are connected in the form of a ring Clos structure.We describe the structural properties of RClos in terms of network scale,bisection bandwidth,and network diameter.RClos architecture inherits characteristics of its embedded Clos network,which can accommodate a large number of servers with a small average path length.The proposed architecture embraces a high fault tolerance,which adapts to the construction of various data center networks.For example,the average path length between servers is 3.44,and the standardized bisection bandwidth is 0.8 in RClos(32,5).The result of numerical experiments shows that RClos enjoys a small average path length and a high network fault tolerance,which is essential in the construction of high-performance data center networks.展开更多
文摘Network attached storage (NAS) with the properties of improved scalability, simplified management, low cost and balanced price performance, is desirable for high performance storage systems applied to extensive areas. Unfortunately, it also has some disadvantages such as increased network workload, and inconvenience in disaster recovery. To overcome these disadvantages, we propose a channel bonding technique and provide hot backup functions in the designed NAS system, named HUSTserver. Channel bonding means merging multiple Ethernet channels into integrated one, and that the data packets can be transferred through any available network channels in a parallel mode. The hot backup function provides automatic data mirroring among servers. In this paper, we first describe the whole system prototype from a software and hardware architecture view. Then, multiple Ethernet and hot backup technologies that distinguish HUSTserver from others are discussed in detail. The findings presented demonstrate that network bandwidth can be scaled by the use of multiple commodity networks. Dual parallel channels of commodity 100 Mbps Ethernet are both necessary and sufficient to support the data rates of multiple concurrent file transfers. And the hot backup function introduced in our system provides high data accessibility.
基金financially supported by the National Natural Science Foundation of China(Nos.21876164 and U2030203)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘To address the poor mechanical properties of polydimethylsiloxane(PDMS)and enhance the understanding of the reinforcement mechanisms of aerogel network structures in rubber matrices,this study reinforced PDMS using an ordered interconnected three-dimensional montmorillonite(MMT)aerogel network.The average pore diameter of the aerogels was successfully reduced from 11.53μm to 2.51μm by adjusting the ratio of poly(vinyl alcohol)(PVA)to MMT via directional freezing.Changes in the aerogel network were observed in field emission scanning electron microscope(FESEM)images.After vacuum impregnation,the aerogel network structure of the composites was observed using FESEM.Tensile tests indicated that as the pore diameter decreased,the elongation at break of the composites first increased to a peak of329.61%before decreasing,while the tensile strength and Young's modulus continuously increased to their maximum values of 6.29 MPa and24.67 MPa,respectively.Meanwhile,FESEM images of the tensile cracks and fracture surfaces showed that with a reduction in aerogel pore diameter,the degrees of crack deflection and interfacial debonding increased,presenting a rougher fracture surface.These phenomena enable the composites to dissipate substantial energy during tension,thus effectively improving the mechanical strength of the composites.The present work elucidates the bearing of ordered three-dimensional aerogel network structures on the performance of rubber matrices and provides crucial theoretical insights and technical guidance for the creation and optimization of high-performance PDMS-based composites.
基金supported by Ministry of Industry and Information Technology of the People's Republic of China 2022 Industrial Technology Basic Public Service Platform Project-Traditional Chinese Medicine Whole Industry Chain Quality and Technology Service Platform(2022-230-221)Foshan Nanhai District Key Area Science and Technology Research Project[Nanke(2023)20-18].
文摘Objective:To evaluate the quality of Lygodium japonicum(Thunb.)Sw.(L.japonicum,Hai Jin Sha)by comparing its components without stewed(W)and stewed(S)using ultra-high-performance liquid chromatography(UHPLC)and chemometric analysis.Additionally,network pharmacology was employed to investigate the possible mechanisms of action of L.japonicum in the urinary calculi(UC)treatment.Methods:A fingerprinting method was established to identify components through UHPLC-tandem mass spectrometry.Chemometric techniques were used to compare the L.japonicum extraction methods.Furthermore,various network pharmacological approaches were used to identify and analyze the potential targets of the identified components in relation to UC.Results:The W and S extracts were distributed into two distinct clusters.Significant differences in the levels of protocatechuic aldehyde,caffeic acid,and p-coumaric acid were observed between S and W.Network pharmacology analysis revealed that the primary targets of L.japonicum in the UC treatment were serum albumin and epidermal growth factor receptors,with potential active components including protocatechuic acid and caffeic acid.Conclusion:This study comprehensively examined the therapeutic components of L.japonicum before and after boiling,shedding light on its potential mechanisms of action in UC treatment.These findings offer valuable insights into the development and utilization of L.japonicum resources.
文摘High-entropy alloy(HEA)offer tunable composition and surface structures,enabling the creation of novel active sites that enhance catalytic performance in renewable energy application.However,the inherent surface complexity and tendency for elemental segregation,which results in discrepancies between bulk and surface compositions,pose challenges for direct investigation via density functional theory.To address this,Monte Carlo simulations combined with molecular dynamics were employed to model surface segregation across a broad range of elements,including Cu,Ag,Au,Pt,Pd,and Al.The analysis revealed a trend in surface segregation propensity following the order Ag>Au>Al>Cu>Pd>Pt.To capture the correlation between surface site characteristics and the free energy of multi-dentate CO_(2)reduction intermediates,a graph neural network was designed,where adsorbates were transformed into pseudo-atoms at their centers of mass.This model achieved mean absolute errors of 0.08–0.15 eV for the free energies of C_(2)intermediates,enabling precise site activity quantification.Results indicated that increasing the concentration of Cu,Ag,and Al significantly boosts activity for CO and C_(2)formation,whereas Au,Pd,and Pt exhibit negative effects.By screening stable composition space,promising HEA bulk compositions for CO,HCOOH,and C_(2)products were predicted,offering superior catalytic activity compared to pure Cu catalysts.
基金supported by the National Basic Research Program of China(973 Program)(No.2014CB239701)the National Natural Science Foundation of China(Nos.51672128,51372116,21773118)+2 种基金the Natural Science Foundation of Jiangsu Province(Nos.BK20150739,BK20151468)the Prospective Joint Research Project of Cooperative Innovation Fund of Jiangsu Province(No.BY2015003-7)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Three-dimensional(3D)carbon networks have been explored as promising capacitive materials thanks to their unique structural features such as large ion-accessible surface area and interconnected porous networks,thus enhancing both ions and electrons transport.Here,sustainable bacterial cellulose(BC)is used both precursor and template for facile synthesis of free-standing N,S-codoped 3Dcarbon networks(a-NSC)by the pyrolysis and activation of polyrhodanine coated BC.The synthesized a-NSC shows highly conductive interconnected porous networks(24S·cm^(-1)),large surface area(1 420m^2·g^(-1))with hierarchical meso-microporosity,and high-level heteroatoms codoping(N:3.1%in atom,S:3.2%in atom).Benefitting from these,a-NSC as binder-free electrode exhibits an ultrahigh specific capacitance of 340F·g^(-1)(24μF·cm^(-2))at the current density of 0.5A·g^(-1)in 6MKOH electrolyte,high-rate capability(71%at 20A·g^(-1))and excellent cycle stability.Furthermore,the assembled symmetrical supercapacitor displays a much short time constant of 0.35sin 1MTEABF4/AN electrolyte,obtaining a maximum energy density of 32.1W·h·kg^(-1 )at power density of 637W·kg^(-1).The in situ multi-heteroatoms doping enables biocellulose-derived carbon networks to exploit its full potentials in energy storage applications,which can be extended to other dimensional carbon nanostructures.
基金supported by the Hainan Province Science and Technology Special Fund(ZDYF2021SHFZ232,ZDYF2023GXJS022)the Hainan Province Postdoctoral Science Foundation(300333)the National Natural Science Foundation of China(21203008,21975025,12274025,22372008)。
文摘Sulfide-based all-solid-state lithium batteries suffer from electrochemo-mechanical damage to Ni-rich oxide-based cathode active materials(CAMs),primarily caused by severe volume changes,results in significant stress and strain,causes micro-cracks and interfacial contact loss at potentials>4.3 V(vs.Li/Li^(+)).Quantifying micro-cracks and voids in CAMs can reveal the degradation mechanisms of Ni-rich oxidebased cathodes during electrochemical cycling.Nonetheless,the origin of electrochemical-mechanical damage remains unclear.Herein,We have developed a multifunctional PEG-based soft buffer layer(SBL)on the surface of carbon black(CB).This layer functions as a percolation network in the single crystal LiNi_(0.83)Co_(0.07)Mn_(0.1)O_(2)and Li_(6)PS_(5)Cl composite cathode layer,ensuring superior ionic conductivity,reducing void formation and particle cracking,and promoting uniform utilization of the cathode active material in all-solid-state lithium batteries(ASSLBs).High-angle annular dark-field STEM combined with nanoscale X-ray holo-tomography and plasma-focused ion beam scanning electron microscopy confirmed that the PEG-based SBL mitigated strain induced by reaction heterogeneity in the cathode.This strain produces lattice stretches,distortions,and curved transition metal oxide layers near the surface,contributing to structural degradation at elevated voltages.Consequently,ASSLBs with a LiNi_(0.83)Co_(0.07)Mn_(0.1)O_(2)cathode containing LCCB-10(CB/PEG mass ratio:100/10)demonstrate a high areal capacity(2.53 mAh g^(-1)/0.32 mA g^(-1))and remarkable rate capability(0.58 mAh g^(-1)at 1.4 mA g^(-1)),with88%capacity retention over 1000 cycles.
基金Supported by Regional Science Foundation of China,National Natural Science Foundation(No.82160820)General Program of Guizhou Provincial Natural Science Foundation[QianKeHe Foundation-ZK(2023)General153].
文摘[Objectives]To establish an HPLC method for the quantitative determination of multiple phenolic acid components in Tetracera asiatica medicinal material,providing a basis for establishing its quality standards.[Methods]An Inertsil ODS-C 18 column(250 mm×4.6 mm,5μm)was used.The mobile phase consisted of acetonitrile-0.2% phosphoric acid solution(10:90).The flow rate was 1.0 mL/min.The detection wavelength was 274 nm.The column temperature was 25℃.The injection volume was 10μL.The content of three components,gallic acid,protocatechuic acid,and protocatechualdehyde,was determined in 13 batches of T.asiatica.[Results]Gallic acid showed good linearity within the range of 0.020-6.400μg/mL,protocatechuic acid within 0.201-6.432μg/mL,and protocatechualdehyde within 0.202-6.464μg/mL(r>0.9990).The average recovery rates ranged from 98.61%to 101.17%,with RSD s between 1.21%and 2.69%.[Conclusions]The quantitative determination method established in this study is simple and feasible,and can provide a basis for the quality evaluation of T.asiatica.
基金Korea Institute of Energy Technology Evaluation and Planning,Grant/Award Number:20214000000320Samsung Research Funding&Incubation Center of Samsung Electronics,Grant/Award Number:SRFC-MA1901-06。
文摘Realizing a lithium sulfide(Li_(2)S)cathode with both high energy density and a long lifespan requires an innovative cathode design that maximizes electrochemical performance and resists electrode deterioration.Herein,a high-loading Li_(2)S-based cathode with micrometric Li_(2)S particles composed of two-dimensional graphene(Gr)and one-dimensional carbon nanotubes(CNTs)in a compact geometry is developed,and the role of CNTs in stable cycling of high-capacity Li–S batteries is emphasized.In a dimensionally combined carbon matrix,CNTs embedded within the Gr sheets create robust and sustainable electron diffusion pathways while suppressing the passivation of the active carbon surface.As a unique point,during the first charging process,the proposed cathode is fully activated through the direct conversion of Li_(2)S into S_(8) without inducing lithium polysulfide formation.The direct conversion of Li_(2)S into S_(8) in the composite cathode is ubiquitously investigated using the combined study of in situ Raman spectroscopy,in situ optical microscopy,and cryogenic transmission electron microscopy.The composite cathode demonstrates unprecedented electrochemical properties even with a high Li_(2)S loading of 10 mg cm^(–2);in particular,the practical and safe Li–S full cell coupled with a graphite anode shows ultra-long-term cycling stability over 800 cycles.
基金financially supported by the National Key Research Program of China(No.2018YFC0808601)。
文摘Black phosphorus has been recognized as a prospective candidate anode material for sodium-ion batteries(SIBs)due to its ultrahigh theoretical capacity of 2596 mA·h/g and high electric conductivity of≈300 S/m.However,its large volume expansion and contraction during sodiation/desodiation lead to poor cycling stability.In this work,a BP/graphite nanoparticle/nitrogen-doped multiwalled carbon nanotubes(BP/G/CNTs)composite with a dual-carbon conductive network is successfully fabricated as a promising anode material for SIBs through a simple two-step mechanical milling process.The unique structure can mitigate the eff ect of volume changes and provide additional electron conduction pathways during cycles.Furthermore,the formation of P–O–C bonds helps maintain the intimate connection between phosphorus and carbon,thereby improving the cycling and rate performance.As a result,the BP/G/CNTs composite delivers a high initial Coulombic efficiency(89.6%)and a high specific capacity for SIBs(1791.3 mA·h/g after 100 cycles at 519.2 mA/g and 1665.2 mA·h/g after 100 cycles at 1298 mA/g).Based on these results,the integrated strategy of one-and two-dimensional carbon materials can guide other anode materials for SIBs.
基金the National Natural Science Foundation of China(No.22274021)Natural Science Foundation of Fujian Province(No.2022J01535)for financial support。
文摘Covalent organic frameworks(COFs)have demonstrated great potential in chromatographic separation because of unique structure and superior performance.Herein,single-crystal three-dimensional(3D)COFs with regular morphology,good monodispersity and high specific surface area,were used as a stationary phase for high-performance liquid chromatography(HPLC).The single-crystal 3D COFs packed column not only exhibits high efficiency in separating hydrophobic molecules involving substituted benzenes,halogenated benzenes,halogenated nitrobenzenes,aromatic amines,aromatic hydrocarbons(PAHs)and phthalate esters(PAEs),but also achieves baseline separation of acenaphthene and acenaphthylene with similar physical and chemical properties as well as environmental pollutants,which cannot be quickly separated on commercial C18 column and a polycrystalline 3D COFs packed column.Especially,the column efficiency of 17303-24255 plates/m was obtained for PAEs,and the resolution values for acenaphthene and acenaphthylene,and carbamazepine(CBZ)and carbamazepine-10,11-epoxide(CBZEP)were 1.7and 2.2,respectively.This successful application not only confirmed the great potential of the singlecrystal 3D COFs in HPLC separation of the organic molecules,but also facilitates the application of COFs in separation science.
基金supported by National Key Research and Development Program of China(Grant No.2022YFB3809000)Major Science and Technology Project of Gansu Province(Grant No.23ZDGA011)+1 种基金National Natural Science Foundation of China(Grant No.22275199,52105224)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB04701022021).
文摘Compared to subtractive manufacturing and casting,3D printing(additive manufacturing)offers advantages,such as the rapid production of complex structures,reduced material waste,and environmental friendliness.Direct ink writing(DIW)is one of the most popular 3D printing techniques owing to its ability to print multiple materials simultaneously and its high compatibility with printing inks.However,DIW presents significant challenges,particularly in the printing of high-performance polymers.The main challenges are as follows:1.The rigid structures and reaction kinetics of high-performance polymers make developing new inks difficult.2.The limited types of available high-performance polymers underscore the need for new DIW-suitable materials.3.Layer-by-layer stacking weakens interlayer bonding,affecting the mechanical properties of the printed product.4.The accuracy and speed of DIW printing are insufficient for large-scale manufacturing.After introducing the topic,the requirements for DIW printing inks are first reviewed,emphasizing the importance of thixotropic agents.Then,research progress regarding DIW printing of high-performance polymers is comprehensively reviewed according to the requirements of different polymer inks.Additionally,the applications of these materials across various fields are summarized.Finally,the challenges in DIW printing of high-performance polymers,along with corresponding solutions and future development prospects,are discussed in detail.
文摘As electronic devices continue to evolve toward higher power densities,faster speeds,and smaller form factors,the demand for high-performance electronic packaging materials has become increasingly critical.These materials serve as the physical and functional interface between semiconductor components and their operating environment,impacting the overall reliability,thermal management,mechanical protection,and electrical performance of modern electronic systems.This study investigates the development,formulation,and performance evaluation of advanced packaging materials,focusing on polymer-based composites,metal and ceramic matrix systems,and nanomaterial-enhanced formulations.A comprehensive analysis of key performance metrics-including thermal conductivity,electrical insulation,mechanical robustness,and environmental resistance-is presented,alongside strategies for material optimization through interface engineering and processing innovations.Furthermore,the study explores cutting-edge integration technologies such as 3D packaging compatibility,low-temperature co-firing,and high-density interconnects.The findings provide critical insights into the structure-property-processing relationships that define the effectiveness of next-generation packaging materials and offer a roadmap for material selection and system integration in high-reliability electronic applications.
文摘Here,we present a regulation strategy involving heteroatom doping and structural construction to adjust zincophilic sites and electric field distribution,achieving a robust and dendrite-free Zn host anode.Theoretical calculations and experimental results confirm that sulfur atoms can provide moderate zincophilicity,while graphene-like nanosheets can even the electric field distribution,imparting the sulfurdoped graphene-like network(S-GP) with a longer lifespan(exceeding 500 h) and acceptable coulombic efficiency.Importantly,the S-GP host is used as the substrate for flexible Zn-ion batteries,exhibiting impressive electrochemical performance and great mechanical flexibility,indicating a broad application prospect in portable and wearable electronic devices.
基金sponsored by the National Natural Science Foundation of China(21905221,21805221)the Suzhou Technological innovation of key industries-research and development of key technologies(SGC2021118)。
文摘Free-standing silicon anodes with high proportion of active materials have aroused great attention;however,the mechanical stability and electrochemical performance are severely suppressed.Herein,to resolve the appeal issues,a free-standing anode with a"corrugated paper"shape on micro-scale and a topological crosslinking network on the submicron and nano-scale is designed.Essentially,an integrated three-dimensional electrode structure is constructed based on robust carbon nanotubes network with firmly anchored SiNPs via forming interlocking junctions.In which,the hierarchical interlocking structure is achieved by directional induction of the binder,which ensures well integration during cycling so that significantly enhances mechanical stability as well as electronic and ionic conductivity of electrodes.Benefiting from it,this anode exhibits outsta nding performance under harsh service conditions including high Si loading,ultrahigh areal capacity(33.2 mA h cm^(-2)),and high/low temperatures(-15-60℃),which significantly extends its practical prospect.Furthermore,the optimization mechanism of this electrode is explored to verify the crack-healing and structure-integration maintaining along cycling via a unique self-stabilization process.Thus,from both the fundamental and engineering views,this strategy offers a promising path to produce high-performance free-standing electrodes for flexible device applications especially facing volume effect challenges.
基金funded by the National Natural Science Foundation of China under Grant No.62362019the Hainan Provincial Natural Science Foundation of China under Grant No.624RC482.
文摘Metadata prefetching and data placement play a critical role in enhancing access performance for file systems operating over wide-area networks.However,developing effective strategies for metadata prefetching in environments with concurrent workloads and for data placement across distributed networks remains a significant challenge.This study introduces novel and efficient methodologies for metadata prefetching and data placement,leveraging fine-grained control of prefetching strategies and variable-sized data fragment writing to optimize the I/O bandwidth of distributed file systems.The proposed metadata prefetching technique employs dynamic workload analysis to identify dominant workload patterns and adaptively refines prefetching policies,thereby boosting metadata access efficiency under concurrent scenarios.Meanwhile,the data placement strategy improves write performance by storing data fragments locally within the nearest data center and transmitting only the fragment location metadata to the remote data center hosting the original file.Experimental evaluations using real-world system traces demonstrate that the proposed approaches reduce metadata access times by up to 33.5%and application data access times by 17.19%compared to state-of-the-art techniques.
基金supported by National Natural Science Foundation of China(No.61821001)Science and Tech-nology Key Project of Guangdong Province,China(2019B010157001).
文摘End-host address mutation is one of the key network moving target defense mechanisms to defend against reconnaissance.However,frequently changing host addresses increases the transmission de-lay of active sessions,which may cause serious ram-ifications.In this paper,by leveraging the advanced DPDK technology,we proposed a high-performance MTD gateway framework,called HPMG,which can not only prevent adversaries from reconnaissance ef-fectively,but also retain high-speed data packet pro-cessing capabilities.Firstly,every moving target host is assigned three different IP addresses,called real IP,virtual IP,and external IP,to realize multi-level net-work address architecture.To delay the scanning tech-niques of adversaries,HPMG mutates virtual IP and virtual MAC addresses,and replies with fake host re-sponses.Besides,to be transparent to the end-hosts,HPMG keeps real IP and real MAC unchanged.Fi-nally,we optimized the forwarding and processing performance of the HPMG based on the fast path framework of DPDK.Our theoretical analysis,imple-mentation,and evaluation show that HPMG can effec-tively defend against reconnaissance attacks and de-crease the processing delay caused by address muta-tion.
基金supported by the National Natural Science Foundation of China(Nos.22309022,92372101)the Project of Natural Science Foundation of Chongqing,China(Nos.CSTB2023NSCQMSX0405,CSTB2023NSCQ-LZX0039)+2 种基金the Science and Technology Research Program of Chongqing Municipal Education Commission(No.KJQN202201104)the Key Project of Chongqing Technology Innovation and Application Development(No.CSTB2023TIADKPX0091)the China Postdoctoral Science Foundation(No.2023M742888)。
文摘Lithium-ion capacitors(LICs) hold promise as next-generation energy storage devices due to the synergy of the advantageous features of lithium-ion batteries(LIBs) and supercapacitors(SCs).Recently,the use of nanostructured conjugated carboxylate organic anode materials in LICs has attracted tremendous attention due to their high capacity,excellent capacitive behavior,design flexibility,and environmental friendliness.Nevertheless,no studies have reported the use of non-conjugated organic compounds in LICs.In this study,we report for the first time that non-conjugated adipamide(ADIPAM) nanocrystals fabricated using a dissolution-recrystallization self-assembly technique serve as an excellent anode material for LICs.The unique ADIPAM nanocrystals-PVDF-Super P conductive integrated network architecture accelerates Li^(+) ion and electron diffusion and enhances lithium storage capability.Consequently,ADIPAM electrodes exhibit a high capacity of 705.8 mAh/g,exceptional cycling stability(308 mAh/g after 2100cycles at 5 A/g),and remarkable rate capability.Furthermore,a LIC full cell comprising the ADIPAM anode with a porous activated carbon cathode demonstrates a wide working window(4.5 V),high energy density(238.3 Wh/kg),and superb power density(22,500 W/kg).We believe this work may introduce a new approach to the design of non-conjugated organic materials for LICs.
基金Jiujiang Research Institute in Xiamen University for the partial supportthe support of QUT Faculty Centre Strategic Funding provided by the Faculty of Science and QUT Centre for a Waste-Free World+1 种基金the Australian Research Council(ARC)QUT Centre for Materials Science for partial support
文摘Ever-increasing emissions of anthropogenic carbon dioxide(CO_(2))cause global environmental and climate challenges.Inspired by biological photosynthesis,developing effective strategies NeuNlto up-cycle CO_(2)into high-value organics is crucial.Electrochemical CO_(2)reduction reaction(CO_(2)RR)is highly promising to convert CO_(2)into economically viable carbon-based chemicals or fuels under mild process conditions.Herein,mesoporous indium supported on multi-walled carbon nanotubes(mp-In@MWCNTs)is synthesized via a facile wet chemical method.The mp-In@MWCNTs electrocatalysts exhibit high CO_(2)RR performance in reducing CO_(2)into formate.An outstanding activity(current density-78.5 mA cm^(-2)),high conversion efficiency(Faradaic efficiency of formate over 90%),and persistent stability(∼30 h)for selective CO_(2)-to-formate conversion are observed.The outstanding CO_(2)RR process performance is attributed to the unique structures with mesoporous surfaces and a conductive network,which promote the adsorption and desorption of reactants and intermediates while improving electron transfer.These findings provide guiding principles for synthesizing conductive metal-based electrocatalysts for high-performance CO_(2)conversion.
基金This work was supported by the Hainan Provincial Natural Science Foundation of China(620RC560,2019RC096,620RC562)the Scientific Research Setup Fund of Hainan University(KYQD(ZR)1877)+2 种基金the National Natural Science Foundation of China(62162021,82160345,61802092)the key research and development program of Hainan province(ZDYF2020199,ZDYF2021GXJS017)the key science and technology plan project of Haikou(2011-016).
文摘As a critical infrastructure of cloud computing,data center networks(DCNs)directly determine the service performance of data centers,which provide computing services for various applications such as big data processing and artificial intelligence.However,current architectures of data center networks suffer from a long routing path and a low fault tolerance between source and destination servers,which is hard to satisfy the requirements of high-performance data center networks.Based on dual-port servers and Clos network structure,this paper proposed a novel architecture RClos to construct high-performance data center networks.Logically,the proposed architecture is constructed by inserting a dual-port server into each pair of adjacent switches in the fabric of switches,where switches are connected in the form of a ring Clos structure.We describe the structural properties of RClos in terms of network scale,bisection bandwidth,and network diameter.RClos architecture inherits characteristics of its embedded Clos network,which can accommodate a large number of servers with a small average path length.The proposed architecture embraces a high fault tolerance,which adapts to the construction of various data center networks.For example,the average path length between servers is 3.44,and the standardized bisection bandwidth is 0.8 in RClos(32,5).The result of numerical experiments shows that RClos enjoys a small average path length and a high network fault tolerance,which is essential in the construction of high-performance data center networks.