期刊文献+
共找到251,807篇文章
< 1 2 250 >
每页显示 20 50 100
Development and Performance Study of High-Performance Electronic Packaging Materials
1
作者 Shenglan Fang 《材料科学研究(中英文版)》 2025年第2期1-6,共6页
As electronic devices continue to evolve toward higher power densities,faster speeds,and smaller form factors,the demand for high-performance electronic packaging materials has become increasingly critical.These mater... As electronic devices continue to evolve toward higher power densities,faster speeds,and smaller form factors,the demand for high-performance electronic packaging materials has become increasingly critical.These materials serve as the physical and functional interface between semiconductor components and their operating environment,impacting the overall reliability,thermal management,mechanical protection,and electrical performance of modern electronic systems.This study investigates the development,formulation,and performance evaluation of advanced packaging materials,focusing on polymer-based composites,metal and ceramic matrix systems,and nanomaterial-enhanced formulations.A comprehensive analysis of key performance metrics-including thermal conductivity,electrical insulation,mechanical robustness,and environmental resistance-is presented,alongside strategies for material optimization through interface engineering and processing innovations.Furthermore,the study explores cutting-edge integration technologies such as 3D packaging compatibility,low-temperature co-firing,and high-density interconnects.The findings provide critical insights into the structure-property-processing relationships that define the effectiveness of next-generation packaging materials and offer a roadmap for material selection and system integration in high-reliability electronic applications. 展开更多
关键词 Electronic Packaging materials Thermal Interface materials high-performance Composites NANOmaterialS Thermal Conductivity 3D Packaging RELIABILITY Polymer Composites Dielectric Properties MICROFABRICATION
在线阅读 下载PDF
Machine-learning-assisted Materials Genome Approach for Designing High-performance Thermosetting Polyimides
2
作者 Wan-Xun Feng Song-Qi Zhang +6 位作者 Yin-Yi Xu Xiang-Fei Ye Xin-Yao Xu Li-Quan Wang Jia-Ping Lin Chun-Hua Cai Lei Du 《Chinese Journal of Polymer Science》 2025年第10期1718-1729,共12页
Enhancing the mechanical properties is crucial for polyimide films,but the mechanical properties(Young's modulus,tensile strength,and elongation at break)mutually constrain each other,complicating simultaneous enh... Enhancing the mechanical properties is crucial for polyimide films,but the mechanical properties(Young's modulus,tensile strength,and elongation at break)mutually constrain each other,complicating simultaneous enhancement via traditional trial-and-error methods.In this work,we proposed a materials genome approach to design and screen phenylethynyl-terminated polyimides for films with enhanced mechani-cal properties.We first established machine learning models to predict Young's modulus,tensile strength,and elongation at break to explore the chemical space containing thousands of candidate structures.The accuracies of the machine learning models were verified by molecular dynamics simulations on screened polyimides and experimental testing on three representative polyimide films.The performance advantages of the best-selected polyimides were analyzed by comparing well-known polyimides based on molecular dynamics simulations,and the structural rationale was revealed by"gene"analysis and feature importance evaluation.This work provides a cost-effective strategy for designing polyimide films withenhancedmechanical properties. 展开更多
关键词 materials genome approach Machine learning Mechanical property POLYIMIDE
原文传递
Additive Manufacturing of Lunar Regolith via Resin-Based Binder and Material Extrusion Method for High-Performance In-Situ Manufacturing on the Moon
3
作者 Tongcai Wang Guangshuai Gu +2 位作者 Rihan Zhang Qianshun Cui Gong Wang 《Additive Manufacturing Frontiers》 2025年第3期74-81,共8页
The utilization of lunar regolith for construction on the lunar surface presents a critical challenge in-situ resource utilization.This study proposes a lunar regolith manufacturing method that uses a high-performance... The utilization of lunar regolith for construction on the lunar surface presents a critical challenge in-situ resource utilization.This study proposes a lunar regolith manufacturing method that uses a high-performance resin binder characterized by a high regolith content and strong forming capabilities.A combined resin material with both thermosetting and photosetting properties was developed and mixed with lunar regolith to create a slurry.This slurry can be directly molded or additively extruded into green bodies with specific structures.These green bodies can self-cure under the high temperatures and ultraviolet radiation experienced during the lunar day,reducing energy consumption and fulfilling the requirements of lunar construction.The material-forming processes and effects of various additive types and concentrations,regolith mass ratios,and processing parameters on the properties of the slurry and the formed specimens were thoroughly investigated.The mechanical performance and microstructure of the fabricated samples were analyzed.The lunar regolith mass ratio reached 90 wt%(approximately 79 vol%),with the highest compressive strengths exceeding 60 MPa for cast specimens and 30 MPa for printed samples.This technology shows significant potential for enabling in-situ lunar regolith-based construction in future lunar missions. 展开更多
关键词 ISRU Lunar regolith Additive manufacturing In-situ construction material extrusion
在线阅读 下载PDF
High-Performance Silicon-Air Batteries Enabled by MIL Materials Covering Si Anodes With a Screening Function
4
作者 Ze Liu Kaiyong Feng +3 位作者 Fengjun Deng Xiaochen Zhang Jiangchang Chen Yingjian Yu 《Carbon Energy》 2025年第8期76-89,共14页
Silicon-air(Si-air)batteries have received significant attention owing to their high theoretical energy density and safety profile.However,the actual energy density of the Si-air battery remains significantly lower th... Silicon-air(Si-air)batteries have received significant attention owing to their high theoretical energy density and safety profile.However,the actual energy density of the Si-air battery remains significantly lower than the theoretical value,primarily due to corrosion issues and passivation.This study used various metal-organic framework(MOF)materials,such as MIL-53(Al),MIL-88(Fe),and MIL-101(Cr),to modify Si anodes.The MOFs were fabricated to have different morphologies,particle sizes,and pore sizes by altering their central metal nodes and ligands.This approach aimed to modulate the adsorption behavior of H_(2)O,SiO_(2),and OH^(−),thereby mitigating corrosion and passivation reactions.Under a constant current of 150μA,Si-air batteries with MIL-53(Al)@Si,MIL-88(Fe)@Si,and MIL-101(Cr)@Si as anodes demonstrated lifetimes of 293,412,and 336 h,respectively,surpassing the 276 h observed with pristine silicon anodes.Among these composite anodes,MIL-88(Fe)@Si displayed the best performance due to its superior hydrophobicity and optimal pore size,which enhance OH^(−)migration.This study offers a promising strategy for enhancing Si-air battery performance by developing an anodic protective layer with selective screening properties. 展开更多
关键词 corrosion density functional theory MIL materials PASSIVATION Si-air batteries
在线阅读 下载PDF
Pyrochlore-type oxide:a high-performance material for ultrastable sodium-ion storage
5
作者 Hang He Jiarui Zhang +1 位作者 Ruihang Wen Kun Luo 《Science China Chemistry》 2025年第10期4820-4829,共10页
Sodium-ion batteries hold significant potential for large-scale energy storage applications,primarily because of their impressive energy density.Massive researches on anode materials mainly focus on carbon materials b... Sodium-ion batteries hold significant potential for large-scale energy storage applications,primarily because of their impressive energy density.Massive researches on anode materials mainly focus on carbon materials because of their high theoretical capacity and affordability.Nevertheless,the large volume change of carbon materials during the sodium ion intercalation/de-intercalation processes seriously influences their electrochemical properties and limits their practical applications.Finding stable and high performance materials remains a significant challenge in the progress of NIBs development.Herein,a pyrochlore-type oxide(A_(2)B_(2)O_(7))for sodium storage is successfully synthesized in this work,which adopts a“zigzag”structure of AO_(6) octahedra and BO_(4) tetrahedra.Density functional theory calculations and structural characterizations indicate that the material is able to host Na ions in the structure properly and maintains excellent structural stability during the intercalation and deintercalation of Na^(+),making the pyrochlore-type oxide an excellent Na storage material.Electrochemical measurements indicate that the pyrochlore-type oxide exhibits excellent electrochemical performances and extremely stable sodium storage ability(high capacity of~250 mAh g^(-1)at 30 mA g^(-1),~85% capacity retention after 25000 cycles at 5 A g^(-1)).In addition,the full cell shows excellent electrochemical performances in all climatic operation temperature ranges from-30℃ to 40℃(117 mAh g^(-1)at 40℃ and 103 mAh g^(-1)at-30℃).The high reversible capacity,impressive rate capability and outstanding cycling stability demonstrated by pyrochlore-type oxides make them a competitive choice among Na-ion anode materials.This study introduces a new type of pyrochlore-type transition metal oxide for stable Na storage,which shows high capacity,excellent rate performances and extremely long cycling life.This study is expected to significantly advance the development of anode for NIBs. 展开更多
关键词 sodium-ion batteries anode material pyrochlore-type oxide ultrastable sodium storage all-climate
原文传递
Machine-Learning Accelerated Discovery of High-Performance Thermal Switch in Two-dimensional Materials Considering High-order Anharmonicity
6
作者 Jie Sun Han Meng +3 位作者 Rulei Guo Long Cheng Yiheng Shen Xiaoliang Zhang 《Chinese Physics Letters》 2025年第11期199-221,共23页
Heat dissipation and thermal switches are vital for adaptive cooling and extending the lifespan of electronic devices and batteries. In this work, we conducted high-throughput investigations on the thermal transport o... Heat dissipation and thermal switches are vital for adaptive cooling and extending the lifespan of electronic devices and batteries. In this work, we conducted high-throughput investigations on the thermal transport of 24 experimentally realized two-dimensional(2D) materials and their potential as thermal switches, leveraging machine-learning-assisted strain engineering and phonon transport simulations. We identified several highperformance thermal switches with ratios exceeding 2, with germanene(Ge) achieving an ultrahigh ratio of up to9.64 within the reversible deformation range. The underlying mechanism is strain-induced bond softening, which sensitively affects anharmonicity represented by three-and four-phonon scattering. The widespread occurrence of four-phonon scattering was confirmed in the thermal transport of 2D materials. Opposite switching trends were discovered, with 2D transition metal dichalcogenide materials showing negative responses to tensile strain while buckled 2D elemental materials showed positive responses. We further proposed a screening descriptor based on strain-induced changes in the Gr¨uneisen parameter for efficiently identifying new high-performance thermal switch materials. This work establishes a paradigm for thermal energy control in 2D materials through strain engineering, which may be experimentally realized in the future via bending, substrate mismatch, and related approaches, thereby laying a robust foundation for further developments and applications. 展开更多
关键词 phonon transport simulations thermal transport adaptive cooling machine learning two dimensional materials heat dissipation electronic devices thermal switches
原文传递
Identification of carbon-wrapped Bi_(5)Nb_(3)O_(15) as a viable intercalation/alloying high-performance lithium storage material
7
作者 Yan-Rong Zhu Yu-Rong Wu +6 位作者 Hao-Tian Guo Nan Zhang Peng-Fei Wang Zong-Lin Liu Jun-Hong Zhang Jie Shu Ting-Feng Yi 《Rare Metals》 2025年第2期868-878,共11页
Bi-based transition metal oxide(Bi_(5)Nb_(3)O_(15))has become a highly hopeful anode material for lithium-ion batteries(LIBs)due to its large theoretical capacity and affordable availability.Unfortunately,poor conduct... Bi-based transition metal oxide(Bi_(5)Nb_(3)O_(15))has become a highly hopeful anode material for lithium-ion batteries(LIBs)due to its large theoretical capacity and affordable availability.Unfortunately,poor conductivity,as well as volume expansion and pulverization during repeated reactions will result in bad specific capacity and inferior cycling stability.Hence,Bi_(5)Nb_(3)O_(15)@C anode materials for LIBs were successfully synthesized using sucrose as a carbon source through a two-step high-temperature solid-phase method.Physical characterizations and electrochemical tests suggest that the highly conductive carbon shell derived from sucrose provides fast channels for Li^(+)transport and greatly reduces the charge transfer resistance.Moreover,ex situ scanning electron microscopy(SEM)indicates that the presence of carbon effectively suppresses the aggregation and pulverization of Bi_(5)Nb_(3)O_(15) particles in the reaction process,effectively ensuring the integrity of Bi_(5)Nb_(3)O_(15) particles.Benefiting from the above merits,the C-modified Bi_(5)Nb_(3)O_(15),especially Bi_(5)Nb_(3)O_(15)@8%C(BNO-C3),holds charge capacity of 414.6 and 281.4 mAh·g^(−1) at 0.1 and 0.5 A·g^(−1),respectively.Additionally,the high specific capacity of 379.5 mAh·g^(−1) is much greater than that of the bare Bi_(5)Nb_(3)O_(15)(only 158.7 mAh·g^(−1))after 200 cycles.Importantly,cyclic voltammetry(CV)combined with ex situ X-ray diffraction(XRD)confirms the conversion reaction between Bi_(5)Nb_(3)O_(15) and Bi during cycling.This work provides a method for suppressing volume expansion and pulverization during cycling of Bi-based transition metal oxides and constructing high-performance LIBs anode materials. 展开更多
关键词 Bi_(5)Nb_(3)O_(15) Carbon Anode material Surface modification Lithium-ion batteries
原文传递
Study on the reactive material filled structure under impact loading:The self-distributed multipeak overpressure effect
8
作者 Jing'an Xiang Haifu Wang +2 位作者 Yueguang Yan Aoxin Liu Chao Ge 《Defence Technology(防务技术)》 2026年第1期193-209,共17页
The reactive materials filled structure(RMFS)is a structural penetrator that replaces high explosive(HE)with reactive materials,presenting a novel self-distributed initiation,multiple deflagrations behavior during pen... The reactive materials filled structure(RMFS)is a structural penetrator that replaces high explosive(HE)with reactive materials,presenting a novel self-distributed initiation,multiple deflagrations behavior during penetrating multi-layered plates,and generating a multipeak overpressure behind the plates.Here analytical models of RMFS self-distributed energy release and equivalent deflagration are developed.The multipeak overpressure formation model based on the single deflagration overpressure expression was promoted.The impact tests of RMFS on multi-layered plates at 584 m/s,616 m/s,and819 m/s were performed to validate the analytical model.Further,the influence of a single overpressure peak and time intervals versus impact velocity is discussed.The analysis results indicate that the deflagration happened within 20.68 mm behind the plate,the initial impact velocity and plate thickness are the crucial factors that dominate the self-distributed multipeak overpressure effect.Three formation patterns of multipeak overpressure are proposed. 展开更多
关键词 Reactive material Impact Self-distributed OVERPRESSURE Multipeak
在线阅读 下载PDF
Cement-Based Thermoelectric Materials, Devices and Applications
9
作者 Wanqiang Li Chunyu Du +1 位作者 Lirong Liang Guangming Chen 《Nano-Micro Letters》 2026年第1期750-781,共32页
Cement stands as a dominant contributor to global energy consumption and carbon emissions in the construction industry.With the upgrading of infrastructure and the improvement of building standards,traditional cement ... Cement stands as a dominant contributor to global energy consumption and carbon emissions in the construction industry.With the upgrading of infrastructure and the improvement of building standards,traditional cement fails to reconcile ecological responsibility with advanced functional performance.By incorporating tailored fillers into cement matrices,the resulting composites achieve enhanced thermoelectric(TE)conversion capabilities.These materials can harness solar radiation from building envelopes and recover waste heat from indoor thermal gradients,facilitating bidirectional energy conversion.This review offers a comprehensive and timely overview of cementbased thermoelectric materials(CTEMs),integrating material design,device fabrication,and diverse applications into a holistic perspective.It summarizes recent advancements in TE performance enhancement,encompassing fillers optimization and matrices innovation.Additionally,the review consolidates fabrication strategies and performance evaluations of cement-based thermoelectric devices(CTEDs),providing detailed discussions on their roles in monitoring and protection,energy harvesting,and smart building.We also address sustainability,durability,and lifecycle considerations of CTEMs,which are essential for real-world deployment.Finally,we outline future research directions in materials design,device engineering,and scalable manufacturing to foster the practical application of CTEMs in sustainable and intelligent infrastructure. 展开更多
关键词 Functional cement Thermoelectric materials Device structure Smart building
在线阅读 下载PDF
Emerging Role of 2D Materials in Photovoltaics:Efficiency Enhancement and Future Perspectives
10
作者 Ghulam Dastgeer Muhammad Wajid Zulfiqar +7 位作者 Sobia Nisar Rimsha Zulfiqar Muhammad Imran Swagata Panchanan Subhajit Dutta Kamran Akbar Alberto Vomiero Zhiming Wang 《Nano-Micro Letters》 2026年第1期843-895,共53页
The growing global energy demand and worsening climate change highlight the urgent need for clean,efficient and sustainable energy solutions.Among emerging technologies,atomically thin two-dimensional(2D)materials off... The growing global energy demand and worsening climate change highlight the urgent need for clean,efficient and sustainable energy solutions.Among emerging technologies,atomically thin two-dimensional(2D)materials offer unique advantages in photovoltaics due to their tunable optoelectronic properties,high surface area and efficient charge transport capabilities.This review explores recent progress in photovoltaics incorporating 2D materials,focusing on their application as hole and electron transport layers to optimize bandgap alignment,enhance carrier mobility and improve chemical stability.A comprehensive analysis is presented on perovskite solar cells utilizing 2D materials,with a particular focus on strategies to enhance crystallization,passivate defects and improve overall cell efficiency.Additionally,the application of 2D materials in organic solar cells is examined,particularly for reducing recombination losses and enhancing charge extraction through work function modification.Their impact on dye-sensitized solar cells,including catalytic activity and counter electrode performance,is also explored.Finally,the review outlines key challenges,material limitations and performance metrics,offering insight into the future development of nextgeneration photovoltaic devices encouraged by 2D materials. 展开更多
关键词 2D materials Photovoltaics Interface engineering Work function tuning Energy harvesting
在线阅读 下载PDF
Advancing ignition techniques for energetic materials:A comparative study of direct laser ignition and laser-driven flyer methods
11
作者 Razvan-Marian Mircioaga Baptiste Reynier +4 位作者 Tudor Prisecaru Adrian-Nicolae Rotariu Florin-Marian Dîrloman Liviu-Cristian Matache Laviniu Haller 《Defence Technology(防务技术)》 2026年第1期180-192,共13页
Conventional ignition methods are proving to be ineffective for low-sensitivity energetic materials,highlighting the need to investigate alternative ignition systems,such as laser-based techniques.Over the past decade... Conventional ignition methods are proving to be ineffective for low-sensitivity energetic materials,highlighting the need to investigate alternative ignition systems,such as laser-based techniques.Over the past decade,lasers have emerged as a promising solution,providing focused energy beams for controllable,efficient,and reliable ignition in the field of energetic materials.This study presents a comparative analysis of two state-of-the-art ignition approaches:direct laser ignition and laser-driven flyer ignition.Experiments were performed using a Neodymium-doped Yttrium Aluminum Garnet(Nd:YAG)laser at different energy beam levels to systematically evaluate ignition onset.In the direct laser ignition test setup,the laser beam was applied directly to the energetic tested material,while laserdriven flyer ignition utilized 40 and 100μm aluminum foils,propelled at velocities ranging from 300 to 1250 m/s.Comparative analysis with the Lawrence and Trott model substantiated the velocity data and provided insight into the ignition mechanisms.Experimental results indicate that the ignition time for the laser-driven flyer method was significantly shorter,with the pyrotechnic composition achieving complete combustion faster compared to direct laser ignition.Moreover,precise ignition thresholds were determined for both methods,providing critical parameters for optimizing ignition systems in energetic materials.This work elucidates the advantages and limitations of each technique while advancing next-generation ignition technology,enhancing the reliability and safety of propulsion systems. 展开更多
关键词 Energetic material Laser ignition Laser-driven flyer ignition High-velocity impact Laser fluence
在线阅读 下载PDF
Review of Flash Joule Heating for the Synthesis of Graphene and Other Functional Carbon Materials
12
作者 Zhiwu Tan Faisal Mahmood +8 位作者 Mengzhen Tian Yimeng Li Qingfa Zhang Zhong Ma Mingfeng Wang Weiwei Liu Shihong Zhang Haiping Yang Bin Li 《Carbon Energy》 2026年第1期223-252,共30页
Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.B... Flash Joule heating(FJH),as a high-efficiency and low-energy consumption technology for advanced materials synthesis,has shown significant potential in the synthesis of graphene and other functional carbon materials.Based on the Joule effect,the solid carbon sources can be rapidly heated to ultra-high temperatures(>3000 K)through instantaneous high-energy current pulses during FJH,thus driving the rapid rearrangement and graphitization of carbon atoms.This technology demonstrates numerous advantages,such as solvent-and catalyst-free features,high energy conversion efficiency,and a short process cycle.In this review,we have systematically summarized the technology principle and equipment design for FJH,as well as its raw materials selection and pretreatment strategies.The research progress in the FJH synthesis of flash graphene,carbon nanotubes,graphene fibers,and anode hard carbon,as well as its by-products,is also presented.FJH can precisely optimize the microstructures of carbon materials(e.g.,interlayer spacing of turbostratic graphene,defect concentration,and heteroatom doping)by regulating its operation parameters like flash voltage and flash time,thereby enhancing their performances in various applications,such as composite reinforcement,metal-ion battery electrodes,supercapacitors,and electrocatalysts.However,this technology is still challenged by low process yield,macroscopic material uniformity,and green power supply system construction.More research efforts are also required to promote the transition of FJH from laboratory to industrial-scale applications,thus providing innovative solutions for advanced carbon materials manufacturing and waste management toward carbon neutrality. 展开更多
关键词 APPLICATIONS by products flash graphene flash Joule heating functional carbon materials upscaling
在线阅读 下载PDF
Cu/Ti-doped O3-type cathode materials for high cyclic stability of sodium-ion batteries
13
作者 Jingjing Dong Liu Pei +6 位作者 Yifei Wang Yan Liu Xingliang Liu Zhidan Diao Jianling Li Yejing Li Xindong Wang 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期306-314,共9页
The outstanding performance of O3-type NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)(NFM111)at both high and low temperatures coupled with its impressive specific capacity makes it an excellent cathode material for sodium-ion batte... The outstanding performance of O3-type NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)(NFM111)at both high and low temperatures coupled with its impressive specific capacity makes it an excellent cathode material for sodium-ion batteries.However,its poor cycling,owing to highpressure phase transitions,is one of its disadvantages.In this study,Cu/Ti was introduced into NFM111 cathode material using a solidphase method.Through both theoretically and experimentally,this study found that Cu doping provides a higher redox potential in NFM111,improving its reversible capacity and charge compensation process.The introduction of Ti would enhance the cycling stability of the material,smooth its charge and discharge curves,and suppress its high-voltage phase transitions.Accordingly,the NaNi_(0.27)Fe_(0.28)Mn_(0.33)Cu_(0.05)Ti_(0.06)O_(2)sample used in the study exhibited a remarkable rate performance of 142.97 mAh·g^(-1)at 0.1 C(2.0-4.2 V)and an excellent capacity retention of 72.81%after 300 cycles at 1C(1C=150 mA·g^(-1)). 展开更多
关键词 sodium-ion batteries Cu/Ti doping cyclic stability layered cathode material
在线阅读 下载PDF
Dynamic fracture behavior and coupled impact effect of as-cast W-Zr-Ti energetic structural material
14
作者 Yuxuan Qi Liang Mao +3 位作者 Chunlan Jiang Guitao Liu Kongxun Zhao Mengchen Zhang 《Defence Technology(防务技术)》 2026年第1期422-435,共14页
This paper prepared a novel as-cast W-Zr-Ti metallic ESM using high-frequency vacuum induction melting technique.The above ESM performs a typical elastic-brittle material feature and strain rate strengthening behavior... This paper prepared a novel as-cast W-Zr-Ti metallic ESM using high-frequency vacuum induction melting technique.The above ESM performs a typical elastic-brittle material feature and strain rate strengthening behavior.The specimens exhibit violent chemical reaction during the fracture process under the impact loading,and the size distribution of their residual debris follows Rosin-Rammler model.The dynamic fracture toughness is obtained by the fitting of debris length scale,approximately 1.87 MPa·m~(1/2).Microstructure observation on residual debris indicates that the failure process is determined by primary crack propagation under quasi-static compression,while it is affected by multiple cracks propagation in both particle and matrix in the case of dynamic impact.Impact test demonstrates that the novel energetic fragment performs brilliant penetration and combustion effect behind the front target,leading to the effective ignition of fuel tank.For the brittleness of as-cast W-ZrTi ESM,further study conducted bond-based peridynamic(BB-PD)C++computational code to simulate its fracture behavior during penetration.The BB-PD method successfully captured the fracture process and debris cloud formation of the energetic fragment.This paper explores a novel as-cast metallic ESM,and provides an available numerical avenue to the simulation of brittle energetic fragment. 展开更多
关键词 Energetic structural material Dynamic fracture behavior Coupled impact effect Mechanical property Peridynamics As-cast W-Zr-Ti alloy
在线阅读 下载PDF
High-Entropy Materials:A New Paradigm in the Design of Advanced Batteries
15
作者 Yangmei Xin Minmin Zhu +1 位作者 Haizhong Zhang Xinghui Wang 《Nano-Micro Letters》 2026年第1期1-52,共52页
High-entropy materials(HEMs)have attracted considerable research attention in battery applications due to exceptional properties such as remarkable structural stability,enhanced ionic conductivity,superior mechanical ... High-entropy materials(HEMs)have attracted considerable research attention in battery applications due to exceptional properties such as remarkable structural stability,enhanced ionic conductivity,superior mechanical strength,and outstanding catalytic activity.These distinctive characteristics render HEMs highly suitable for various battery components,such as electrodes,electrolytes,and catalysts.This review systematically examines recent advances in the application of HEMs for energy storage,beginning with fundamental concepts,historical development,and key definitions.Three principal categories of HEMs,namely high-entropy alloys,high-entropy oxides,and highentropy MXenes,are analyzed with a focus on electrochemical performance metrics such as specific capacity,energy density,cycling stability,and rate capability.The underlying mechanisms by which these materials enhance battery performance are elucidated in the discussion.Furthermore,the pivotal role of machine learning in accelerating the discovery and optimization of novel high-entropy battery materials is highlighted.The review concludes by outlining future research directions and potential breakthroughs in HEM-based battery technologies. 展开更多
关键词 High entropy alloys High entropy oxides High entropy MXenes High entropy battery materials Machine learning
在线阅读 下载PDF
Supplemental Material for “Floquet Weyl Semimetals with Linked Fermi Arcs”
16
作者 Dongling Liu Zheng-Yang Zhuang Zhongbo Yan 《Chinese Physics Letters》 2026年第1期225-230,共6页
This supplemental material contains three sections:(Ⅰ)Derivation of the Floquet lattice Hamiltonian;(Ⅱ)Surface states of the Floquet lattice Hamiltonian;(Ⅲ)Evolution of Floquet Weyl points and Fermi arcs with the i... This supplemental material contains three sections:(Ⅰ)Derivation of the Floquet lattice Hamiltonian;(Ⅱ)Surface states of the Floquet lattice Hamiltonian;(Ⅲ)Evolution of Floquet Weyl points and Fermi arcs with the increase of light amplitude;(Ⅳ)Formalism for light-induced anomalous Hall effects. 展开更多
关键词 Floquet lattice Hamiltonian Light amplitude Anomalous Hall effects Fermi arcs floquet lattice hamiltonian surface Surface states supplemental material Floquet Weyl points
原文传递
High-Performance and Multifunctional Cement-Based Composite Material 被引量:19
17
作者 Victor C. Li 《Engineering》 SCIE EI 2019年第2期250-260,共11页
Concrete is a continuously evolving material, and even the definition of high-performance concrete has changed over time. In this paper, high-performance characteristics of concrete material are considered to be those... Concrete is a continuously evolving material, and even the definition of high-performance concrete has changed over time. In this paper, high-performance characteristics of concrete material are considered to be those that support the desirable durability, resilience, and sustainability of civil infrastructure that directly impact our quality of life. It is proposed that high-performance material characteristics include tensile ductility, autogenous crack-width control, and material “greenness.” Furthermore, smart functionalities should be aimed at enhancing infrastructure durability, resilience, and sustainability by responding to changes in the surrounding environment of the structure in order to perform desirable functions, thus causing the material to behave in a manner more akin to certain biological materials. Based on recent advances in engineered cementitious composites (ECCs), this paper suggests that concrete embodying such high-performance characteristics and smart multifunctionalities can be designed, and holds the potential to fulfill the expected civil infrastructure needs of the 21st century. Highlights of relevant properties of ECCs are provided, and directions for necessary future research are indicated. 展开更多
关键词 high-performance concrete MULTIFUNCTION Smart CEMENT-BASED composite Durability RESILIENCE Sustainability Infrastructure
在线阅读 下载PDF
Porous Si/C composite as anode materials for high-performance rechargeable lithium-ion battery 被引量:5
18
作者 Bingbing Deng Lian Shen +6 位作者 Yangai Liu Tao Yang Manshu Zhang Renjie Liu Zhaohui Huang Minghao Fang Xiaowen Wu 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第12期2281-2284,共4页
A novel porous silicon was synthesized through a magnesiothermic reduction method of molecular sieve for the first time, Si/C composite was synthesized by using pitch as carbon source. The porous Si/C composite shows ... A novel porous silicon was synthesized through a magnesiothermic reduction method of molecular sieve for the first time, Si/C composite was synthesized by using pitch as carbon source. The porous Si/C composite shows a high initial specific capacity of 2018.5 mAh/g with current density of 0.1 A/g. When the current density increases to 2 A/g, it still exhibits high average specific capacity of 640.3 mAh/g. The porous structure can remit the Si particle pulverization during the lithiation]delithiation process. This article can provide a reference for the research of the porous Si anode for the high performance rechargeable lithium-ion battery. 展开更多
关键词 Magnesiothermic reductionPorous SiLithium-ion battery Anode materials Carbon coating
原文传递
High-performance anode materials for Na-ion batteries 被引量:21
19
作者 De-Liang Cheng Li-Chun Yang Min Zhu 《Rare Metals》 SCIE EI CAS CSCD 2018年第3期167-180,共14页
Na-ion batteries are considered a promising alternative to Li-ion batteries for large-scale energy storage systems due to their low cost and the natural abundance of Na resource. Great effort is making worldwide to de... Na-ion batteries are considered a promising alternative to Li-ion batteries for large-scale energy storage systems due to their low cost and the natural abundance of Na resource. Great effort is making worldwide to develop high-performance electrode materials for Na-ion batteries,which is critical for Na-ion batteries. This review provides a comprehensive overview of anode materials for Na-ion batteries based on Na-storage mechanism: insertion-based materials, alloy-based materials, conversion-based materials and organic composites. And we summarize the Nastorage mechanism of those anode materials and discuss their failure mechanism. Furthermore, the problems and challenges associated with those anodes are pointed out,and feasible strategies are proposed for designing highperformance anode materials. According to the current state of research, the search for suitable anode materials for Na-ion batteries is still challenging although substantial progress has been achieved. Nevertheless, we believe that high-performance Na-ion batteries would be promising for practical applications in large-scale energy storage systems in the near future. 展开更多
关键词 Na-ion batteries Anode materials Na-storage mechanism
原文传递
Ribbon-like Cu doped V6O13 as Cathode Material for High-performance Lithium Ion Batteries 被引量:3
20
作者 何金云 龙飞 +3 位作者 PENG Daijiang WU Xiaoli MO Shuyi ZOU Zhengguang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第6期1397-1401,共5页
Ribbon-like Cu doped V6O(13) was synthesized via a simple solvothermal approach followed by heat treatment in air.As an cathode material for lithium ion battery,the ribbon-like Cu doped V6O(13 )electrode exhibited... Ribbon-like Cu doped V6O(13) was synthesized via a simple solvothermal approach followed by heat treatment in air.As an cathode material for lithium ion battery,the ribbon-like Cu doped V6O(13 )electrode exhibited good capacity retention with a reversible capacity of over 313 m Ah·g^-1 for up to 50 cycles at 0.1C,as well as a high charge capacity of 306 m Ah·g^-1 at a high current rate of 1 C,in comparison to undoped V6O(13 )electrode(267 m Ah·g^-1 at 0.1C and 273 m Ah·g^-1 at 1 C).The high rate capability and better cycleability of the doped electrode can be attributed to the influence of the Cu ions on the mophology and the electronic conductivity of V6O(13) during the lithiation and delithiation process. 展开更多
关键词 vanadium oxide ion doping cathode material lithium ion battery
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部