The practical application of poly(ethylene oxide)(PEO)-based solid polymer electrolytes in all-solid-state lithium-metal batteries(ASSLBs)still suffers from persistent challenges associated with low ionic conductivity...The practical application of poly(ethylene oxide)(PEO)-based solid polymer electrolytes in all-solid-state lithium-metal batteries(ASSLBs)still suffers from persistent challenges associated with low ionic conductivity and poor oxidative stability.To address these issues,we introduce a novel in-situ ionization strategy using radical polymer poly(2,2,6,6-tetramethyl-1-piperidinyloxy-4-yl acrylate)(PTPA)to enhance ionic conductivity and achieve a high electrochemical stability window in PEO-based electrolyte.Density functional theory(DFT)calculations and molecular dynamics(MD)simulations reveal that the in-situ generation of PTPA+from PTPA within the battery,not only exceptionally decreases the low Highest Occupied Molecular Orbital(HOMO)energy level,but also exhibits a robust anchoring effect on TFSI-anions in the electrolyte,which boosts Li^(+) migration and enables dense Li deposition behavior.As a result,the PEO/10 wt%PTPA/LiTFSI electrolyte demonstrates remarkable oxidative stability up to 5 V and a high Li^(+)transference number(0.57).Li-Li symmetric cells maintain stability over 1000 h at 0.2 mA cm^(-2),and LiFePO_(4)(LFP)//Li battery also presents an enduring cyclic performance over 500 cycles with a remarkable high-capacity retention of 91.8% at 0.5C.Impressively,by coupling with a high-voltage LiCoO_(2)(LCO)cathode(cut-off voltage 4.6 V),the assembled ASSLBs reach a capacity retention of 87.1% after 500 cycles at 1C.Our study explores the mechanism of radical polymer in PEO-based electrolyte and provides a fire-new strategy for construction of high-performance and multifunctional ASSLBs.展开更多
Aqueous Zn-ion batteries(AZIBs)have been regarded as promising alternatives to Li-ion batteries due to their advantages,such as low cost,high safety,and environmental friendliness.However,AZIBs face significant challe...Aqueous Zn-ion batteries(AZIBs)have been regarded as promising alternatives to Li-ion batteries due to their advantages,such as low cost,high safety,and environmental friendliness.However,AZIBs face significant challenges in limited stability and lifetime owing to zinc dendrite growth and serious side reactions caused by water molecules in the aqueous electrolyte during cycling.To address these issues,a new eutectic electrolyte based on Zn(ClO_(4))_(2)·6H_(2)O-N-methylacetamide(ZN)is proposed in this work.Compared with aqueous electrolyte,the ZN eutectic electrolyte containing organic N-methylacetamide could regulate the solvated structure of Zn^(2+),effectively suppressing zinc dendrite growth and side reactions.As a result,the Zn//NH4 V4 O10 full cell with the eutectic ZN-1-3 electrolyte demonstrates significantly enhanced cycling stability after 1000 cycles at 1 A g^(-1).Therefore,this study not only presents a new eutectic electrolyte for zinc-ion batteries but also provides a deep understanding of the influence of Zn^(2+)solvation structure on the cycle stability,contributing to the exploration of novel electrolytes for high-performance AZIBs.展开更多
Lithium(Li)deposition and nucleation at solid electrolyte interphase(SEI)is the main origin for the capacity decay in Li metal batteries(LMBs).SEI conversion with enhanced electrochemical and mechanical properties is ...Lithium(Li)deposition and nucleation at solid electrolyte interphase(SEI)is the main origin for the capacity decay in Li metal batteries(LMBs).SEI conversion with enhanced electrochemical and mechanical properties is an effective approach to achieve uniform nucleation of Li^(+)and stabilize the lithium metal anode.However,complex interfacial reaction mechanisms and interface compatibility issues hinder the development of SEI conversion strategies for stabilizing lithium metal anodes.Herein,we presented the release of I_(3)^(-)in–NH_(2)-modified metal–organic frameworks for a Li metal surface SEI phase conversion strategy.The–NH_(2)group in MOF pores induced the formation of I_(3)^(-)from I_(2),which was further spontaneously reacted with inactive Li_(2)O transforming into high-performance LiI and LiIO_(3)interphase.Furthermore,theoretical calculation provided deeply insight into the unique reconstructed interfacial formation and electrochemical mechanism of rich LiI and LiIO_(3)SEI.As a result,the Li^(+)deposition and nucleation were improved,facilitating the transport kinetics of Li^(+)and inhibiting the growth of lithium dendrites.The assembled solid-state Li||LiFePO_(4)full cells exhibited superior long-term stability of 800 cycles and high Coulombic efficiency(>99%),Li||LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)pouch cell also displayed superior practical performance over 200 cycles at 2 C,high loading of 5 mg cm^(-2)and safety performance.This innovative SEI design strategy promotes the development of high-performance solid-state Li metal batteries.展开更多
High-energy-density lithium(Li)–air cells have been considered a promising energy-storage system,but the liquid electrolyte-related safety and side-reaction problems seriously hinder their development.To address thes...High-energy-density lithium(Li)–air cells have been considered a promising energy-storage system,but the liquid electrolyte-related safety and side-reaction problems seriously hinder their development.To address these above issues,solid-state Li–air batteries have been widely developed.However,many commonly-used solid electrolytes generally face huge interface impedance inLi–air cells and also showpoor stability towards ambient air/Li electrodes.Herein,we fabricate a differentiating surface-regulated ceramic-based composite electrolyte(DSCCE)by constructing disparately LiI-containing polymethyl methacrylate(PMMA)coating and Poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)layer on both sides of Li_(1.5)Al_(0.5)Ge_(1.5)(PO_(4))_(3)(LAGP).The cathode-friendly LiI/PMMA layer displays excellent stability towards superoxide intermediates and also greatly reduces the decomposition voltage of discharge products in Li–air system.Additionally,the anode-friendly PVDF-HFP coating shows low-resistance properties towards anodes.Moreover,Li dendrite/passivation derived from liquid electrolyte-induced side reactions and air/I-attacking can be obviously suppressed by the uniformand compact composite framework.As a result,the DSCCE-based Li–air batteries possess high capacity/low voltage polarization(11,836mAh g^(-1)/1.45Vunder 500mAg^(-1)),good rate performance(capacity ratio under 1000mAg^(-1)/250mAg^(-1) is 68.2%)and longterm stable cell operation(~300 cycles at 750 mA g^(-1) with 750 mAh g^(-1))in ambient air.展开更多
A dual-halide solid electrolyte,Li_(3)YCl_(3)Br_(3),was synthesized using a wet-chemistry route instead of the conventional mechanical ball-milling route.Li_(3)YCl_(3)Br_(3) exhibits an ion conductivity of 2.08 mS/cm ...A dual-halide solid electrolyte,Li_(3)YCl_(3)Br_(3),was synthesized using a wet-chemistry route instead of the conventional mechanical ball-milling route.Li_(3)YCl_(3)Br_(3) exhibits an ion conductivity of 2.08 mS/cm and an electro-chemical stability window of 3.8 V.Additionally,an all-solid-state lithium-ion battery using Li_(3)YCl_(3)Br_(3) and LiNi_(0.83)Co_(0.11)Mn_(0.06)O_(2)(NCM811)as the cathode material achieves a capacity retention of 93%after 200 cycles at 0.3C and maintains a specific capacity of 115 mA·h/g during 2C cycling.This exceptional performance is attributed to the high oxidative stability of Li_(3)YCl_(3)Br_(3) and the in-situ formation of Y_(2)O_(3) inert protective layer on the NCM811 surface under high voltage.Consequently,the study demonstrates the feasibility of a simple,cost-effective wet-chemistry route for synthesizing multi-component halides,highlighting its potential for large-scale production of halide solid electrolytes for practical applications.展开更多
Aqueous zinc-ion batteries(AZIBs)have emerged as a promising next-generation energy storage solution due to their high energy density,abundant resources,low cost,and high safety.However,unstable zinc anode caused by s...Aqueous zinc-ion batteries(AZIBs)have emerged as a promising next-generation energy storage solution due to their high energy density,abundant resources,low cost,and high safety.However,unstable zinc anode caused by side reactions and dendritic growth always severely worsens the long-term operation of AZIBs.Herein,a novel 3-cyclobutene sulfone(CS)additive was employed in the aqueous electrolyte to achieve a highly reversible Zn anode.The CS additive can offer strong electronegativity and high binding energy for the coordination with Zn^(2+),which enables its entry into the solvent sheath structure of Zn^(2+)and eliminates the free H_(2)O molecules from the solvated{Zn^(2+)-SO_(4)^(2-)-(H_(2)O)_(5)}.Thus,the occurrence of side reactions and dendritic growth can be effectively inhibited.Accordingly,the Zn anode achieves long cycle-life(1400 h at 1 m A cm^(-2),1 m Ah cm^(-2),and 400 h at 5 m A cm^(-2),5 m Ah cm^(-2))and high average coulombic efficiency(99.5% over 500 cycles at 10 m A cm^(-2),1 m Ah cm^(-2)).Besides,the assembled Zn||NH_(4)V_(4)O_(10)full cell suggests enhanced cycling reversibility(123.8 m Ah g^(-1)over 500 cycles at 2 A g^(-1),84.9 m Ah g^(-1)over 800 cycles at 5 A g^(-1))and improved rate capability(139.1 m Ah g^(-1)at 5 A g^(-1)).This work may exhibit the creative design and deep understanding of sulfone-based electrolyte additives for the achievement of high-performance AZIBs.展开更多
Quasi-solid-state composite electrolytes(QSCEs)show promise for high-performance solid-state batteries,while they still struggle with interfacial stability and cycling performance.Herein,a F-grafted QSCE(F-QSCE)was de...Quasi-solid-state composite electrolytes(QSCEs)show promise for high-performance solid-state batteries,while they still struggle with interfacial stability and cycling performance.Herein,a F-grafted QSCE(F-QSCE)was developed via copolymerizing the F monomers and ionic liquid monomers.The F-QSCE demonstrates better overall performance,such as high ionic conductivity of 1.21 mS cm^(-1)at 25℃,wide electrochemical windows of 5.20 V,and stable cycling stability for Li//Li symmetric cells over 4000 h.This is attributed to the significant electronegativity difference between C and F in the fluorinated chain(-CF_(2)-CF-CF_(3)),which causes the electron cloud to shift toward the F atom,surrounding it with a negative charge and producing the inductive effect.Furthermore,the interactions between Li^(+)and F,TFSI~-,and C are enhanced,reducing ion pair aggregation(Li^(+)-TFSI~--Li^(+))and promoting Li^(+)transport.Besides,-CF_(2)-CF-CF_(3)decomposes to form Li F preferentially over TFSI~-,resulting in better interfacial stability for F-QSCE.This work provides a pathway to enable the development of high-performance Li metal batteries.展开更多
Solid-state batteries(SSBs)with thermal stable solid-state electrolytes(SSEs)show intrinsic capacity and great potential in energy density improvement.SSEs play critical role,however,their low ionic conductivity at ro...Solid-state batteries(SSBs)with thermal stable solid-state electrolytes(SSEs)show intrinsic capacity and great potential in energy density improvement.SSEs play critical role,however,their low ionic conductivity at room temperature and high brittleness hinder their further development.In this paper,polypropylene(PP)-polyvinylidene fluoride(PVDF)-Li_(1.3)Al_(0.3)Ti_(1.7)(PO_(4))_(3)(LATP)-Lithium bis(trifluoromethane sulphonyl)imide(LiTFSI)multi-layered composite solid electrolyte(CSE)is prepared by a simple separator coating strategy.The incorporation of LATP nanoparticle fillers and high concentration LiTFSI not only reduces the crystallinity of PVDF,but also forms a solvation structure,which contributes to high ionic conductivity in a wide temperature.In addition,using a PP separator as the supporting film,the mechanical strength of the electrolyte was improved and the growth of lithium dendrites are effectively inhibited.The results show that the CSE prepared in this paper has a high ionic conductivity of 6.38×10^(-4)S/cm at room temperature and significantly improves the mechanical properties,the tensile strength reaches 11.02 MPa.The cycle time of Li/Li symmetric cell assembled by CSE at room temperature can exceed 800 h.The Li/LFP full cell can cycle over 800 cycles and the specific capacity of Li/LFP full cell can still reach 120 m Ah/g after 800 cycles at 2 C.This CSE has good cycle stability and excellent mechanical strength at room temperature,which provides an effective method to improve the performance of solid electrolytes under moderate condition.展开更多
One effective approach to strike the balance between ionic conductivity and mechanical strength in polymer electrolytes involves the design of a coupled polymer molecular structure comprising both rigid and flexible p...One effective approach to strike the balance between ionic conductivity and mechanical strength in polymer electrolytes involves the design of a coupled polymer molecular structure comprising both rigid and flexible phases.Nevertheless,the regulation of intermolecular interactions between plasticizers and rigid and flexible phases has been largely overlooked.Here,an intermolecular interaction engineering strategy is carried out with well-chosen dual-plasticize within qua si-sol id-state polymer electrolytes(QSPEs).Succinonitrile exhibits a stronger affinity towards rigid phase hydrogenated nitrile butadiene rubber(HNBR),while propene carbonate demonstrates a stronger affinity towards flexible segments poly(propylene carbonate)(PPC).This tailored intermolecular interaction engineering allows for differential plasticization of the polymer's rigid and flexible phases,thereby achieving a balance between ionic conductivity and mechanical strength.The QSPE have both higher ionic conductivity(1.04×10^(-4)S cm^(-1)at 30℃),t_(Li+)(0.55),and tensile strength(0.76 MPa).Li//Li symmetric cells maintaining performance over1100 h at 0.1 mA cm^(-2)and Li//LiFePO_(4)cells retaining 85.0%capacity after 700 cycles at 1.0 C.It is a unique angle to employ intermolecular interaction engineering in QSPEs through dual-plasticizer approach combined with CO_(2)-based polymer materials.This sustainable strategy combining dual-plasticizer engineering with CO_(2)-based polymers,offers insights for designing high-performance,eco-friendly lithium metal batteries.展开更多
Nickel(Ni)-rich layered oxides have drawn great attention as cathode for lithium batteries due to their high capacity,high working voltage and competitive cost.Unfortunately,the operation of Ni-rich cathodes suffers f...Nickel(Ni)-rich layered oxides have drawn great attention as cathode for lithium batteries due to their high capacity,high working voltage and competitive cost.Unfortunately,the operation of Ni-rich cathodes suffers from the notorious structural degradation and interfacial side reactions with electrolytes and thus incurs premature failure,especially at high charge cut-off voltages(≥4.4 V).For this,various structural and interphase regulation strategies(such as coating modification,element doping,and electrolyte engineering)are developed to enhance the cycling survivability of Ni-rich cathodes.Among them,electrolyte engineering by changing solvation structure and introducing additives has been considered an efficient method for constructing robust cathode-electrolyte interphases(CEI),inhibiting the formation of harmful species(such as HF and H_(2)O)or restraining the dissolution of transition metal ions.However,there is still an absence of systematic guidelines for selecting and designing competitive electrolyte systems for Ni-rich layered cathodes.In this review,we comprehensively summarize the recent research progress on electrolyte engineering for Ni-rich layered cathodes according to their working mechanisms.Moreover,we propose future perspectives of improving the electrolyte performance,which will provide new insights for designing novel electrolytes toward high-performance Ni-rich layered cathodes.展开更多
Sodium-sulfur(Na-S)batteries are believed as the hopeful energy storage and conversion techniques owing to the high specific capacity and low cost.Nevertheless,unstable sodium(Na)deposition/stripping of Na metal anode...Sodium-sulfur(Na-S)batteries are believed as the hopeful energy storage and conversion techniques owing to the high specific capacity and low cost.Nevertheless,unstable sodium(Na)deposition/stripping of Na metal anode,low intrinsic conductivity of sulfur cathode,and severe shuttling effect of sodium polysulfides(NaPSs)pose significant challenges in the actual reversible capacity and cycle life of Na-S batteries.Herein,a self-supporting electrode made of nitrogen-doped carbon fiber embedded with cobalt nanoparticles(Co/NC-CF)is designed to load sulfur.Meanwhile,gel polymer electrolyte(GPE)with high ion transfer ability is obtained by in-situ polymerization inside the battery.During the polymerization process,an integrated electrode-electrolyte and a continuous ion-electron conduction network in a composite cathode are constructed inside the Na-S battery.It is noteworthy that the designed GPE demonstrates superior ionic conductivity and effective adsorption of NaPSs that can significantly suppress the shuttle effect.Leveraging the synergistic interplay between the designed GPE and self-supporting cathode,the assembled quasi-solid-state(QSS)Na-S battery exhibits great cycling stability.These experimental results are further corroborated by COMSOL Multiphysics simulations and density functional theory(DFT)calculations,which mechanistically validate the enhanced electrochemical performance.The findings of this study offer new and promising perspectives for advancing the development of nextgeneration solid-state batteries.展开更多
Solid-state polymer electrolytes are crucial for advancing solid-state lithium-metal batteries owing to their flexibility,excellent manufacturability,and strong interfacial compatibility.However,their widespread appli...Solid-state polymer electrolytes are crucial for advancing solid-state lithium-metal batteries owing to their flexibility,excellent manufacturability,and strong interfacial compatibility.However,their widespread applications are hindered by low ionic conductivity at room temperature and lithium dendrite growth.Herein,we report a novel solid-state composite membrane electrolyte design that combines the vertically aligned channel structure and copolymer with a radial gradient composition.Within the vertically aligned channels,the composition of poly(vinyl ethylene carbonate-co-poly(ethylene glycol)diacrylate)(P(VEC-PEGDA)varies in a gradient along the radial direction:from the center to the wall of vertically aligned channels,the proportion of vinyl ethylene carbonate(VEC)in the copolymer decreases,while the proportion of poly(ethylene glycol)diacrylate(PEGDA)increases accordingly.It can be functionally divided into a mechanical-reinforcement layer and a fast-ion-conducting layer.The resulting solid-state composite membrane electrolyte achieves a high critical current density of 1.2 mA cm^(-2)and high ionic conductivity of 2.03 mS cm^(-1)at room temperature.Employing this composite membrane electrolyte,a Li//Li symmetric cell exhibits stable cycling for over 1850 h at 0.2 m A cm^(-2)/0.2 m A h cm^(-2),and a Li//LiFePO4(LFP)battery maintains 77.3% capacity retention at 2 C after 300 cycles.Our work provides insight into the rational design of safer and more efficient solidstate batteries through electrolyte structural engineering.展开更多
Zinc metal batteries(ZMBs)are considered to be promising energy storage devices in the field of largescale energy storage due to the advantages of high energy density,good safety and environmental friendliness.However...Zinc metal batteries(ZMBs)are considered to be promising energy storage devices in the field of largescale energy storage due to the advantages of high energy density,good safety and environmental friendliness.However,the commercialization of ZMBs has been hampered because of the problems caused by aqueous electrolytes,such as hydrogen evolution reaction,electrolyte leakage,and water evaporation.Gel polymer electrolytes(GPEs)have attracted extensive attention due to the features of high security and low water content.However,the disadvantages of poor ion transport rate,easily freezing at low temperature and low mechanical strength are not conducive to the rapid development and practical application of ZMBs.The rational design and fabrication of multifunctional polymer-based frameworks are considered to be effective strategy to obtain high-performance GPEs.In this review,the recent advancements of GPEs with various polymers are generalized.The strategies for the improvement of ionic conductivity,low temperature resistance and mechanical strength of these GPEs,such as adding inorganic fillers,building double cross-linked networks and introducing functional groups,are summarized.The effects of the GPEs on the self-healable ability,inhibiting dendrite growth,and cycling stability of the ZMBs are also discussed.Finally,the key problems and development prospects of GPEs are proposed,which will provide possibility for the further development of GPEs.展开更多
Li_(6)PS_(5)Cl is a highly wanted sulfide-solid-electrolyte(SSE)for developing all-solid-state lithium batteries,due to its high ionic conductivity,good processability and abundant compositional elements.However,its c...Li_(6)PS_(5)Cl is a highly wanted sulfide-solid-electrolyte(SSE)for developing all-solid-state lithium batteries,due to its high ionic conductivity,good processability and abundant compositional elements.However,its cyclability is poor because of harmful side reactions at the Li_(6)PS_(5)Cl/Li interface and growth of lithium dendrites inside Li_(6)PS_(5)Cl phase.Herein,we report a simple interface-engineering remedy to boost the electrochemical performance of Li_(6)PS_(5)Cl,by coating its surface with a Li-compatible electrolyte Li3OCl having low electronic conductivity.The obtainedLi_(6)PS_(5)Cl@Li_(3)OCl core@shell structure exhibits a synergistic effect.Consequently,compared with the bare Li_(6)PS_(5)Cl,this composite electrolyte exhibits great performance improvements:1)In Li|electrolyte|Li symmetric cells,the critical current density at 30℃gets increased from 0.6 mA cm^(-2)to 1.6 mA cm^(-2),and the lifetime gets prolonged from 320 h to 1400 h at the cycling current of 0.2 mA cm^(-2)or from 10 h to 900 h at the cycling current of 0.5 mA cm^(-2);2)In Li|electrolyte|NCM721 full cells running at 30℃,the cycling capacity at 0.2 C(or 0.5 C)gets enhanced by 20%(or from unfeasible to be feasible)for 100 cycles and the rate capability reaches up to 2 C from 0.2 C;and in full cells running at 60℃,the cycling capacity is increased by 7%at 0.2 C and the rate capability is enhanced to 3.0 C from 0.5 C.The experimental studies and theoretical computations show that the performance enhancements are due to the confined electron penetration and suppressed lithium dendrites growth at theLi_(6)PS_(5)Cl@Li_(3)OCl interface.展开更多
Exploiting high-performance electrolyte holds the key for realization practical application of rechargeable magnesium batteries(RMBs).Herein,a new non-nucleophilic mononuclear electrolyte was developed and its electro...Exploiting high-performance electrolyte holds the key for realization practical application of rechargeable magnesium batteries(RMBs).Herein,a new non-nucleophilic mononuclear electrolyte was developed and its electrochemical active species was identified as[Mg(DME)_(3)][GaCl_(4)]_(2) through single-crystal X-ray diffraction analysis.The as-synthesized Mg(GaCl_(4))_(2)-IL-DME electrolyte could achieve a high ionic conductivity(9.85 m S cm^(-1)),good anodic stability(2.9 V vs.Mg/Mg^(2+)),and highly reversible Mg plating/stripping.The remarkable electrochemical performance should be attributed to the in-situ formation of Mg^(2+)-conducting Ga_(5)Mg_(2)alloy layer at the Mg/electrolyte interface during electrochemical cycling,which not only efficiently protects the Mg anode from passivation,but also allows for rapid Mg-ion transport.Significantly,the Mg(GaCl_(4))_(2)-IL-DME electrolyte showed excellent compatibility with both conversion and intercalation cathodes.The Mg/S batteries with Mg(Ga Cl_(4))_(2)-IL-DME electrolyte and KB/S cathode showed a high specific capacity of 839 m Ah g^(-1)after 50 cycles at 0.1 C with the Coulombic efficiency of~100%.Moreover,the assembled Mg|Mo_6 S_8 batteries delivered a reversible discharge capacity of 85 m Ah g^(-1)after 120 cycles at 0.2 C.This work provides a universal electrolyte for the realization of high-performance and practical RMBs,especially Mg/S batteries.展开更多
Compared to commercial lithium-ion batteries, all-solid-state batteries can greatly increase the energy density, safety, and cycle life of batteries. The development of solid-state electrolyte with high lithium-ion co...Compared to commercial lithium-ion batteries, all-solid-state batteries can greatly increase the energy density, safety, and cycle life of batteries. The development of solid-state electrolyte with high lithium-ion conductivity and wide electrochemical window is the key for all-solid-state batteries. In this work, we report on the achievement of high ionic conductivity in the PAN/LiClO_(4)/BaTiO_(3) composite solid electrolyte (CSE) prepared by solution casting method. Our experimental results show that the PAN-based composite polymer electrolyte with 5 wt% BaTiO_(3) possesses a high room-temperature lithium-ion conductivity (9.85 × 10^(−4) S⋅cm^(−1)), high lithium-ion transfer number (0.63), wide electrochemical window (4.9 V vs Li+/Li). The Li|Li symmetric battery assembled with 5 wt% BaTiO_(3) can be stably circulated for 800 h at 0.1 mA⋅cm^(−2), and the LiFePO_(4)|CSE|Li battery maintains a capacity retention of 86.2% after 50 cycles at a rate of 0.3 C. The influence of BaTiO_(3) ceramic powder on the properties of PAN-based polymer electrolytes is analyzed. Our results provide a new avenue for future research in the all-solid-state lithium battery technology.展开更多
In the pursuit of ultrathin polymer electrolyte(<20 μm) for lithium metal batteries, achieving a balance between mechanical strength and interfacial stability is crucial for the longevity of the electrolytes.Herei...In the pursuit of ultrathin polymer electrolyte(<20 μm) for lithium metal batteries, achieving a balance between mechanical strength and interfacial stability is crucial for the longevity of the electrolytes.Herein, 11 μm-thick gel polymer electrolyte is designed via an integrated electrode/electrolyte structure supported by lithium metal anode. Benefiting from an exemplary superiority of excellent mechanical property, high ionic conductivity, and robust interfacial adhesion, the in-situ formed polymer electrolyte reinforced by titanosiloxane networks(ISPTS) embodies multifunctional roles of physical barrier, ionic carrier, and artificial protective layer at the interface. The potent interfacial interactions foster a seamless fusion of the electrode/electrolyte interfaces and enable continuous ion transport. Moreover, the built-in ISPTS electrolyte participates in the formation of gradient solid-electrolyte interphase(SEI) layer, which enhances the SEI's structural integrity against the strain induced by volume fluctuations of lithium anode.Consequently, the resultant 11 μm-thick ISPTS electrolyte enables lithium symmetric cells with cycling stability over 600 h and LiFePO_(4) cells with remarkable capacity retention of 96.6% after 800 cycles.This study provides a new avenue for designing ultrathin polymer electrolytes towards stable, safe,and high-energy–density lithium metal batteries.展开更多
This work focuses on the development of high temperature polymer electrolyte membranes(HT-PEMs)as key materials for HT-PEM fuel cells(HT-PEMFCs).Recognizing the challenges associated with the phosphoric acid(PA) doped...This work focuses on the development of high temperature polymer electrolyte membranes(HT-PEMs)as key materials for HT-PEM fuel cells(HT-PEMFCs).Recognizing the challenges associated with the phosphoric acid(PA) doped polybenzimidazole(PBI) membranes,including the use of carcinogenic monomers and complex synthesis procedures,this study aims to develop more cost-effective,readily synthesized,and high-performance alternatives.A series of superacid-catalyzed polyhydroxyalkylation reactions have been carefully designed between p-terphenyl and aldehydes bearing imidazole moieties,resulting in a new class of HT-PEMs.It is found that the chemical structure of aldehyde-substituted N-heterocycles significantly impacts the polymerization reaction.Specifically,the use of 1-methyl-2-imidazole-formaldehyde and 1 H-imidazole-4-formaldehyde monomers leads to the formation of high-viscosity,rigid,and ether-free polymers,denoted as PTIm-a and PTIm-b.Membranes fabricated from these polymers,due to their pendent imidazole groups,exhibit an exceptional capacity for PA absorption.Notably,PTIm-a,carrying methylimidazole moieties,demonstrates a superior chemical stability by maintaining morphology and structural stability during 350 h of Fenton testing.After being immersed in 75 wt% PA at 40℃,the PTIm-a membrane reaches a PA content of 152%,maintains a good tensile strength of 13.6 MPa,and exhibits a moderate conductivity of 50.2 mS cm^(-1) at 180℃.Under H_(2)/O_(2) operational conditions,a single cell based on the PTIm-a membrane attains a peak power density of 732 mW cm^(-2) at 180℃ without backpressure.Furthermore,the membrane demonstrates stable cycle stability over 173 h within 18 days at a current density of 200 mA cm^(-2),indicating its potential for practical application in HT-PEMFCs.This work highlights innovative strategies for the synthesis of advanced HT-PEMs,offering significant improvements in membrane properties and fuel cell performance,thus expanding the horizons of HT-PEMFC technology.展开更多
Electrolyte design is essential for stabilizing lithium metal anodes and localized high-concentration electrolyte(LHCE) is a promising one. However, the state-of-the-art LHCE remains insufficient to ensure long-cyclin...Electrolyte design is essential for stabilizing lithium metal anodes and localized high-concentration electrolyte(LHCE) is a promising one. However, the state-of-the-art LHCE remains insufficient to ensure long-cycling lithium metal anodes. Herein, regulating the solvation structure of lithium ions in LHCE by weakening the solvating power of diluents is proposed for improving LHCE performance. A diluent,1,1,2,2,3,3,4,4-octafluoro-5-(1,1,2,2-tetrafluoroethoxy) pentane(OFE), with weaker solvating power is introduced to increase the proportion of aggregates(an anion interacts with more than two lithium ions,AGG-n) in electrolyte compared with the commonly used 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether(TTE). The decomposition of AGG-n in OFE-based LHCE intensifies the formation of anion-derived solid electrolyte interphase and improves the uniformity of lithium deposition. Lithium metal batteries with OFE-based LHCE deliver a superior lifespan of 190 cycles compared with 90 cycles of TTE-based LHCE under demanding conditions. Furthermore, a pouch cell with OFE-based LHCE delivers a specific energy of 417 Wh/kg and undergoes 49 cycles. This work provides guidance for designing high-performance electrolytes for lithium metal batteries.展开更多
A suitable interface between the electrode and electrolyte is crucial in achieving highly stable electrochemical performance for Li-ion batteries,as facile ionic transport is required.Intriguing research and developme...A suitable interface between the electrode and electrolyte is crucial in achieving highly stable electrochemical performance for Li-ion batteries,as facile ionic transport is required.Intriguing research and development have recently been conducted to form a stable interface between the electrode and electrolyte.Therefore,it is essential to investigate emerging knowledge and contextualize it.The nanoengineering of the electrode-electrolyte interface has been actively researched at the electrode/electrolyte and interphase levels.This review presents and summarizes some recent advances aimed at nanoengineering approaches to build a more stable electrode-electrolyte interface and assess the impact of each approach adopted.Furthermore,future perspectives on the feasibility and practicality of each approach will also be reviewed in detail.Finally,this review aids in projecting a more sustainable research pathway for a nanoengineered interphase design between electrode and electrolyte,which is pivotal for high-performance,thermally stable Li-ion batteries.展开更多
基金supported by the National Natural Science Foundation of China(51973236,51573213)Zhuhai Industry University-Research Cooperation Program(2320004002721)。
文摘The practical application of poly(ethylene oxide)(PEO)-based solid polymer electrolytes in all-solid-state lithium-metal batteries(ASSLBs)still suffers from persistent challenges associated with low ionic conductivity and poor oxidative stability.To address these issues,we introduce a novel in-situ ionization strategy using radical polymer poly(2,2,6,6-tetramethyl-1-piperidinyloxy-4-yl acrylate)(PTPA)to enhance ionic conductivity and achieve a high electrochemical stability window in PEO-based electrolyte.Density functional theory(DFT)calculations and molecular dynamics(MD)simulations reveal that the in-situ generation of PTPA+from PTPA within the battery,not only exceptionally decreases the low Highest Occupied Molecular Orbital(HOMO)energy level,but also exhibits a robust anchoring effect on TFSI-anions in the electrolyte,which boosts Li^(+) migration and enables dense Li deposition behavior.As a result,the PEO/10 wt%PTPA/LiTFSI electrolyte demonstrates remarkable oxidative stability up to 5 V and a high Li^(+)transference number(0.57).Li-Li symmetric cells maintain stability over 1000 h at 0.2 mA cm^(-2),and LiFePO_(4)(LFP)//Li battery also presents an enduring cyclic performance over 500 cycles with a remarkable high-capacity retention of 91.8% at 0.5C.Impressively,by coupling with a high-voltage LiCoO_(2)(LCO)cathode(cut-off voltage 4.6 V),the assembled ASSLBs reach a capacity retention of 87.1% after 500 cycles at 1C.Our study explores the mechanism of radical polymer in PEO-based electrolyte and provides a fire-new strategy for construction of high-performance and multifunctional ASSLBs.
基金supported by the Natural Science Foundation of Henan Province(No.242300420021)the Major Science and Technology Projects of Henan Province(No.221100230200)+4 种基金the Open Fund of State Key Laboratory of Advanced Refractories(No.SKLAR202210)the Key Science and Technology Program of Henan Province(No.232102241020)the Undergraduate Innovation and Entrepreneurship Training Program of Henan Province(No.S202310464012)the Ph.D.Research Startup Foundation of Henan University of Science and Technology(No.400613480015)the Postdoctoral Research Startup Foundation of Henan University of Science and Technology(No.400613554001).
文摘Aqueous Zn-ion batteries(AZIBs)have been regarded as promising alternatives to Li-ion batteries due to their advantages,such as low cost,high safety,and environmental friendliness.However,AZIBs face significant challenges in limited stability and lifetime owing to zinc dendrite growth and serious side reactions caused by water molecules in the aqueous electrolyte during cycling.To address these issues,a new eutectic electrolyte based on Zn(ClO_(4))_(2)·6H_(2)O-N-methylacetamide(ZN)is proposed in this work.Compared with aqueous electrolyte,the ZN eutectic electrolyte containing organic N-methylacetamide could regulate the solvated structure of Zn^(2+),effectively suppressing zinc dendrite growth and side reactions.As a result,the Zn//NH4 V4 O10 full cell with the eutectic ZN-1-3 electrolyte demonstrates significantly enhanced cycling stability after 1000 cycles at 1 A g^(-1).Therefore,this study not only presents a new eutectic electrolyte for zinc-ion batteries but also provides a deep understanding of the influence of Zn^(2+)solvation structure on the cycle stability,contributing to the exploration of novel electrolytes for high-performance AZIBs.
基金financial support from National Natural Science Foundation of China(22271178,U2032131,21972103)International Cooperation Key Project of Science and Technology Department of Shaanxi,China(2022KWZ-06)+3 种基金the Youth Talent Promotion Project of Science and Technology Association of Universities of Shaanxi Province(20210602)Research Project of Xi’an Science and Technology Bureau(2022GXFW0011)Science and Technology New Star in Shaanxi Province(2023KJXX-045)Shaanxi Provincial Department of Education Service Local Special Project,Industrialization Cultivation Project(23JC007)。
文摘Lithium(Li)deposition and nucleation at solid electrolyte interphase(SEI)is the main origin for the capacity decay in Li metal batteries(LMBs).SEI conversion with enhanced electrochemical and mechanical properties is an effective approach to achieve uniform nucleation of Li^(+)and stabilize the lithium metal anode.However,complex interfacial reaction mechanisms and interface compatibility issues hinder the development of SEI conversion strategies for stabilizing lithium metal anodes.Herein,we presented the release of I_(3)^(-)in–NH_(2)-modified metal–organic frameworks for a Li metal surface SEI phase conversion strategy.The–NH_(2)group in MOF pores induced the formation of I_(3)^(-)from I_(2),which was further spontaneously reacted with inactive Li_(2)O transforming into high-performance LiI and LiIO_(3)interphase.Furthermore,theoretical calculation provided deeply insight into the unique reconstructed interfacial formation and electrochemical mechanism of rich LiI and LiIO_(3)SEI.As a result,the Li^(+)deposition and nucleation were improved,facilitating the transport kinetics of Li^(+)and inhibiting the growth of lithium dendrites.The assembled solid-state Li||LiFePO_(4)full cells exhibited superior long-term stability of 800 cycles and high Coulombic efficiency(>99%),Li||LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)pouch cell also displayed superior practical performance over 200 cycles at 2 C,high loading of 5 mg cm^(-2)and safety performance.This innovative SEI design strategy promotes the development of high-performance solid-state Li metal batteries.
基金supported by the National Natural Science Foundation of China(22379074)Young Science and Technology Talent Program of Inner Mongolia Province(NJYT24001)+4 种基金Natural Sciences and Engineering Research Council of Canada(NSERC)GLABAT Solid-State Battery Inc.,China Automotive Battery Research Institute Co.Ltd,Canada Research Chair Program(CRC)Canada Foundation for Innovation(CFI)Ontario Research Fundsupported by the Chinese Scholarship Council.
文摘High-energy-density lithium(Li)–air cells have been considered a promising energy-storage system,but the liquid electrolyte-related safety and side-reaction problems seriously hinder their development.To address these above issues,solid-state Li–air batteries have been widely developed.However,many commonly-used solid electrolytes generally face huge interface impedance inLi–air cells and also showpoor stability towards ambient air/Li electrodes.Herein,we fabricate a differentiating surface-regulated ceramic-based composite electrolyte(DSCCE)by constructing disparately LiI-containing polymethyl methacrylate(PMMA)coating and Poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)layer on both sides of Li_(1.5)Al_(0.5)Ge_(1.5)(PO_(4))_(3)(LAGP).The cathode-friendly LiI/PMMA layer displays excellent stability towards superoxide intermediates and also greatly reduces the decomposition voltage of discharge products in Li–air system.Additionally,the anode-friendly PVDF-HFP coating shows low-resistance properties towards anodes.Moreover,Li dendrite/passivation derived from liquid electrolyte-induced side reactions and air/I-attacking can be obviously suppressed by the uniformand compact composite framework.As a result,the DSCCE-based Li–air batteries possess high capacity/low voltage polarization(11,836mAh g^(-1)/1.45Vunder 500mAg^(-1)),good rate performance(capacity ratio under 1000mAg^(-1)/250mAg^(-1) is 68.2%)and longterm stable cell operation(~300 cycles at 750 mA g^(-1) with 750 mAh g^(-1))in ambient air.
基金financially supported by Hunan Provincial Science and Technology Department,China(No.2021JJ10058)Key Research and Development Program of Hunan Province,China(No.2023GK2016)。
文摘A dual-halide solid electrolyte,Li_(3)YCl_(3)Br_(3),was synthesized using a wet-chemistry route instead of the conventional mechanical ball-milling route.Li_(3)YCl_(3)Br_(3) exhibits an ion conductivity of 2.08 mS/cm and an electro-chemical stability window of 3.8 V.Additionally,an all-solid-state lithium-ion battery using Li_(3)YCl_(3)Br_(3) and LiNi_(0.83)Co_(0.11)Mn_(0.06)O_(2)(NCM811)as the cathode material achieves a capacity retention of 93%after 200 cycles at 0.3C and maintains a specific capacity of 115 mA·h/g during 2C cycling.This exceptional performance is attributed to the high oxidative stability of Li_(3)YCl_(3)Br_(3) and the in-situ formation of Y_(2)O_(3) inert protective layer on the NCM811 surface under high voltage.Consequently,the study demonstrates the feasibility of a simple,cost-effective wet-chemistry route for synthesizing multi-component halides,highlighting its potential for large-scale production of halide solid electrolytes for practical applications.
基金the financial support from the Foshan Talents Special Foundation(BKBS202003)。
文摘Aqueous zinc-ion batteries(AZIBs)have emerged as a promising next-generation energy storage solution due to their high energy density,abundant resources,low cost,and high safety.However,unstable zinc anode caused by side reactions and dendritic growth always severely worsens the long-term operation of AZIBs.Herein,a novel 3-cyclobutene sulfone(CS)additive was employed in the aqueous electrolyte to achieve a highly reversible Zn anode.The CS additive can offer strong electronegativity and high binding energy for the coordination with Zn^(2+),which enables its entry into the solvent sheath structure of Zn^(2+)and eliminates the free H_(2)O molecules from the solvated{Zn^(2+)-SO_(4)^(2-)-(H_(2)O)_(5)}.Thus,the occurrence of side reactions and dendritic growth can be effectively inhibited.Accordingly,the Zn anode achieves long cycle-life(1400 h at 1 m A cm^(-2),1 m Ah cm^(-2),and 400 h at 5 m A cm^(-2),5 m Ah cm^(-2))and high average coulombic efficiency(99.5% over 500 cycles at 10 m A cm^(-2),1 m Ah cm^(-2)).Besides,the assembled Zn||NH_(4)V_(4)O_(10)full cell suggests enhanced cycling reversibility(123.8 m Ah g^(-1)over 500 cycles at 2 A g^(-1),84.9 m Ah g^(-1)over 800 cycles at 5 A g^(-1))and improved rate capability(139.1 m Ah g^(-1)at 5 A g^(-1)).This work may exhibit the creative design and deep understanding of sulfone-based electrolyte additives for the achievement of high-performance AZIBs.
基金conducted in a project within M-ERA.NET 3 with support from the European Union’s Horizon 2020 research,innovation program under grant agreement No.958174,Vinnova(Swedish Governmental Agency for Innovation Systems)the financial support from the LTU CREATERNITY program+1 种基金the J.Gust Richert Foundationthe National Natural Science Foundation of China(No.U23A20122)。
文摘Quasi-solid-state composite electrolytes(QSCEs)show promise for high-performance solid-state batteries,while they still struggle with interfacial stability and cycling performance.Herein,a F-grafted QSCE(F-QSCE)was developed via copolymerizing the F monomers and ionic liquid monomers.The F-QSCE demonstrates better overall performance,such as high ionic conductivity of 1.21 mS cm^(-1)at 25℃,wide electrochemical windows of 5.20 V,and stable cycling stability for Li//Li symmetric cells over 4000 h.This is attributed to the significant electronegativity difference between C and F in the fluorinated chain(-CF_(2)-CF-CF_(3)),which causes the electron cloud to shift toward the F atom,surrounding it with a negative charge and producing the inductive effect.Furthermore,the interactions between Li^(+)and F,TFSI~-,and C are enhanced,reducing ion pair aggregation(Li^(+)-TFSI~--Li^(+))and promoting Li^(+)transport.Besides,-CF_(2)-CF-CF_(3)decomposes to form Li F preferentially over TFSI~-,resulting in better interfacial stability for F-QSCE.This work provides a pathway to enable the development of high-performance Li metal batteries.
基金supported by National Natural Science Foundation of China(No.22209075)。
文摘Solid-state batteries(SSBs)with thermal stable solid-state electrolytes(SSEs)show intrinsic capacity and great potential in energy density improvement.SSEs play critical role,however,their low ionic conductivity at room temperature and high brittleness hinder their further development.In this paper,polypropylene(PP)-polyvinylidene fluoride(PVDF)-Li_(1.3)Al_(0.3)Ti_(1.7)(PO_(4))_(3)(LATP)-Lithium bis(trifluoromethane sulphonyl)imide(LiTFSI)multi-layered composite solid electrolyte(CSE)is prepared by a simple separator coating strategy.The incorporation of LATP nanoparticle fillers and high concentration LiTFSI not only reduces the crystallinity of PVDF,but also forms a solvation structure,which contributes to high ionic conductivity in a wide temperature.In addition,using a PP separator as the supporting film,the mechanical strength of the electrolyte was improved and the growth of lithium dendrites are effectively inhibited.The results show that the CSE prepared in this paper has a high ionic conductivity of 6.38×10^(-4)S/cm at room temperature and significantly improves the mechanical properties,the tensile strength reaches 11.02 MPa.The cycle time of Li/Li symmetric cell assembled by CSE at room temperature can exceed 800 h.The Li/LFP full cell can cycle over 800 cycles and the specific capacity of Li/LFP full cell can still reach 120 m Ah/g after 800 cycles at 2 C.This CSE has good cycle stability and excellent mechanical strength at room temperature,which provides an effective method to improve the performance of solid electrolytes under moderate condition.
基金supported by the National Key Research and Development Program(2019YFA0705701)National Natural Science Foundation of China(22075329,22008267,21978332 and 22179149)+1 种基金Research and Development Project of Henan Academy Sciences China(232018002)Guangdong Basic and Applied Basic Research Foundation(2021A1515010731)。
文摘One effective approach to strike the balance between ionic conductivity and mechanical strength in polymer electrolytes involves the design of a coupled polymer molecular structure comprising both rigid and flexible phases.Nevertheless,the regulation of intermolecular interactions between plasticizers and rigid and flexible phases has been largely overlooked.Here,an intermolecular interaction engineering strategy is carried out with well-chosen dual-plasticize within qua si-sol id-state polymer electrolytes(QSPEs).Succinonitrile exhibits a stronger affinity towards rigid phase hydrogenated nitrile butadiene rubber(HNBR),while propene carbonate demonstrates a stronger affinity towards flexible segments poly(propylene carbonate)(PPC).This tailored intermolecular interaction engineering allows for differential plasticization of the polymer's rigid and flexible phases,thereby achieving a balance between ionic conductivity and mechanical strength.The QSPE have both higher ionic conductivity(1.04×10^(-4)S cm^(-1)at 30℃),t_(Li+)(0.55),and tensile strength(0.76 MPa).Li//Li symmetric cells maintaining performance over1100 h at 0.1 mA cm^(-2)and Li//LiFePO_(4)cells retaining 85.0%capacity after 700 cycles at 1.0 C.It is a unique angle to employ intermolecular interaction engineering in QSPEs through dual-plasticizer approach combined with CO_(2)-based polymer materials.This sustainable strategy combining dual-plasticizer engineering with CO_(2)-based polymers,offers insights for designing high-performance,eco-friendly lithium metal batteries.
基金supported by the National Key Research and Development Program of China(2021YFF0500600)National Natural Science Foundation of China(Nos.U2001220,52203298 and 523B2022)+2 种基金National Science Fund for Distinguished Young Scholars(No.52325206)Shenzhen Technical Plan Project(Nos.RCJC20200714114436091,JCYJ20220530143012027,JCYJ20220818101003008 and JCYJ20220818101003007)Tsinghua Shenzhen International Graduate School-Shenzhen Pengrui Young Faculty Program of Shenzhen Pengrui Foundation(No.SZPR2023006).
文摘Nickel(Ni)-rich layered oxides have drawn great attention as cathode for lithium batteries due to their high capacity,high working voltage and competitive cost.Unfortunately,the operation of Ni-rich cathodes suffers from the notorious structural degradation and interfacial side reactions with electrolytes and thus incurs premature failure,especially at high charge cut-off voltages(≥4.4 V).For this,various structural and interphase regulation strategies(such as coating modification,element doping,and electrolyte engineering)are developed to enhance the cycling survivability of Ni-rich cathodes.Among them,electrolyte engineering by changing solvation structure and introducing additives has been considered an efficient method for constructing robust cathode-electrolyte interphases(CEI),inhibiting the formation of harmful species(such as HF and H_(2)O)or restraining the dissolution of transition metal ions.However,there is still an absence of systematic guidelines for selecting and designing competitive electrolyte systems for Ni-rich layered cathodes.In this review,we comprehensively summarize the recent research progress on electrolyte engineering for Ni-rich layered cathodes according to their working mechanisms.Moreover,we propose future perspectives of improving the electrolyte performance,which will provide new insights for designing novel electrolytes toward high-performance Ni-rich layered cathodes.
基金supported by the National Natural Science Foundation of China(No.52130101)the Project of Science and Technology Development Plan of Jilin Province in China(Nos.20210402058GH and 20220201114GX)。
文摘Sodium-sulfur(Na-S)batteries are believed as the hopeful energy storage and conversion techniques owing to the high specific capacity and low cost.Nevertheless,unstable sodium(Na)deposition/stripping of Na metal anode,low intrinsic conductivity of sulfur cathode,and severe shuttling effect of sodium polysulfides(NaPSs)pose significant challenges in the actual reversible capacity and cycle life of Na-S batteries.Herein,a self-supporting electrode made of nitrogen-doped carbon fiber embedded with cobalt nanoparticles(Co/NC-CF)is designed to load sulfur.Meanwhile,gel polymer electrolyte(GPE)with high ion transfer ability is obtained by in-situ polymerization inside the battery.During the polymerization process,an integrated electrode-electrolyte and a continuous ion-electron conduction network in a composite cathode are constructed inside the Na-S battery.It is noteworthy that the designed GPE demonstrates superior ionic conductivity and effective adsorption of NaPSs that can significantly suppress the shuttle effect.Leveraging the synergistic interplay between the designed GPE and self-supporting cathode,the assembled quasi-solid-state(QSS)Na-S battery exhibits great cycling stability.These experimental results are further corroborated by COMSOL Multiphysics simulations and density functional theory(DFT)calculations,which mechanistically validate the enhanced electrochemical performance.The findings of this study offer new and promising perspectives for advancing the development of nextgeneration solid-state batteries.
基金supported by the National Natural Science Foundation of China(52372099,52202328,22461142135,22479046)the Shanghai Sailing Program(22YF1455500)the Shanghai Magnolia Talent Plan Pujiang Project(24PJD128)。
文摘Solid-state polymer electrolytes are crucial for advancing solid-state lithium-metal batteries owing to their flexibility,excellent manufacturability,and strong interfacial compatibility.However,their widespread applications are hindered by low ionic conductivity at room temperature and lithium dendrite growth.Herein,we report a novel solid-state composite membrane electrolyte design that combines the vertically aligned channel structure and copolymer with a radial gradient composition.Within the vertically aligned channels,the composition of poly(vinyl ethylene carbonate-co-poly(ethylene glycol)diacrylate)(P(VEC-PEGDA)varies in a gradient along the radial direction:from the center to the wall of vertically aligned channels,the proportion of vinyl ethylene carbonate(VEC)in the copolymer decreases,while the proportion of poly(ethylene glycol)diacrylate(PEGDA)increases accordingly.It can be functionally divided into a mechanical-reinforcement layer and a fast-ion-conducting layer.The resulting solid-state composite membrane electrolyte achieves a high critical current density of 1.2 mA cm^(-2)and high ionic conductivity of 2.03 mS cm^(-1)at room temperature.Employing this composite membrane electrolyte,a Li//Li symmetric cell exhibits stable cycling for over 1850 h at 0.2 m A cm^(-2)/0.2 m A h cm^(-2),and a Li//LiFePO4(LFP)battery maintains 77.3% capacity retention at 2 C after 300 cycles.Our work provides insight into the rational design of safer and more efficient solidstate batteries through electrolyte structural engineering.
基金supported by the National Natural Science Foundation of China (No. 22075115)the Natural Science Foundation of Jiangsu Province (No. BK20211352)+2 种基金the Natural Science Foundation(No. 22KJA430005) of Jiangsu Education Committee of ChinaJoint Funds of the National Natural Science Foundation of China (No. U2141201)Postgraduate Research&Practice Innovation Program of Jiangsu Province (No. 2024XKT0500)
文摘Zinc metal batteries(ZMBs)are considered to be promising energy storage devices in the field of largescale energy storage due to the advantages of high energy density,good safety and environmental friendliness.However,the commercialization of ZMBs has been hampered because of the problems caused by aqueous electrolytes,such as hydrogen evolution reaction,electrolyte leakage,and water evaporation.Gel polymer electrolytes(GPEs)have attracted extensive attention due to the features of high security and low water content.However,the disadvantages of poor ion transport rate,easily freezing at low temperature and low mechanical strength are not conducive to the rapid development and practical application of ZMBs.The rational design and fabrication of multifunctional polymer-based frameworks are considered to be effective strategy to obtain high-performance GPEs.In this review,the recent advancements of GPEs with various polymers are generalized.The strategies for the improvement of ionic conductivity,low temperature resistance and mechanical strength of these GPEs,such as adding inorganic fillers,building double cross-linked networks and introducing functional groups,are summarized.The effects of the GPEs on the self-healable ability,inhibiting dendrite growth,and cycling stability of the ZMBs are also discussed.Finally,the key problems and development prospects of GPEs are proposed,which will provide possibility for the further development of GPEs.
基金supported by the National Key Research and Development Program of China (2018YFE0111600)Haihe Laboratory of Sustainable Chemical Transformations for financial supportpartially supported by the Graduate Top-notch Innovation Award Plan in Liberal Arts and Science of Tianjin University for the Year of 2023 (B2-2023-012)
文摘Li_(6)PS_(5)Cl is a highly wanted sulfide-solid-electrolyte(SSE)for developing all-solid-state lithium batteries,due to its high ionic conductivity,good processability and abundant compositional elements.However,its cyclability is poor because of harmful side reactions at the Li_(6)PS_(5)Cl/Li interface and growth of lithium dendrites inside Li_(6)PS_(5)Cl phase.Herein,we report a simple interface-engineering remedy to boost the electrochemical performance of Li_(6)PS_(5)Cl,by coating its surface with a Li-compatible electrolyte Li3OCl having low electronic conductivity.The obtainedLi_(6)PS_(5)Cl@Li_(3)OCl core@shell structure exhibits a synergistic effect.Consequently,compared with the bare Li_(6)PS_(5)Cl,this composite electrolyte exhibits great performance improvements:1)In Li|electrolyte|Li symmetric cells,the critical current density at 30℃gets increased from 0.6 mA cm^(-2)to 1.6 mA cm^(-2),and the lifetime gets prolonged from 320 h to 1400 h at the cycling current of 0.2 mA cm^(-2)or from 10 h to 900 h at the cycling current of 0.5 mA cm^(-2);2)In Li|electrolyte|NCM721 full cells running at 30℃,the cycling capacity at 0.2 C(or 0.5 C)gets enhanced by 20%(or from unfeasible to be feasible)for 100 cycles and the rate capability reaches up to 2 C from 0.2 C;and in full cells running at 60℃,the cycling capacity is increased by 7%at 0.2 C and the rate capability is enhanced to 3.0 C from 0.5 C.The experimental studies and theoretical computations show that the performance enhancements are due to the confined electron penetration and suppressed lithium dendrites growth at theLi_(6)PS_(5)Cl@Li_(3)OCl interface.
基金financially supported by National Natural Science Foundation of China(21773291,52303130,62205231,61904118,22002102)Natural Science Foundation of the Jiangsu Higher Education Institutions of China(19KJA210005)+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX23_1710)Postgraduate Research&Practice Innovation Program of Suzhou University of Science and Technology(CLKYCX23_06)。
文摘Exploiting high-performance electrolyte holds the key for realization practical application of rechargeable magnesium batteries(RMBs).Herein,a new non-nucleophilic mononuclear electrolyte was developed and its electrochemical active species was identified as[Mg(DME)_(3)][GaCl_(4)]_(2) through single-crystal X-ray diffraction analysis.The as-synthesized Mg(GaCl_(4))_(2)-IL-DME electrolyte could achieve a high ionic conductivity(9.85 m S cm^(-1)),good anodic stability(2.9 V vs.Mg/Mg^(2+)),and highly reversible Mg plating/stripping.The remarkable electrochemical performance should be attributed to the in-situ formation of Mg^(2+)-conducting Ga_(5)Mg_(2)alloy layer at the Mg/electrolyte interface during electrochemical cycling,which not only efficiently protects the Mg anode from passivation,but also allows for rapid Mg-ion transport.Significantly,the Mg(GaCl_(4))_(2)-IL-DME electrolyte showed excellent compatibility with both conversion and intercalation cathodes.The Mg/S batteries with Mg(Ga Cl_(4))_(2)-IL-DME electrolyte and KB/S cathode showed a high specific capacity of 839 m Ah g^(-1)after 50 cycles at 0.1 C with the Coulombic efficiency of~100%.Moreover,the assembled Mg|Mo_6 S_8 batteries delivered a reversible discharge capacity of 85 m Ah g^(-1)after 120 cycles at 0.2 C.This work provides a universal electrolyte for the realization of high-performance and practical RMBs,especially Mg/S batteries.
文摘Compared to commercial lithium-ion batteries, all-solid-state batteries can greatly increase the energy density, safety, and cycle life of batteries. The development of solid-state electrolyte with high lithium-ion conductivity and wide electrochemical window is the key for all-solid-state batteries. In this work, we report on the achievement of high ionic conductivity in the PAN/LiClO_(4)/BaTiO_(3) composite solid electrolyte (CSE) prepared by solution casting method. Our experimental results show that the PAN-based composite polymer electrolyte with 5 wt% BaTiO_(3) possesses a high room-temperature lithium-ion conductivity (9.85 × 10^(−4) S⋅cm^(−1)), high lithium-ion transfer number (0.63), wide electrochemical window (4.9 V vs Li+/Li). The Li|Li symmetric battery assembled with 5 wt% BaTiO_(3) can be stably circulated for 800 h at 0.1 mA⋅cm^(−2), and the LiFePO_(4)|CSE|Li battery maintains a capacity retention of 86.2% after 50 cycles at a rate of 0.3 C. The influence of BaTiO_(3) ceramic powder on the properties of PAN-based polymer electrolytes is analyzed. Our results provide a new avenue for future research in the all-solid-state lithium battery technology.
基金National Natural Science Foundation of China (22222902, 22209062)Natural Science Foundation of the Jiangsu Higher Education Institutions of China (22KJB150004)+1 种基金Youth Talent Promotion Project of Jiangsu Association for Science and Technology of China (JSTJ-2022-023)Undergraduate Innovation and Entrepreneurship Training Program (202310320066Z)。
文摘In the pursuit of ultrathin polymer electrolyte(<20 μm) for lithium metal batteries, achieving a balance between mechanical strength and interfacial stability is crucial for the longevity of the electrolytes.Herein, 11 μm-thick gel polymer electrolyte is designed via an integrated electrode/electrolyte structure supported by lithium metal anode. Benefiting from an exemplary superiority of excellent mechanical property, high ionic conductivity, and robust interfacial adhesion, the in-situ formed polymer electrolyte reinforced by titanosiloxane networks(ISPTS) embodies multifunctional roles of physical barrier, ionic carrier, and artificial protective layer at the interface. The potent interfacial interactions foster a seamless fusion of the electrode/electrolyte interfaces and enable continuous ion transport. Moreover, the built-in ISPTS electrolyte participates in the formation of gradient solid-electrolyte interphase(SEI) layer, which enhances the SEI's structural integrity against the strain induced by volume fluctuations of lithium anode.Consequently, the resultant 11 μm-thick ISPTS electrolyte enables lithium symmetric cells with cycling stability over 600 h and LiFePO_(4) cells with remarkable capacity retention of 96.6% after 800 cycles.This study provides a new avenue for designing ultrathin polymer electrolytes towards stable, safe,and high-energy–density lithium metal batteries.
基金Natural Science Foundation of China (51603031)Liaoning Provincial Natural Science Foundation of China (2020-MS-087)China Scholarship Council(202306080157)。
文摘This work focuses on the development of high temperature polymer electrolyte membranes(HT-PEMs)as key materials for HT-PEM fuel cells(HT-PEMFCs).Recognizing the challenges associated with the phosphoric acid(PA) doped polybenzimidazole(PBI) membranes,including the use of carcinogenic monomers and complex synthesis procedures,this study aims to develop more cost-effective,readily synthesized,and high-performance alternatives.A series of superacid-catalyzed polyhydroxyalkylation reactions have been carefully designed between p-terphenyl and aldehydes bearing imidazole moieties,resulting in a new class of HT-PEMs.It is found that the chemical structure of aldehyde-substituted N-heterocycles significantly impacts the polymerization reaction.Specifically,the use of 1-methyl-2-imidazole-formaldehyde and 1 H-imidazole-4-formaldehyde monomers leads to the formation of high-viscosity,rigid,and ether-free polymers,denoted as PTIm-a and PTIm-b.Membranes fabricated from these polymers,due to their pendent imidazole groups,exhibit an exceptional capacity for PA absorption.Notably,PTIm-a,carrying methylimidazole moieties,demonstrates a superior chemical stability by maintaining morphology and structural stability during 350 h of Fenton testing.After being immersed in 75 wt% PA at 40℃,the PTIm-a membrane reaches a PA content of 152%,maintains a good tensile strength of 13.6 MPa,and exhibits a moderate conductivity of 50.2 mS cm^(-1) at 180℃.Under H_(2)/O_(2) operational conditions,a single cell based on the PTIm-a membrane attains a peak power density of 732 mW cm^(-2) at 180℃ without backpressure.Furthermore,the membrane demonstrates stable cycle stability over 173 h within 18 days at a current density of 200 mA cm^(-2),indicating its potential for practical application in HT-PEMFCs.This work highlights innovative strategies for the synthesis of advanced HT-PEMs,offering significant improvements in membrane properties and fuel cell performance,thus expanding the horizons of HT-PEMFC technology.
基金supported by National Key Research and Development Program (Nos.2021YFB2500300 and 2021YFB2400300)Beijing Natural Science Foundation (No.JQ20004)+3 种基金S&T Program of Hebei (No.22344402D)National Natural Science Foundation of China (Nos.22209010 and 22109007)China Postdoctoral Science Foundation (No.2021M700404)Beijing Institute of Technology Research Fund Program for Young Scholars。
文摘Electrolyte design is essential for stabilizing lithium metal anodes and localized high-concentration electrolyte(LHCE) is a promising one. However, the state-of-the-art LHCE remains insufficient to ensure long-cycling lithium metal anodes. Herein, regulating the solvation structure of lithium ions in LHCE by weakening the solvating power of diluents is proposed for improving LHCE performance. A diluent,1,1,2,2,3,3,4,4-octafluoro-5-(1,1,2,2-tetrafluoroethoxy) pentane(OFE), with weaker solvating power is introduced to increase the proportion of aggregates(an anion interacts with more than two lithium ions,AGG-n) in electrolyte compared with the commonly used 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether(TTE). The decomposition of AGG-n in OFE-based LHCE intensifies the formation of anion-derived solid electrolyte interphase and improves the uniformity of lithium deposition. Lithium metal batteries with OFE-based LHCE deliver a superior lifespan of 190 cycles compared with 90 cycles of TTE-based LHCE under demanding conditions. Furthermore, a pouch cell with OFE-based LHCE delivers a specific energy of 417 Wh/kg and undergoes 49 cycles. This work provides guidance for designing high-performance electrolytes for lithium metal batteries.
基金supported by funding from Bavarian Center for Battery Technology(Baybatt,Hightech Agenda Bayern)and Bayerisch-Tschechische Hochschulagentur(BTHA)(BTHA-AP-202245,BTHA-AP-2023-5,and BTHA-AP-2023-12)supported by the University of Bayreuth-Deakin University Joint Ph.D.Program+1 种基金supported by the Regional Innovation Strategy(RIS)through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(2021RIS-003)supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.RS2023-00213749)
文摘A suitable interface between the electrode and electrolyte is crucial in achieving highly stable electrochemical performance for Li-ion batteries,as facile ionic transport is required.Intriguing research and development have recently been conducted to form a stable interface between the electrode and electrolyte.Therefore,it is essential to investigate emerging knowledge and contextualize it.The nanoengineering of the electrode-electrolyte interface has been actively researched at the electrode/electrolyte and interphase levels.This review presents and summarizes some recent advances aimed at nanoengineering approaches to build a more stable electrode-electrolyte interface and assess the impact of each approach adopted.Furthermore,future perspectives on the feasibility and practicality of each approach will also be reviewed in detail.Finally,this review aids in projecting a more sustainable research pathway for a nanoengineered interphase design between electrode and electrolyte,which is pivotal for high-performance,thermally stable Li-ion batteries.