An efficient and accurate scalar auxiliary variable(SAV)scheme for numerically solving nonlinear parabolic integro-differential equation(PIDE)is developed in this paper.The original equation is first transformed into ...An efficient and accurate scalar auxiliary variable(SAV)scheme for numerically solving nonlinear parabolic integro-differential equation(PIDE)is developed in this paper.The original equation is first transformed into an equivalent system,and the k-order backward differentiation formula(BDF k)and central difference formula are used to discretize the temporal and spatial derivatives,respectively.Different from the traditional discrete method that adopts full implicit or full explicit for the nonlinear integral terms,the proposed scheme is based on the SAV idea and can be treated semi-implicitly,taking into account both accuracy and effectiveness.Numerical results are presented to demonstrate the high-order convergence(up to fourth-order)of the developed schemes and it is computationally efficient in long-time computations.展开更多
In this paper, an iterative learning control algorithm is proposed for discrete linear time-varying systems to track iterationvarying desired trajectories. A high-order internal model(HOIM) is utilized to describe the...In this paper, an iterative learning control algorithm is proposed for discrete linear time-varying systems to track iterationvarying desired trajectories. A high-order internal model(HOIM) is utilized to describe the variation of desired trajectories in the iteration domain. In the sequel, the HOIM is incorporated into the design of learning gains. The learning convergence in the iteration axis can be guaranteed with rigorous proof. The simulation results with permanent magnet linear motors(PMLM) demonstrate that the proposed HOIM based approach yields good performance and achieves perfect tracking.展开更多
This paper studies the coupled Burgers equation and the high-order Boussinesq-Burgers equation. The Hirota bilinear method is applied to show that the two equations are completely integrable. Multiple-kink (soliton)...This paper studies the coupled Burgers equation and the high-order Boussinesq-Burgers equation. The Hirota bilinear method is applied to show that the two equations are completely integrable. Multiple-kink (soliton) solutions and multiple-singular-kink (soliton) solutions are derived for the two equations.展开更多
A sampling approximation for a function defined on a bounded interval is proposed by combining the Coiflet-type wavelet expansion and the boundary extension technique. Based on such a wavelet approximation scheme, a G...A sampling approximation for a function defined on a bounded interval is proposed by combining the Coiflet-type wavelet expansion and the boundary extension technique. Based on such a wavelet approximation scheme, a Galerkin procedure is developed for the spatial discretization of the generalized nonlinear Schr6dinger (NLS) equa- tions, and a system of ordinary differential equations for the time dependent unknowns is obtained. Then, the classical fourth-order explicit Runge-Kutta method is used to solve this semi-discretization system. To justify the present method, several widely considered problems are solved as the test examples, and the results demonstrate that the proposed wavelet algorithm has much better accuracy and a faster convergence rate in space than many existing numerical methods.展开更多
In this paper, we consider a class of high-order nonlinear systems with unmodelled dynamics from the viewpoint of maintaining the desired control performance (e,g., asymptotical stability) and reducing the control e...In this paper, we consider a class of high-order nonlinear systems with unmodelled dynamics from the viewpoint of maintaining the desired control performance (e,g., asymptotical stability) and reducing the control effort. By introducing a new reseating transformation, adopting an effective reduced-order observer, and choosing an ingenious Lyapunov function and appropriate design parameters, this paper designs all improved output-feedback controller. The output-feedback controller guarantees the globally asymptotieal stability of the closed-loop system. Subsequently, taking a concrete system for an example, the smaller critical values for gain parameter and resealing transformation parameter are obtained to effectively reduce the control effort.展开更多
A fast self-adapting high-order sliding mode(FSHOSM)controller is designed for a class of nonlinear systems with unknown uncertainties.As for uncertainty-free nonlinear system,a new switching condition is introduced i...A fast self-adapting high-order sliding mode(FSHOSM)controller is designed for a class of nonlinear systems with unknown uncertainties.As for uncertainty-free nonlinear system,a new switching condition is introduced into the standard geometric homogeneity.Different from the existing geometric homogeneity method,both state variables and their derivatives are considered to bring a reasonable effective switching condition.As a result,a faster convergence rate of state variables is achieved.Furthermore,based on the integral sliding mode(ISM)and above geometric homogeneity,a self-adapting high-order sliding mode(HOSM)control law is proposed for a class of nonlinear systems with uncertainties.The resulting controller allows the closed-loop system to conduct with the expected properties of strong robustness and fast convergence.Stable analysis of the nonlinear system is also proved based on the Lyapunov approach.The effectiveness of the resulting controller is verified by several simulation results.展开更多
The problem of finite-time stabilization for uncertain nonlinear systems is investigated.It is proved that a class of high-order nonlinear systems in the lower-triangular form is globally stabilized via non-Lipschitz ...The problem of finite-time stabilization for uncertain nonlinear systems is investigated.It is proved that a class of high-order nonlinear systems in the lower-triangular form is globally stabilized via non-Lipschitz continuous state feedback.By using the finite-time Lyapunov stability theorem and the method of non-smooth feedback design,a recursive design procedure is provided,which guarantees the finite-time stability of the closed-loop system.The simulation results show the effectiveness of the theoretical results.展开更多
In this paper,the bipartite consensus problem is studied for a class of uncertain high-order nonlinear multi-agent systems.A signed digraph is presented to describe the collaborative and competitive interactions among...In this paper,the bipartite consensus problem is studied for a class of uncertain high-order nonlinear multi-agent systems.A signed digraph is presented to describe the collaborative and competitive interactions among agents.For each agent with lower triangular structure,a time-varying gain compensator is first designed by relative output information of neighboring agents.Subsequently,a distributed controller with dynamic event-triggered mechanism is proposed to drive the bipartite consensus error to zero.It is worth noting that an internal dynamic variable is introduced in triggering function,which plays an essential role in excluding the Zeno behavior and reducing energy consumption.Furthermore,the dynamic event-triggered control protocol is developed for upper triangular multi-agent systems to realize the bipartite consensus without Zeno behavior.Finally,simulation examples are provided to illustrate the effectiveness of the presented results.展开更多
In this paper, we investigate the problem of global stabilization for a general class of high-order and non-smoothly stabilizable nonlinear systems with both lower-order and higher-order growth conditions. The designe...In this paper, we investigate the problem of global stabilization for a general class of high-order and non-smoothly stabilizable nonlinear systems with both lower-order and higher-order growth conditions. The designed continuous state feedback controller is recursively constructed to guarantee the global strong stabilization of the closed-loop system.展开更多
A type of high-order integral observers for matrix second-order linear systems is proposed on the basis of generalized eigenstructure assignment via unified parametric approaches. Through establishing two general para...A type of high-order integral observers for matrix second-order linear systems is proposed on the basis of generalized eigenstructure assignment via unified parametric approaches. Through establishing two general parametric solutions to this type of generalized matrix second-order Sylvester matrix equations, two unified complete parametric methods for the proposed observer design problem are presented. Both methods give simple complete parametric expressions for the observer gain matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically simple and reliable; the second one utilizes the fight factorization of the system, and allows eigenvalues of the error system to be set undetermined and sought via certain optimization procedures. A spring-mass-dashpot system is utilized to illustrate the design procedure and show the effect of the proposed approach.展开更多
We propose an effective scheme of the deep learning method for high-order nonlinear soliton equations and explore the influence of activation functions on the calculation results for higherorder nonlinear soliton equa...We propose an effective scheme of the deep learning method for high-order nonlinear soliton equations and explore the influence of activation functions on the calculation results for higherorder nonlinear soliton equations. The physics-informed neural networks approximate the solution of the equation under the conditions of differential operator, initial condition and boundary condition. We apply this method to high-order nonlinear soliton equations, and verify its efficiency by solving the fourth-order Boussinesq equation and the fifth-order Korteweg–de Vries equation. The results show that the deep learning method can be used to solve high-order nonlinear soliton equations and reveal the interaction between solitons.展开更多
In this article,some high-order local discontinuous Galerkin(LDG)schemes based on some second-order θ approximation formulas in time are presented to solve a two-dimen-sional nonlinear fractional diffusion equation.T...In this article,some high-order local discontinuous Galerkin(LDG)schemes based on some second-order θ approximation formulas in time are presented to solve a two-dimen-sional nonlinear fractional diffusion equation.The unconditional stability of the LDG scheme is proved,and an a priori error estimate with O(h^(k+1)+At^(2))is derived,where k≥0 denotes the index of the basis function.Extensive numerical results with Q^(k)(k=0,1,2,3)elements are provided to confirm our theoretical results,which also show that the second-order convergence rate in time is not impacted by the changed parameter θ.展开更多
We investigate theoretically the effects of chirped laser pulses on high-order harmonic generation(HHG)from solids.We find that the harmonic spectra display redshifts for the driving laser pulses with negative chirp a...We investigate theoretically the effects of chirped laser pulses on high-order harmonic generation(HHG)from solids.We find that the harmonic spectra display redshifts for the driving laser pulses with negative chirp and blueshifts for those with positive chirp,which is due to the change in the instantaneous frequency of the driving laser for different chirped pulses.The analysis of crystal-momentum-resolved(k-resolved)HHG reveals that the frequency shifts are equal for the harmonics generated by different crystal momentum channels.The frequency shifts in the cutoff region are larger than those in the plateau region.With the increase of the absolute value of the chirp parameters,the frequency shifts of HHG become more significant,leading to the shifts from odd-to even-order harmonics.We also demonstrate that the frequency shifts of harmonic spectra are related to the duration of the chirped laser field,but are insensitive to the laser intensity and dephasing time.展开更多
A new oxidative N-heterocyclic carbene(NHC)-catalyzed high-order[7+3]annulation reaction ofγ-indolyl phenols as 1,7-dinucleophiles andα,β-alkynals with the aid of Sc(OTf)_(3)is reported,enabling the highly regiosel...A new oxidative N-heterocyclic carbene(NHC)-catalyzed high-order[7+3]annulation reaction ofγ-indolyl phenols as 1,7-dinucleophiles andα,β-alkynals with the aid of Sc(OTf)_(3)is reported,enabling the highly regioselective access to unprecedented polyarene-fused ten-membered lactams bearing a bridged aryl-aryl-indole scaffold in moderate to good yields.This protocol demonstrates a broad substrate scope,good compatibility with substituents and complete regioselectivity,providing an organocatalytic modular synthetic strategy for creating medium-sized lactams.展开更多
Thermal expansion is crucial for various industrial processes and is increasingly the focus of research endeavors aimed at improving material performance.However,it is the continuous advancements in first-principles c...Thermal expansion is crucial for various industrial processes and is increasingly the focus of research endeavors aimed at improving material performance.However,it is the continuous advancements in first-principles calculations that have enabled researchers to understand the microscopic origins of thermal expansion.In this study,we propose a coefficient of thermal expansion(CTE)calculation scheme based on self-consistent phonon theory,incorporating the fourth-order anharmonicity.We selected four structures(Si,CaZrF_(6),SrTiO_(3),NaBr)to investigate high-order anharmonicity’s impact on their CTEs,based on bonding types.The results indicate that our method goes beyond the second-order quasi-harmonic approximation and the third-order perturbation theory,aligning closely with experimental data.Furthermore,we observed that an increase in the ionicity of the structures leads to a more pronounced influence of high-order anharmonicity on CTE,with this effect primarily manifesting in variations of the Grüneisen parameter.Our research provides a theoretical foundation for accurately predicting and regulating the thermal expansion behavior of materials.展开更多
Recently,it was discovered that the entropy-conserving/dissipative high-order split-form discontinuous Galerkin discretizations have robustness issues when trying to solve the sim-ple density wave propagation example ...Recently,it was discovered that the entropy-conserving/dissipative high-order split-form discontinuous Galerkin discretizations have robustness issues when trying to solve the sim-ple density wave propagation example for the compressible Euler equations.The issue is related to missing local linear stability,i.e.,the stability of the discretization towards per-turbations added to a stable base flow.This is strongly related to an anti-diffusion mech-anism,that is inherent in entropy-conserving two-point fluxes,which are a key ingredi-ent for the high-order discontinuous Galerkin extension.In this paper,we investigate if pressure equilibrium preservation is a remedy to these recently found local linear stability issues of entropy-conservative/dissipative high-order split-form discontinuous Galerkin methods for the compressible Euler equations.Pressure equilibrium preservation describes the property of a discretization to keep pressure and velocity constant for pure density wave propagation.We present the full theoretical derivation,analysis,and show corresponding numerical results to underline our findings.In addition,we characterize numerical fluxes for the Euler equations that are entropy-conservative,kinetic-energy-preserving,pressure-equilibrium-preserving,and have a density flux that does not depend on the pressure.The source code to reproduce all numerical experiments presented in this article is available online(https://doi.org/10.5281/zenodo.4054366).展开更多
We present a comprehensive study on the role of various excited states in high-order harmonic generation of hydrogen atoms driven by a long-wavelength(1500 nm)laser field.By numerically solving the time-dependent Schr...We present a comprehensive study on the role of various excited states in high-order harmonic generation of hydrogen atoms driven by a long-wavelength(1500 nm)laser field.By numerically solving the time-dependent Schrodinger equation(TDSE)and performing a time-frequency analysis,we investigate the influence of individual excited states on the harmonic spectrum.Our results reveal that the 2s excited state primarily contributes to the enhancement of high-energy harmonic yields by facilitating long electron trajectories,while the 2p excited state predominantly suppresses harmonic yields in the lower-energy region(20th-50th orders)by altering the contributions of electron trajectories.Our results highlight the critical role of the excited states in the HHG process,even at longer laser wavelengths.展开更多
We performed real-time and real-space numerical simulations of high-order harmonic generation in the threedimensional structured molecule methane(CH_(4)) using time-dependent density functional theory. By irradiating ...We performed real-time and real-space numerical simulations of high-order harmonic generation in the threedimensional structured molecule methane(CH_(4)) using time-dependent density functional theory. By irradiating the methane molecule with an elliptically polarized laser pulse polarized in the x–y plane, we observed significant even-order harmonic emission in the z-direction. By analyzing the electron dynamics in the electric field and the multi-orbital effects of the molecule, we revealed that electron recombination near specific atoms in methane is the primary source of highorder harmonic generation in the z-direction. Furthermore, we identified the dominant molecular orbitals responsible for the enhancement of harmonics in this direction and demonstrated the critical role played by multi-orbital effects in this process.展开更多
The high-speed development of space defense technology demands a high state estimation capacity for spacecraft tracking methods.However,reentry flight is accompanied by complex flight environments,which brings to the ...The high-speed development of space defense technology demands a high state estimation capacity for spacecraft tracking methods.However,reentry flight is accompanied by complex flight environments,which brings to the uncertain,complex,and strongly coupled non-Gaussian detection noise.As a result,there are several intractable considerations on the problem of state estimation tasks corrupted by complex non-Gaussian outliers for non-linear dynamics systems in practical application.To address these issues,a new iterated rational quadratic(RQ)kernel high-order unscented Kalman filtering(IRQHUKF)algorithm via capturing the statistics to break through the limitations of the Gaussian assumption is proposed.Firstly,the characteristic analysis of the RQ kernel is investigated in detail,which is the first attempt to carry out an exploration of the heavy-tailed characteristic and the ability on capturing highorder moments of the RQ kernel.Subsequently,the RQ kernel method is first introduced into the UKF algorithm as an error optimization criterion,termed the iterated RQ kernel-UKF(RQ-UKF)algorithm by derived analytically,which not only retains the high-order moments propagation process but also enhances the approximation capacity in the non-Gaussian noise problem for its ability in capturing highorder moments and heavy-tailed characteristics.Meanwhile,to tackle the limitations of the Gaussian distribution assumption in the linearization process of the non-linear systems,the high-order Sigma Points(SP)as a subsidiary role in propagating the state high-order statistics is devised by the moments matching method to improve the RQ-UKF.Finally,to further improve the flexibility of the IRQ-HUKF algorithm in practical application,an adaptive kernel parameter is derived analytically grounded in the Kullback-Leibler divergence(KLD)method and parametric sensitivity analysis of the RQ kernel.The simulation results demonstrate that the novel IRQ-HUKF algorithm is more robust and outperforms the existing advanced UKF with respect to the kernel method in reentry vehicle tracking scenarios under various noise environments.展开更多
Synchronization of high-order discrete-time complex networks with undirected topologies is studied and the impacts of time delays are investigated. Firstly,by the state decomposition,synchronization problems are trans...Synchronization of high-order discrete-time complex networks with undirected topologies is studied and the impacts of time delays are investigated. Firstly,by the state decomposition,synchronization problems are transformed into asymptotic stability ones of multiple lower dimensional time-delayed subsystems. Then,linear matrix inequality( LMI) criteria for synchronization are given,which can guarantee the scalability of complex networks since they only include three LMI constraints independent of the number of agents. Moreover,an explicit expression of the synchronization function is presented,which can describe the synchronization behavior of all agents in complex networks. Finally,a numerical example is given to demonstrate the theoretical results,where it is shown that if the gain matrices of synchronization protocols satisfy LMI criteria for synchronization,synchronization can be achieved.展开更多
基金Supported by the National Natural Science Foundation of China(Grant Nos.12001210 and 12261103)the Natural Science Foundation of Henan(Grant No.252300420308)the Yunnan Fundamental Research Projects(Grant No.202301AT070117).
文摘An efficient and accurate scalar auxiliary variable(SAV)scheme for numerically solving nonlinear parabolic integro-differential equation(PIDE)is developed in this paper.The original equation is first transformed into an equivalent system,and the k-order backward differentiation formula(BDF k)and central difference formula are used to discretize the temporal and spatial derivatives,respectively.Different from the traditional discrete method that adopts full implicit or full explicit for the nonlinear integral terms,the proposed scheme is based on the SAV idea and can be treated semi-implicitly,taking into account both accuracy and effectiveness.Numerical results are presented to demonstrate the high-order convergence(up to fourth-order)of the developed schemes and it is computationally efficient in long-time computations.
基金supported by National Basic Research Program of China(973 Program)(No.2012CB316400)National Natural Science Foundation of China(Nos.61171034 and 61273134)
文摘In this paper, an iterative learning control algorithm is proposed for discrete linear time-varying systems to track iterationvarying desired trajectories. A high-order internal model(HOIM) is utilized to describe the variation of desired trajectories in the iteration domain. In the sequel, the HOIM is incorporated into the design of learning gains. The learning convergence in the iteration axis can be guaranteed with rigorous proof. The simulation results with permanent magnet linear motors(PMLM) demonstrate that the proposed HOIM based approach yields good performance and achieves perfect tracking.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10871117 and 10571110)
文摘This paper studies the coupled Burgers equation and the high-order Boussinesq-Burgers equation. The Hirota bilinear method is applied to show that the two equations are completely integrable. Multiple-kink (soliton) solutions and multiple-singular-kink (soliton) solutions are derived for the two equations.
基金supported by the National Natural Science Foundation of China(Nos.11502103 and11421062)the Open Fund of State Key Laboratory of Structural Analysis for Industrial Equipment of China(No.GZ15115)
文摘A sampling approximation for a function defined on a bounded interval is proposed by combining the Coiflet-type wavelet expansion and the boundary extension technique. Based on such a wavelet approximation scheme, a Galerkin procedure is developed for the spatial discretization of the generalized nonlinear Schr6dinger (NLS) equa- tions, and a system of ordinary differential equations for the time dependent unknowns is obtained. Then, the classical fourth-order explicit Runge-Kutta method is used to solve this semi-discretization system. To justify the present method, several widely considered problems are solved as the test examples, and the results demonstrate that the proposed wavelet algorithm has much better accuracy and a faster convergence rate in space than many existing numerical methods.
基金supported by National Natural Science Founda-tion of China (No. 60774010)Natural Science Foundation of JiangsuProvince, Jiangsu "Six Top Talents" (No. 07-A-020)+1 种基金Program for Fundamental Research of Natural Sciences in Universities of JiangsuProvince (No. 07KJB510114)Natural Science Foundation ofXuzhou Normal University (No. 08XLB20)
文摘In this paper, we consider a class of high-order nonlinear systems with unmodelled dynamics from the viewpoint of maintaining the desired control performance (e,g., asymptotical stability) and reducing the control effort. By introducing a new reseating transformation, adopting an effective reduced-order observer, and choosing an ingenious Lyapunov function and appropriate design parameters, this paper designs all improved output-feedback controller. The output-feedback controller guarantees the globally asymptotieal stability of the closed-loop system. Subsequently, taking a concrete system for an example, the smaller critical values for gain parameter and resealing transformation parameter are obtained to effectively reduce the control effort.
基金supported by the National Natural Science Foundation of China(61433003,60904003,11602019).
文摘A fast self-adapting high-order sliding mode(FSHOSM)controller is designed for a class of nonlinear systems with unknown uncertainties.As for uncertainty-free nonlinear system,a new switching condition is introduced into the standard geometric homogeneity.Different from the existing geometric homogeneity method,both state variables and their derivatives are considered to bring a reasonable effective switching condition.As a result,a faster convergence rate of state variables is achieved.Furthermore,based on the integral sliding mode(ISM)and above geometric homogeneity,a self-adapting high-order sliding mode(HOSM)control law is proposed for a class of nonlinear systems with uncertainties.The resulting controller allows the closed-loop system to conduct with the expected properties of strong robustness and fast convergence.Stable analysis of the nonlinear system is also proved based on the Lyapunov approach.The effectiveness of the resulting controller is verified by several simulation results.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 61174001)
文摘The problem of finite-time stabilization for uncertain nonlinear systems is investigated.It is proved that a class of high-order nonlinear systems in the lower-triangular form is globally stabilized via non-Lipschitz continuous state feedback.By using the finite-time Lyapunov stability theorem and the method of non-smooth feedback design,a recursive design procedure is provided,which guarantees the finite-time stability of the closed-loop system.The simulation results show the effectiveness of the theoretical results.
基金This work was supported by the National Natural Science Foundation of China(Nos.61973189,62073190)the Research Fund for the Taishan Scholar Project of Shandong Province of China(No.ts20190905)the Natural Science Foundation of Shandong Province of China(No.ZR2020ZD25).
文摘In this paper,the bipartite consensus problem is studied for a class of uncertain high-order nonlinear multi-agent systems.A signed digraph is presented to describe the collaborative and competitive interactions among agents.For each agent with lower triangular structure,a time-varying gain compensator is first designed by relative output information of neighboring agents.Subsequently,a distributed controller with dynamic event-triggered mechanism is proposed to drive the bipartite consensus error to zero.It is worth noting that an internal dynamic variable is introduced in triggering function,which plays an essential role in excluding the Zeno behavior and reducing energy consumption.Furthermore,the dynamic event-triggered control protocol is developed for upper triangular multi-agent systems to realize the bipartite consensus without Zeno behavior.Finally,simulation examples are provided to illustrate the effectiveness of the presented results.
基金supported by National Natural Science Foundation of China (Nos. 61273125 and 61104222)Specialized Research Fund for the Doctoral Program of Higher Education (No. 20103705110002)+3 种基金Program for the Scientific Research Innovation Team in Colleges and Universities of Shandong ProvinceShandong Provincial Natural Science Foundation of China (No. ZR2012FM018)Natural Science Foundation of Jiangsu Province (No. BK2011205)Natural Science Foundation of Jiangsu Normal University(No. 11XLR08)
文摘In this paper, we investigate the problem of global stabilization for a general class of high-order and non-smoothly stabilizable nonlinear systems with both lower-order and higher-order growth conditions. The designed continuous state feedback controller is recursively constructed to guarantee the global strong stabilization of the closed-loop system.
基金This work was supported by the Chinese National Natural Science Foundation ( No. 69925308).
文摘A type of high-order integral observers for matrix second-order linear systems is proposed on the basis of generalized eigenstructure assignment via unified parametric approaches. Through establishing two general parametric solutions to this type of generalized matrix second-order Sylvester matrix equations, two unified complete parametric methods for the proposed observer design problem are presented. Both methods give simple complete parametric expressions for the observer gain matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically simple and reliable; the second one utilizes the fight factorization of the system, and allows eigenvalues of the error system to be set undetermined and sought via certain optimization procedures. A spring-mass-dashpot system is utilized to illustrate the design procedure and show the effect of the proposed approach.
基金supported by National Science Foundation of China(52171251)Liao Ning Revitalization Talents Program(XLYC1907014)+2 种基金the Fundamental Research Funds for the Central Universities(DUT21ZD205)Ministry of Industry and Information Technology(2019-357)the Project of State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography,MNR(QNHX2112)。
文摘We propose an effective scheme of the deep learning method for high-order nonlinear soliton equations and explore the influence of activation functions on the calculation results for higherorder nonlinear soliton equations. The physics-informed neural networks approximate the solution of the equation under the conditions of differential operator, initial condition and boundary condition. We apply this method to high-order nonlinear soliton equations, and verify its efficiency by solving the fourth-order Boussinesq equation and the fifth-order Korteweg–de Vries equation. The results show that the deep learning method can be used to solve high-order nonlinear soliton equations and reveal the interaction between solitons.
基金This work is supported by the National Natural Science Foundation of China(11661058,11761053)the Natural Science Foundation of Inner Mongolia(2017MS0107)the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(NJYT-17-A07).
文摘In this article,some high-order local discontinuous Galerkin(LDG)schemes based on some second-order θ approximation formulas in time are presented to solve a two-dimen-sional nonlinear fractional diffusion equation.The unconditional stability of the LDG scheme is proved,and an a priori error estimate with O(h^(k+1)+At^(2))is derived,where k≥0 denotes the index of the basis function.Extensive numerical results with Q^(k)(k=0,1,2,3)elements are provided to confirm our theoretical results,which also show that the second-order convergence rate in time is not impacted by the changed parameter θ.
基金Project supported by the Natural Science Foundation of Jilin Province of China(Grant No.20230101014JC)the National Natural Science Foundation of China(Grant No.12374265)。
文摘We investigate theoretically the effects of chirped laser pulses on high-order harmonic generation(HHG)from solids.We find that the harmonic spectra display redshifts for the driving laser pulses with negative chirp and blueshifts for those with positive chirp,which is due to the change in the instantaneous frequency of the driving laser for different chirped pulses.The analysis of crystal-momentum-resolved(k-resolved)HHG reveals that the frequency shifts are equal for the harmonics generated by different crystal momentum channels.The frequency shifts in the cutoff region are larger than those in the plateau region.With the increase of the absolute value of the chirp parameters,the frequency shifts of HHG become more significant,leading to the shifts from odd-to even-order harmonics.We also demonstrate that the frequency shifts of harmonic spectra are related to the duration of the chirped laser field,but are insensitive to the laser intensity and dephasing time.
基金National Natural Science Foundation of China(Nos.21971090 and 22271123)the NSF of Jiangsu Province(No.BK20230201)+1 种基金the Natural Science Foundation of Jiangsu Education Committee(No.22KJB150024)the Natural Science Foundation of Jiangsu Normal University(No.21XSRX010)。
文摘A new oxidative N-heterocyclic carbene(NHC)-catalyzed high-order[7+3]annulation reaction ofγ-indolyl phenols as 1,7-dinucleophiles andα,β-alkynals with the aid of Sc(OTf)_(3)is reported,enabling the highly regioselective access to unprecedented polyarene-fused ten-membered lactams bearing a bridged aryl-aryl-indole scaffold in moderate to good yields.This protocol demonstrates a broad substrate scope,good compatibility with substituents and complete regioselectivity,providing an organocatalytic modular synthetic strategy for creating medium-sized lactams.
基金Project supported by the National Natural Science Foundation of China(Grant No.62125402).
文摘Thermal expansion is crucial for various industrial processes and is increasingly the focus of research endeavors aimed at improving material performance.However,it is the continuous advancements in first-principles calculations that have enabled researchers to understand the microscopic origins of thermal expansion.In this study,we propose a coefficient of thermal expansion(CTE)calculation scheme based on self-consistent phonon theory,incorporating the fourth-order anharmonicity.We selected four structures(Si,CaZrF_(6),SrTiO_(3),NaBr)to investigate high-order anharmonicity’s impact on their CTEs,based on bonding types.The results indicate that our method goes beyond the second-order quasi-harmonic approximation and the third-order perturbation theory,aligning closely with experimental data.Furthermore,we observed that an increase in the ionicity of the structures leads to a more pronounced influence of high-order anharmonicity on CTE,with this effect primarily manifesting in variations of the Grüneisen parameter.Our research provides a theoretical foundation for accurately predicting and regulating the thermal expansion behavior of materials.
基金Funded by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)under Germany’s Excellence Strategy EXC 2044-390685587Mathematics Münster:Dynamics-Geometry-Structure.Gregor Gassner is supported by the European Research Council(ERC)under the European Union’s Eights Framework Program Horizon 2020 with the research project Extreme,ERC Grant Agreement No.714487.
文摘Recently,it was discovered that the entropy-conserving/dissipative high-order split-form discontinuous Galerkin discretizations have robustness issues when trying to solve the sim-ple density wave propagation example for the compressible Euler equations.The issue is related to missing local linear stability,i.e.,the stability of the discretization towards per-turbations added to a stable base flow.This is strongly related to an anti-diffusion mech-anism,that is inherent in entropy-conserving two-point fluxes,which are a key ingredi-ent for the high-order discontinuous Galerkin extension.In this paper,we investigate if pressure equilibrium preservation is a remedy to these recently found local linear stability issues of entropy-conservative/dissipative high-order split-form discontinuous Galerkin methods for the compressible Euler equations.Pressure equilibrium preservation describes the property of a discretization to keep pressure and velocity constant for pure density wave propagation.We present the full theoretical derivation,analysis,and show corresponding numerical results to underline our findings.In addition,we characterize numerical fluxes for the Euler equations that are entropy-conservative,kinetic-energy-preserving,pressure-equilibrium-preserving,and have a density flux that does not depend on the pressure.The source code to reproduce all numerical experiments presented in this article is available online(https://doi.org/10.5281/zenodo.4054366).
基金supported by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi。
文摘We present a comprehensive study on the role of various excited states in high-order harmonic generation of hydrogen atoms driven by a long-wavelength(1500 nm)laser field.By numerically solving the time-dependent Schrodinger equation(TDSE)and performing a time-frequency analysis,we investigate the influence of individual excited states on the harmonic spectrum.Our results reveal that the 2s excited state primarily contributes to the enhancement of high-energy harmonic yields by facilitating long electron trajectories,while the 2p excited state predominantly suppresses harmonic yields in the lower-energy region(20th-50th orders)by altering the contributions of electron trajectories.Our results highlight the critical role of the excited states in the HHG process,even at longer laser wavelengths.
基金Project supported by the National Natural Science Foundation of China (Grant No. 12204214)the National Key Research and Development Program of China (Grant No. 2022YFE0134200)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No. GK202207012), QCYRCXM-2022-241the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2025A1515011117)。
文摘We performed real-time and real-space numerical simulations of high-order harmonic generation in the threedimensional structured molecule methane(CH_(4)) using time-dependent density functional theory. By irradiating the methane molecule with an elliptically polarized laser pulse polarized in the x–y plane, we observed significant even-order harmonic emission in the z-direction. By analyzing the electron dynamics in the electric field and the multi-orbital effects of the molecule, we revealed that electron recombination near specific atoms in methane is the primary source of highorder harmonic generation in the z-direction. Furthermore, we identified the dominant molecular orbitals responsible for the enhancement of harmonics in this direction and demonstrated the critical role played by multi-orbital effects in this process.
基金supported by the National Natural Science Foundation of China under Grant No.12072090.
文摘The high-speed development of space defense technology demands a high state estimation capacity for spacecraft tracking methods.However,reentry flight is accompanied by complex flight environments,which brings to the uncertain,complex,and strongly coupled non-Gaussian detection noise.As a result,there are several intractable considerations on the problem of state estimation tasks corrupted by complex non-Gaussian outliers for non-linear dynamics systems in practical application.To address these issues,a new iterated rational quadratic(RQ)kernel high-order unscented Kalman filtering(IRQHUKF)algorithm via capturing the statistics to break through the limitations of the Gaussian assumption is proposed.Firstly,the characteristic analysis of the RQ kernel is investigated in detail,which is the first attempt to carry out an exploration of the heavy-tailed characteristic and the ability on capturing highorder moments of the RQ kernel.Subsequently,the RQ kernel method is first introduced into the UKF algorithm as an error optimization criterion,termed the iterated RQ kernel-UKF(RQ-UKF)algorithm by derived analytically,which not only retains the high-order moments propagation process but also enhances the approximation capacity in the non-Gaussian noise problem for its ability in capturing highorder moments and heavy-tailed characteristics.Meanwhile,to tackle the limitations of the Gaussian distribution assumption in the linearization process of the non-linear systems,the high-order Sigma Points(SP)as a subsidiary role in propagating the state high-order statistics is devised by the moments matching method to improve the RQ-UKF.Finally,to further improve the flexibility of the IRQ-HUKF algorithm in practical application,an adaptive kernel parameter is derived analytically grounded in the Kullback-Leibler divergence(KLD)method and parametric sensitivity analysis of the RQ kernel.The simulation results demonstrate that the novel IRQ-HUKF algorithm is more robust and outperforms the existing advanced UKF with respect to the kernel method in reentry vehicle tracking scenarios under various noise environments.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61374054,61174067,61263002)the Shaanxi Province Natural Science Foundation Research Projection(Grant No.2013JQ8038)
文摘Synchronization of high-order discrete-time complex networks with undirected topologies is studied and the impacts of time delays are investigated. Firstly,by the state decomposition,synchronization problems are transformed into asymptotic stability ones of multiple lower dimensional time-delayed subsystems. Then,linear matrix inequality( LMI) criteria for synchronization are given,which can guarantee the scalability of complex networks since they only include three LMI constraints independent of the number of agents. Moreover,an explicit expression of the synchronization function is presented,which can describe the synchronization behavior of all agents in complex networks. Finally,a numerical example is given to demonstrate the theoretical results,where it is shown that if the gain matrices of synchronization protocols satisfy LMI criteria for synchronization,synchronization can be achieved.