In this paper, a family of high-order compact finite difference methods in combination preconditioned methods are used for solution of the Diffusion-Convection equation. We developed numerical methods by replacing the...In this paper, a family of high-order compact finite difference methods in combination preconditioned methods are used for solution of the Diffusion-Convection equation. We developed numerical methods by replacing the time and space derivatives by compact finite-difference approximations. The system of resulting nonlinear finite difference equations are solved by preconditioned Krylov subspace methods. Numerical results are given to verify the behavior of high-order compact approximations in combination preconditioned methods for stability, convergence. Also, the accuracy and efficiency of the proposed scheme are considered.展开更多
In this paper, we first summarize several applications of the flux approximation method on hyperbolic conservation systems. Then, we introduce two hyperbolic conservation systems (2.1) and (2.2) of Temple’s type, and...In this paper, we first summarize several applications of the flux approximation method on hyperbolic conservation systems. Then, we introduce two hyperbolic conservation systems (2.1) and (2.2) of Temple’s type, and prove that the global weak solutions of each system could be obtained by the limit of the linear combination of two systems.展开更多
In this paper,a high-order scheme based on the lattice Boltzmann flux solver(LBFS)is proposed to simulate viscous compressible flows.The flux reconstruction(FR)approach is adopted to implement the spatial discretizati...In this paper,a high-order scheme based on the lattice Boltzmann flux solver(LBFS)is proposed to simulate viscous compressible flows.The flux reconstruction(FR)approach is adopted to implement the spatial discretization.The LBFS is employed to compute the inviscid flux by using the local reconstruction of the lattice Boltzmann equation solutions from macroscopic flow variables.Meanwhile,a switch function is used in LBFS to adjust the magnitude of the numerical viscosity.Thus,it is more beneficial to capture both strong shock waves and thin boundary layers.Moreover,the viscous flux is computed according to the local discontinuous Galerkin method.Some typical compressible viscous problems,including manufactured solution case,lid-driven cavity flow,supersonic flow around a cylinder and subsonic flow over a NACA0012 airfoil,are simulated to demonstrate the accuracy and robustness of the proposed FR-LBFS.展开更多
Under a non-degeneracy condition on the nonlinearities we show that sequences of approximate entropy solutions of mixed elliptic-hyperbolic equations are strongly precompact in the general case of a Caratheodory flux ...Under a non-degeneracy condition on the nonlinearities we show that sequences of approximate entropy solutions of mixed elliptic-hyperbolic equations are strongly precompact in the general case of a Caratheodory flux vector. The proofs are based on deriving localization principles for H-measures associated to sequences of measurevalued functions. This main result implies existence of solutions to degenerate parabolic convection-diffusion equations with discontinuous flux. Moreover, it provides a framework in which one can prove convergence of various types of approximate solutions, such as those generated by the vanishing viscosity method and numerical schemes.展开更多
To ensure time stability of a seventh-order dissipative compact finite difference scheme, fourth-order boundary closures are used near domain boundaries previously. However, this would reduce the global convergence ra...To ensure time stability of a seventh-order dissipative compact finite difference scheme, fourth-order boundary closures are used near domain boundaries previously. However, this would reduce the global convergence rate to fifth-order only. In this paper, we elevate the boundary closures to sixth-order to achieve seventh-order global accuracy. To keep the improved scheme time stable, the simultaneous approximation terms (SATs) are used to impose boundary conditions weakly. Eigenvalue analysis shows that the improved scheme is time stable. Numerical experiments for linear advection equations and one-dimensional Euler equations are implemented to validate the new scheme.展开更多
A semiclassical method based on the closed-orbit theory is applied to analysing the dynamics of photodetached electron of H- in the parallel electric and magnetic fields. By simply varying the magnetic field we reveal...A semiclassical method based on the closed-orbit theory is applied to analysing the dynamics of photodetached electron of H- in the parallel electric and magnetic fields. By simply varying the magnetic field we reveal spatial bifurcations of electron orbits at a fixed emission energy, which is referred to as the fold caustic in classical motion. The quantum manifestations of these singularities display a series of intermittent divergences in electronic flux distributions. We introduce semiclassical uniform approximation to repair the electron wavefunctions locally in a mixed phase space and obtain reasonable results. The approximation provides a better treatment of the problem.展开更多
The discontinuous Galerkin (DO) or local discontinuous Galerkin (LDG) method is a spatial discretization procedure for convection-diffusion equations, which employs useful features from high resolution finite volu...The discontinuous Galerkin (DO) or local discontinuous Galerkin (LDG) method is a spatial discretization procedure for convection-diffusion equations, which employs useful features from high resolution finite volume schemes, such as the exact or approximate Riemann solvers serving as numerical fluxes and limiters. The Lax- Wendroff time discretization procedure is an altemative method for time discretization to the popular total variation diminishing (TVD) Runge-Kutta time discretizations. In this paper, we develop fluxes for the method of DG with Lax-Wendroff time discretization procedure (LWDG) based on different numerical fluxes for finite volume or finite difference schemes, including the first-order monotone fluxes such as the Lax-Friedfichs flux, Godunov flux, the Engquist-Osher flux etc. and the second-order TVD fluxes. We systematically investigate the performance of the LWDG methods based on these different numerical fluxes for convection terms with the objective of obtaining better performance by choosing suitable numerical fluxes. The detailed numerical study is mainly performed for the one-dimensional system case, addressing the issues of CPU cost, accuracy, non-oscillatory property, and resolution of discontinuities. Numerical tests are also performed for two dimensional systems.展开更多
Nuclear fuel cell calculation is one of the most complicated steps of neutron transport problems in the reactor core. A few numerical methods use neutron flat flux (FF) approximation to solve this problem. In this app...Nuclear fuel cell calculation is one of the most complicated steps of neutron transport problems in the reactor core. A few numerical methods use neutron flat flux (FF) approximation to solve this problem. In this approach, neutron flux spectrum is assumed constant in each region. The solution of neutron transport equation using collision probability (CP) method based on non flat flux (NFF) approximation by introducing linear spatial distribution function implemented to a simple cylindrical annular cell has been carried out. In this concept, neutron flux spectrum in each region is different each other because of an existing of the spatial function. Numerical calculation of the neutron flux in each region of the cell using NFF approach shows a fairly good agreement compared to those calculated using existing SRAC code and FF approach. Moreover, calculation of the neutron flux in each region of the nuclear fuel cell using NFF approach needs only 6 meshes which give equivalent result when it is calculated using 24 meshes in FF approach. This result indicates that NFF approach is more efficient to be used to calculate the neutron flux in the regions of the cell than FF approach.展开更多
Classical facet elements do not provide an optimal rate of convergence of the numerical solution toward the solution of the exact problem in H(div)-norm for general unstructured meshes containing hexahedra and prisms....Classical facet elements do not provide an optimal rate of convergence of the numerical solution toward the solution of the exact problem in H(div)-norm for general unstructured meshes containing hexahedra and prisms.We propose two new families of high-order elements for hexahedra,triangular prisms and pyramids that recover the optimal convergence.These elements have compatible restrictions with each other,such that they can be used directly on general hybrid meshes.Moreover the H(div)proposed spaces are completing the De Rham diagram with optimal elements previously constructed for H1 and H(curl)approximation.The obtained pyramidal elements are compared theoretically and numerically with other elements of the literature.Eventually,numerical results demonstrate the efficiency of the finite elements constructed.展开更多
Hyperbolic conservation laws arise in the context of continuum physics,and are mathematically presented in differential form and understood in the distributional(weak)sense.The formal application of the Gauss-Green th...Hyperbolic conservation laws arise in the context of continuum physics,and are mathematically presented in differential form and understood in the distributional(weak)sense.The formal application of the Gauss-Green theorem results in integral balance laws,in which the concept of flux plays a central role.This paper addresses the spacetime viewpoint of the flux regularity,providing a rigorous treatment of integral balance laws.The established Lipschitz regularity of fluxes(over time intervals)leads to a consistent flux approximation.Thus,fully discrete finite volume schemes of high order may be consistently justified with reference to the spacetime integral balance laws.展开更多
In this note, we investigated existence and uniqueness of entropy solution for triply nonlinear degenerate parabolic problem with zero-flux boundary condition. Accordingly to the case of doubly nonlinear degenerate pa...In this note, we investigated existence and uniqueness of entropy solution for triply nonlinear degenerate parabolic problem with zero-flux boundary condition. Accordingly to the case of doubly nonlinear degenerate parabolic hyperbolic equation, we propose a generalization of entropy formulation and prove existence and uniqueness result without any structure condition.展开更多
In this paper,firstly,by solving the Riemann problem of the zero-pressure flow in gas dynamics with a flux approximation,we construct parameterized delta-shock and constant density solutions,then we show that,as the f...In this paper,firstly,by solving the Riemann problem of the zero-pressure flow in gas dynamics with a flux approximation,we construct parameterized delta-shock and constant density solutions,then we show that,as the flux perturbation vanishes,they converge to the delta-shock and vacuum state solutions of the zero-pressure flow,respectively.Secondly,we solve the Riemann problem of the Euler equations of isentropic gas dynamics with a double parameter flux approximation including pressure.Furthermore,we rigorously prove that,as the two-parameter flux perturbation vanishes,any Riemann solution containing two shock waves tends to a delta-shock solution to the zero-pressure flow;any Riemann solution containing two rarefaction waves tends to a two-contact-discontinuity solution to the zero-pressure flow and the nonvacuum intermediate state in between tends to a vacuum state.Finally,numerical results are given to present the formation processes of delta shock waves and vacuum states.展开更多
文摘In this paper, a family of high-order compact finite difference methods in combination preconditioned methods are used for solution of the Diffusion-Convection equation. We developed numerical methods by replacing the time and space derivatives by compact finite-difference approximations. The system of resulting nonlinear finite difference equations are solved by preconditioned Krylov subspace methods. Numerical results are given to verify the behavior of high-order compact approximations in combination preconditioned methods for stability, convergence. Also, the accuracy and efficiency of the proposed scheme are considered.
文摘In this paper, we first summarize several applications of the flux approximation method on hyperbolic conservation systems. Then, we introduce two hyperbolic conservation systems (2.1) and (2.2) of Temple’s type, and prove that the global weak solutions of each system could be obtained by the limit of the linear combination of two systems.
基金supported by the National Natural Science Foundation of China(No.12072158)the Natural Science Foundation of Jiangsu Province(No.BK20191271)+1 种基金the Research Fund of Key Laboratory of Computational AerodynamicsAVIC Aerodynamics Research Institute(No.YL2022XFX0402)。
文摘In this paper,a high-order scheme based on the lattice Boltzmann flux solver(LBFS)is proposed to simulate viscous compressible flows.The flux reconstruction(FR)approach is adopted to implement the spatial discretization.The LBFS is employed to compute the inviscid flux by using the local reconstruction of the lattice Boltzmann equation solutions from macroscopic flow variables.Meanwhile,a switch function is used in LBFS to adjust the magnitude of the numerical viscosity.Thus,it is more beneficial to capture both strong shock waves and thin boundary layers.Moreover,the viscous flux is computed according to the local discontinuous Galerkin method.Some typical compressible viscous problems,including manufactured solution case,lid-driven cavity flow,supersonic flow around a cylinder and subsonic flow over a NACA0012 airfoil,are simulated to demonstrate the accuracy and robustness of the proposed FR-LBFS.
基金supported by the Research Council of Norway through theprojects Nonlinear Problems in Mathematical Analysis Waves In Fluids and Solids+2 种基金 Outstanding Young Inves-tigators Award (KHK), the Russian Foundation for Basic Research (grant No. 09-01-00490-a) DFGproject No. 436 RUS 113/895/0-1 (EYuP)
文摘Under a non-degeneracy condition on the nonlinearities we show that sequences of approximate entropy solutions of mixed elliptic-hyperbolic equations are strongly precompact in the general case of a Caratheodory flux vector. The proofs are based on deriving localization principles for H-measures associated to sequences of measurevalued functions. This main result implies existence of solutions to degenerate parabolic convection-diffusion equations with discontinuous flux. Moreover, it provides a framework in which one can prove convergence of various types of approximate solutions, such as those generated by the vanishing viscosity method and numerical schemes.
基金supported by the National Natural Science Foundation of China(No.11601517)the Basic Research Foundation of National University of Defense Technology(No.ZDYYJ-CYJ20140101)
文摘To ensure time stability of a seventh-order dissipative compact finite difference scheme, fourth-order boundary closures are used near domain boundaries previously. However, this would reduce the global convergence rate to fifth-order only. In this paper, we elevate the boundary closures to sixth-order to achieve seventh-order global accuracy. To keep the improved scheme time stable, the simultaneous approximation terms (SATs) are used to impose boundary conditions weakly. Eigenvalue analysis shows that the improved scheme is time stable. Numerical experiments for linear advection equations and one-dimensional Euler equations are implemented to validate the new scheme.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10374061 and 90403028). We thank Professor Du Meng-Li for some useful suggestions.
文摘A semiclassical method based on the closed-orbit theory is applied to analysing the dynamics of photodetached electron of H- in the parallel electric and magnetic fields. By simply varying the magnetic field we reveal spatial bifurcations of electron orbits at a fixed emission energy, which is referred to as the fold caustic in classical motion. The quantum manifestations of these singularities display a series of intermittent divergences in electronic flux distributions. We introduce semiclassical uniform approximation to repair the electron wavefunctions locally in a mixed phase space and obtain reasonable results. The approximation provides a better treatment of the problem.
基金supported by the European project ADIGMA on the development of innovative solution algorithms for aerodynamic simulations,NSFC grant 10671091,SRF for ROCS,SEM and JSNSF BK2006511.
文摘The discontinuous Galerkin (DO) or local discontinuous Galerkin (LDG) method is a spatial discretization procedure for convection-diffusion equations, which employs useful features from high resolution finite volume schemes, such as the exact or approximate Riemann solvers serving as numerical fluxes and limiters. The Lax- Wendroff time discretization procedure is an altemative method for time discretization to the popular total variation diminishing (TVD) Runge-Kutta time discretizations. In this paper, we develop fluxes for the method of DG with Lax-Wendroff time discretization procedure (LWDG) based on different numerical fluxes for finite volume or finite difference schemes, including the first-order monotone fluxes such as the Lax-Friedfichs flux, Godunov flux, the Engquist-Osher flux etc. and the second-order TVD fluxes. We systematically investigate the performance of the LWDG methods based on these different numerical fluxes for convection terms with the objective of obtaining better performance by choosing suitable numerical fluxes. The detailed numerical study is mainly performed for the one-dimensional system case, addressing the issues of CPU cost, accuracy, non-oscillatory property, and resolution of discontinuities. Numerical tests are also performed for two dimensional systems.
文摘Nuclear fuel cell calculation is one of the most complicated steps of neutron transport problems in the reactor core. A few numerical methods use neutron flat flux (FF) approximation to solve this problem. In this approach, neutron flux spectrum is assumed constant in each region. The solution of neutron transport equation using collision probability (CP) method based on non flat flux (NFF) approximation by introducing linear spatial distribution function implemented to a simple cylindrical annular cell has been carried out. In this concept, neutron flux spectrum in each region is different each other because of an existing of the spatial function. Numerical calculation of the neutron flux in each region of the cell using NFF approach shows a fairly good agreement compared to those calculated using existing SRAC code and FF approach. Moreover, calculation of the neutron flux in each region of the nuclear fuel cell using NFF approach needs only 6 meshes which give equivalent result when it is calculated using 24 meshes in FF approach. This result indicates that NFF approach is more efficient to be used to calculate the neutron flux in the regions of the cell than FF approach.
文摘Classical facet elements do not provide an optimal rate of convergence of the numerical solution toward the solution of the exact problem in H(div)-norm for general unstructured meshes containing hexahedra and prisms.We propose two new families of high-order elements for hexahedra,triangular prisms and pyramids that recover the optimal convergence.These elements have compatible restrictions with each other,such that they can be used directly on general hybrid meshes.Moreover the H(div)proposed spaces are completing the De Rham diagram with optimal elements previously constructed for H1 and H(curl)approximation.The obtained pyramidal elements are compared theoretically and numerically with other elements of the literature.Eventually,numerical results demonstrate the efficiency of the finite elements constructed.
基金supported by the NSFC(Nos.11771054,12072042,91852207)the Sino-German Research Group Project(No.GZ1465)the National Key Project GJXM92579.
文摘Hyperbolic conservation laws arise in the context of continuum physics,and are mathematically presented in differential form and understood in the distributional(weak)sense.The formal application of the Gauss-Green theorem results in integral balance laws,in which the concept of flux plays a central role.This paper addresses the spacetime viewpoint of the flux regularity,providing a rigorous treatment of integral balance laws.The established Lipschitz regularity of fluxes(over time intervals)leads to a consistent flux approximation.Thus,fully discrete finite volume schemes of high order may be consistently justified with reference to the spacetime integral balance laws.
文摘In this note, we investigated existence and uniqueness of entropy solution for triply nonlinear degenerate parabolic problem with zero-flux boundary condition. Accordingly to the case of doubly nonlinear degenerate parabolic hyperbolic equation, we propose a generalization of entropy formulation and prove existence and uniqueness result without any structure condition.
基金supported by National Natural Science Foundation of China(Grant No.11361073)
文摘In this paper,firstly,by solving the Riemann problem of the zero-pressure flow in gas dynamics with a flux approximation,we construct parameterized delta-shock and constant density solutions,then we show that,as the flux perturbation vanishes,they converge to the delta-shock and vacuum state solutions of the zero-pressure flow,respectively.Secondly,we solve the Riemann problem of the Euler equations of isentropic gas dynamics with a double parameter flux approximation including pressure.Furthermore,we rigorously prove that,as the two-parameter flux perturbation vanishes,any Riemann solution containing two shock waves tends to a delta-shock solution to the zero-pressure flow;any Riemann solution containing two rarefaction waves tends to a two-contact-discontinuity solution to the zero-pressure flow and the nonvacuum intermediate state in between tends to a vacuum state.Finally,numerical results are given to present the formation processes of delta shock waves and vacuum states.