期刊文献+
共找到29,017篇文章
< 1 2 250 >
每页显示 20 50 100
Reduced mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor contributes to neurodegeneration in a model of spinal and bulbar muscular atrophy pathology 被引量:1
1
作者 Yiyang Qin Wenzhen Zhu +6 位作者 Tingting Guo Yiran Zhang Tingting Xing Peng Yin Shihua Li Xiao-Jiang Li Su Yang 《Neural Regeneration Research》 SCIE CAS 2025年第9期2655-2666,共12页
Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen r... Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen receptor protein,characterized by polyglutamine expansion,is prone to misfolding and forms aggregates in both the nucleus and cytoplasm in the brain in spinal and bulbar muscular atrophy patients.These aggregates alter protein-protein interactions and compromise transcriptional activity.In this study,we reported that in both cultured N2a cells and mouse brain,mutant androgen receptor with polyglutamine expansion causes reduced expression of mesencephalic astrocyte-de rived neurotrophic factor.Overexpressio n of mesencephalic astrocyte-derived neurotrophic factor amelio rated the neurotoxicity of mutant androgen receptor through the inhibition of mutant androgen receptor aggregation.Conversely.knocking down endogenous mesencephalic astrocyte-derived neurotrophic factor in the mouse brain exacerbated neuronal damage and mutant androgen receptor aggregation.Our findings suggest that inhibition of mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor is a potential mechanism underlying neurodegeneration in spinal and bulbar muscular atrophy. 展开更多
关键词 androgen receptor mesencephalic astrocyte-derived neurotrophic factor mouse model NEURODEGENERATION neuronal loss neurotrophic factor polyglutamine disease protein misfolding spinal and bulbar muscular atrophy transcription factor
暂未订购
Analysis of risk factors and predictive value of a nomogram model for sepsis in patients with diabetic foot
2
作者 Wen-Wen Han Jian-Jiang Fang 《World Journal of Diabetes》 2025年第4期144-152,共9页
BACKGROUND Sepsis is a severe complication in hospitalized patients with diabetic foot(DF),often associated with high morbidity and mortality.Despite its clinical significance,limited tools exist for early risk predic... BACKGROUND Sepsis is a severe complication in hospitalized patients with diabetic foot(DF),often associated with high morbidity and mortality.Despite its clinical significance,limited tools exist for early risk prediction.AIM To identify key risk factors and evaluate the predictive value of a nomogram model for sepsis in this population.METHODS This retrospective study included 216 patients with DF admitted from January 2022 to June 2024.Patients were classified into sepsis(n=31)and non-sepsis(n=185)groups.Baseline characteristics,clinical parameters,and laboratory data were analyzed.Independent risk factors were identified through multivariable logistic regression,and a nomogram model was developed and validated.The model's performance was assessed by its discrimination(AUC),calibration(Hosmer-Lemeshow test,calibration plots),and clinical utility[decision curve analysis(DCA)].RESULTS The multivariable analysis identified six independent predictors of sepsis:Diabetes duration,DF Texas grade,white blood cell count,glycated hemoglobin,Creactive protein,and albumin.A nomogram integrating these factors achieved excellent diagnostic performance,with an AUC of 0.908(95%CI:0.865-0.956)and robust internal validation(AUC:0.906).Calibration results showed strong agreement between predicted and observed probabilities(Hosmer-Lemeshow P=0.926).DCA demonstrated superior net benefit compared to extreme intervention scenarios,highlighting its clinical utility.CONCLUSION The nomogram prediction model,based on six key risk factors,demonstrates strong predictive value,calibration,and clinical utility for sepsis in patients with DF.This tool offers a practical approach for early risk stratification,enabling timely interventions and improved clinical management in this high-risk population. 展开更多
关键词 Diabetic foot SEPSIS Risk factors NOMOGRAM Prediction model
暂未订购
Influencing factors and predictive model of the early postoperative recurrence of colorectal cancer with obstruction
3
作者 Jie Qiu Jian-Zhong Wu +2 位作者 Zhi-Gang Gu Jia-Wei Qian Tao Shen 《World Journal of Gastrointestinal Surgery》 2025年第10期255-263,共9页
BACKGROUND In cases of colorectal cancer(CRC)with obstruction,patients experience local tissue edema due to intestinal obstruction.This condition stimulates the accumulation of inflammatory factors,activates cancer ce... BACKGROUND In cases of colorectal cancer(CRC)with obstruction,patients experience local tissue edema due to intestinal obstruction.This condition stimulates the accumulation of inflammatory factors,activates cancer cells,and increases the risk of tumor recurrence.At present,analyses and evaluation tools for factors influencing early postoperative recurrence in patients with CRC and obstruction are limited.AIM To explore the influencing factors and construct a predictive model of the early postoperative recurrence of CRC with obstruction.METHODS Data from 181 patients with CRC and obstruction who underwent surgery in the Department of Gastrointestinal Surgery,Suzhou Ninth Hospital Affiliated to Soochow University,between January 2017 and May 2023 were retrospectively collected.Patients with CRC and obstruction were divided into a recurrence group and a non-recurrence group based on whether recurrence occurred during the 2-year follow-up after surgery.Datasets from the two groups were compared.Subsequently,multiple logistic regression was employed to analyze the influencing factors of the early postoperative recurrence of CRC with obstruction.The nomogram prediction model was drawn using R software,and its performance was evaluated by the goodness of fit test and receiver operating characteristic(ROC)curve analysis.The clinical benefit rate of the model was evaluated by decision curves.RESULTS Among the 181 patients with CRC and obstruction,52(28.73%)experienced tumor recurrence within 2 years after surgery.Significant differences were observed in preoperative carcinoembryonic antigen(CEA),preoperative systemic immuneinflammation index(SII),tumor,node,and metastasis(TNM)stage,differentiation degree,nerve infiltration,and Ki-67 expression between the recurrence and non-recurrence groups(P<0.05).Multivariate logistic regression analysis showed that high preoperative CEA(OR=2.094,P=0.008),high preoperative SII(OR=2.795,P<0.001),TNM stage III(OR=1.644,P=0.027),poor differentiation(OR=1.861,P=0.035),and high Ki-67 expression(OR=2.467,P=0.001)were all influencing factors for early postoperative recurrence of CRC with obstruction.The area under the ROC curve of the nomograph model constructed based on this was 0.890,the goodness of fit deviation test was conducted(χ^(2)=3.903,P=0.866),and the decision curve display model demonstrated practical value in clinical practice.CONCLUSION The early recurrence rate of CRC with obstruction is high.CEA,SII,TNM staging,differentiation degree,and Ki-67 expression are factors related to early postoperative recurrence.A nomogram prediction model incorporating these factors can effectively evaluate the risk of early postoperative recurrence in patients with CRC. 展开更多
关键词 Colorectal cancer OBSTRUCTION Early recurrence Influencing factors Prediction model
暂未订购
Risk factors and clinical prediction models for short-term recurrence after endoscopic surgery in patients with colorectal polyps
4
作者 Meng Zhang Rui Yin +3 位作者 Jie Ying Guan-Qi Liu Ping Wang Jian-Xin Ge 《World Journal of Gastrointestinal Surgery》 2025年第8期255-266,共12页
BACKGROUND Colorectal polyps(CPs)are important precursor lesions of colorectal cancer,and endoscopic surgery remains the primary treatment option.However,the shortterm recurrence rate post-surgery is high,and the risk... BACKGROUND Colorectal polyps(CPs)are important precursor lesions of colorectal cancer,and endoscopic surgery remains the primary treatment option.However,the shortterm recurrence rate post-surgery is high,and the risk factors for recurrence remain unknown.AIM To comprehensively explore risk factors for short-term recurrence of CPs after endoscopic surgery and develop a nomogram prediction model.METHODS Overall,362 patients who underwent endoscopic polypectomy between January 2022 and January 2024 at Nanjing Jiangbei Hospital were included.We screened basic demographic data,clinical and polyp characteristics,surgery-related information,and independent risk factors for CPs recurrence using univariate and multivariate logistic regression analyses.The multivariate analysis results were used to construct a nomogram prediction model,internally validated using Bootstrapping,with performance evaluated using area under the curve(AUC),calibration curve,and decision curve analysis.RESULTS CP re-occurred in 166(45.86%)of the 362 patients within 1 year post-surgery.Multivariate logistic regression analysis showed that age(OR=1.04,P=0.002),alcohol consumption(OR=2.07,P=0.012),Helicobacter pylori infection(OR=2.34,P<0.001),polyp number>2(OR=1.98,P=0.005),sessile polyps(OR=2.10,P=0.006),and adenomatous pathological type(OR=3.02,P<0.001)were independent risk factors for post-surgery recurrence.The nomogram prediction model showed good discriminatory(AUC=0.73)and calibrating power,and decision curve analysis showed that the model had good clinical benefit at risk probabilities>20%.CONCLUSION We identified multiple independent risk factors for short-term recurrence after endoscopic surgery.The nomogram prediction model showed a certain degree of differentiation,calibration,and potential clinical applicability. 展开更多
关键词 Colorectal polyps Endoscopic surgery RECURRENCE Risk factors Prediction models SHORT-TERM
暂未订购
Based on real-world data:Risk factors and prediction model for mental disorders induced by rabies vaccination
5
作者 Jin-Yan Ding Jun-Juan Zhu 《World Journal of Psychiatry》 2025年第8期226-234,共9页
BACKGROUND Rabies is a zoonotic viral disease affecting the central nervous system,caused by the rabies virus,with a case-fatality rate of 100%once symptoms appear.AIM To analyze high-risk factors associated with ment... BACKGROUND Rabies is a zoonotic viral disease affecting the central nervous system,caused by the rabies virus,with a case-fatality rate of 100%once symptoms appear.AIM To analyze high-risk factors associated with mental disorders induced by rabies vaccination and to construct a risk prediction model to inform strategies for improving patients’mental health.METHODS Patients who received rabies vaccinations at the Department of Infusion Yiwu Central Hospital between August 2024 and July 2025 were included,totaling 384 cases.Data were collected from medical records and included demographic characteristics(age,gender,occupation),lifestyle habits,and details regarding vaccine type,dosage,and injection site.The incidence of psychiatric disorders following vaccination was assessed using standardized anxiety and depression rating scales.Patients were categorized into two groups based on the presence or absence of anxiety and depression symptoms:The psychiatric disorder group and the non-psychiatric disorder group.Differences between the two groups were compared,and high-risk factors were identified using multivariate logistic regression analysis.A predictive model was then developed based on these factors to evaluate its predictive performance.RESULTS Among the 384 patients who received rabies vaccinations,36 cases(9.38%)were diagnosed with anxiety,52 cases(13.54%)with depression,and 88 cases(22.92%)with either condition.Logistic regression analysis identified the following signi ficant risk factors for psychiatric disorders:Education level of primary school or below,exposure site at the head and neck,exposure classified as grade III,family status of divorced/widowed/unmarried/living alone,number of wounds greater than one,and low awareness of rabies prevention and control(P<0.05).The risk prediction model demonstrated good performance,with an area under the receiver operating characteristic curve of 0.859,a specificity of 74.42%,and a sensitivity of 93.02%.CONCLUSION In real-world settings,psychiatric disorders following rabies vaccination are relatively common and are associated with factors such as lower education level,higher exposure severity,vulnerable family status,and limited awareness of rabies prevention and control.The developed risk prediction model may aid in early identification of high-risk individuals and support timely clinical intervention. 展开更多
关键词 RABIES VACCINATION Mental disorders High risk factors Risk prediction model
暂未订购
Construction of a risk prediction model for hypertension in type 2 diabetes:Independent risk factors and nomogram
6
作者 Jian-Yong Zhao Jia-Qing Dou Ming-Wei Chen 《World Journal of Diabetes》 2025年第5期182-191,共10页
BACKGROUND Type 2 diabetes mellitus(T2DM)is a prevalent metabolic disorder increasingly linked with hypertension,posing significant health risks.The need for a predictive model tailored for T2DM patients is evident,as... BACKGROUND Type 2 diabetes mellitus(T2DM)is a prevalent metabolic disorder increasingly linked with hypertension,posing significant health risks.The need for a predictive model tailored for T2DM patients is evident,as current tools may not fully capture the unique risks in this population.This study hypothesizes that a nomogram incorporating specific risk factors will improve hypertension risk prediction in T2DM patients.AIM To develop and validate a nomogram prediction model for hypertension in T2DM patients.METHODS A retrospective observational study was conducted using data from 26850 T2DM patients from the Anhui Provincial Primary Medical and Health Information Management System(2022 to 2024).The study included patients aged 18 and above with available data on key variables.Exclusion criteria were type 1 diabetes,gestational diabetes,insufficient data,secondary hypertension,and abnormal liver and kidney function.The Least Absolute Shrinkage and Selection Operator regression and multivariate logistic regression were used to construct the nomogram,which was validated on separate datasets.RESULTS The developed nomogram for T2DM patients incorporated age,low-density lipoprotein,body mass index,diabetes duration,and urine protein levels as key predictive factors.In the training dataset,the model demonstrated a high discriminative power with an area under the receiver operating characteristic curve(AUC)of 0.823,indicating strong predictive accuracy.The validation dataset confirmed these findings with an AUC of 0.812.The calibration curve analysis showed excellent agreement between predicted and observed outcomes,with absolute errors of 0.017 for the training set and 0.031 for the validation set.The Hosmer-Lemeshow test yielded non-significant results for both sets(χ^(2)=7.066,P=0.562 for training;χ^(2)=6.122,P=0.709 for validation),suggesting good model fit.CONCLUSION The nomogram effectively predicts hypertension risk in T2DM patients,offering a valuable tool for personalized risk assessment and guiding targeted interventions.This model provides a significant advancement in the management of T2DM and hypertension comorbidity. 展开更多
关键词 Type 2 diabetes mellitus HYPERTENSION Risk factors NOMOGRAM Prediction model
暂未订购
The ρ-Meson Electromagnetic Form Factors within the Light-Front Quark Model
7
作者 Shuai Xu Xiao-Nan Li Xing-Gang Wu 《Chinese Physics Letters》 2025年第8期31-37,共7页
In this paper,we study the ρ-meson electromagnetic form factors(EMFFs)within the framework of the light-front quark model.The physical form factors G_(C,M,Q)(Q^(2))of the ρ-meson,as well as the charged square radius... In this paper,we study the ρ-meson electromagnetic form factors(EMFFs)within the framework of the light-front quark model.The physical form factors G_(C,M,Q)(Q^(2))of the ρ-meson,as well as the charged square radius<r^(2)>,the magnetic moment μ,and the quadrupole moment Q,are calculated,which describe the behaviors of EMFFs at zero momentum transfer.Using the type-Ⅱ replacement,we find that the zero-mode does contribute zero to the matrix element S_(00)^(+).It is found that the“M→M_(0)”replacement improves the angular condition remarkably,which permits different prescriptions of ρ-meson EMFFs to give the consistent results.The residual tiny violation of angular condition needs other explanations beyond the zero-mode contributions.Our results indicate that the relativistic effects or interaction internal structure are weaken in the zero-binding limit.This work is also applicable to other spin-1 particles. 展开更多
关键词 light front quark model zero mode contribution electromagnetic form factors emffs within relativistic effects rho meson magnetic moment electromagnetic form factors angular condition
原文传递
Risk factors and predictive modeling of early postoperative liver function abnormalities
8
作者 Lin Zhong Hao-Yuan Wang +5 位作者 Xiao-Na Li Qiong Ling Ning Hao Xiang-Yu Li Gao-Feng Zhao Min Liao 《World Journal of Hepatology》 2025年第8期233-243,共11页
BACKGROUND Research has shown that several factors can influence postoperative abnormal liver function;however,most studies on this issue have focused specifically on hepatic and cardiac surgeries,leaving limited rese... BACKGROUND Research has shown that several factors can influence postoperative abnormal liver function;however,most studies on this issue have focused specifically on hepatic and cardiac surgeries,leaving limited research on contributing factors in other types of surgeries.AIM To identify the risk factors for early postoperative abnormal liver function in multiple surgery types and construct a risk prediction model.METHODS This retrospective cohort study involved 3720 surgical patients from 5 surgical departments at Guangdong Provincial Hospital of Traditional Chinese Medicine.Patients were divided into abnormal(n=108)and normal(n=3612)groups based on liver function post-surgery.Univariate analysis and LASSO regression screened variables,followed by logistic regression to identify risk factors.A prediction model was constructed based on the variables selected via logistic re-gression.The goodness-of-fit of the model was evaluated using the Hosm-er–Lemeshow test,while discriminatory ability was measured by the area under the receiver operating characteristic curve.Calibration curves were plotted to visualize the consistency between predicted probabilities and observed outcomes.RESULTS The key factors contributing to abnormal liver function after surgery include elevated aspartate aminotransferase and alanine aminotransferase levels and reduced platelet counts pre-surgery,as well as the sevoflurane use during the procedure,among others.CONCLUSION The above factors collectively represent notable risk factors for postoperative liver function injury,and the prediction model developed based on these factors demonstrates strong predictive efficacy. 展开更多
关键词 Perioperative period Abnormal liver function Risk factor Univariate analysis Risk prediction model
暂未订购
Analysis of Key Success Factors in Cultural and Artistic Management and Educational Model Innovation
9
作者 Ziran Hu 《Journal of Contemporary Educational Research》 2025年第5期90-95,共6页
In the context of globalization and digitalization,cultural and artistic management and educational model innovation have become the core driving force for the sustainable development of the industry.This article syst... In the context of globalization and digitalization,cultural and artistic management and educational model innovation have become the core driving force for the sustainable development of the industry.This article systematically sorts out the six key success factors of strategic planning,content innovation,organizational change,user orientation,and dynamic evaluation through case analysis and theoretical discussion.These factors work together to provide a clear path and impetus for the sustainable development of the cultural and arts industry. 展开更多
关键词 Cultural and arts management Educational model innovation Key success factors
在线阅读 下载PDF
Augmentation of PM_(1.0) measurements based on machine learning model and environmental factors
10
作者 Hyemin Hwang Chang Hyeok Kim +3 位作者 Jong-Sung Park Sechan Park Jong Bum Kim Jae Young Lee 《Journal of Environmental Sciences》 2025年第10期91-101,共11页
PM_(1.0),particulate matter with an aerodynamic diameter smaller than 1.0μm,can adversely affect human health.However,fewer stations are capable of measuring PM_(1.0) concentrations than PM2.5 and PM10 concentrations... PM_(1.0),particulate matter with an aerodynamic diameter smaller than 1.0μm,can adversely affect human health.However,fewer stations are capable of measuring PM_(1.0) concentrations than PM2.5 and PM10 concentrations in real time(i.e.,only 9 locations for PM_(1.0) vs.623 locations for PM2.5 or PM10)in South Korea,making it impossible to conduct a nationwide health risk analysis of PM_(1.0).Thus,this study aimed to develop a PM_(1.0) prediction model using a random forest algorithm based on PM_(1.0) data from the nine measurement stations and various environmental input factors.Cross validation,in which the model was trained in eight stations and tested in the remaining station,achieved an average R^(2) of 0.913.The high R^(2) value achieved undermutually exclusive training and test locations in the cross validation can be ascribed to the fact that all the locations had similar relationships between PM_(1.0) and the input factors,which were captured by our model.Moreover,results of feature importance analysis showed that PM2.5 and PM10 concentrations were the two most important input features in predicting PM_(1.0) concentration.Finally,the model was used to estimate the PM_(1.0) concentrations in 623 locations,where input factors such as PM2.5 and PM10 can be obtained.Based on the augmented profile,we identified Seoul and Ansan to be PM_(1.0) concentration hotspots.These regions are large cities or the center of anthropogenic and industrial activities.The proposed model and the augmented PM_(1.0) profiles can be used for large epidemiological studies to understand the health impacts of PM_(1.0). 展开更多
关键词 Particulate matter Random forest Input factor PM_(1.0)prediction model Cross validation Feature importance analysis
原文传递
Evaluation and Influence Factors of Green Innovation Efficiency in Old Industrial Area of Northeast China:New Evidence Based on Spatial Econometric Models
11
作者 GUO Fuyou LI Linshan +2 位作者 ZHOU Mingxi SUN Yongsheng REN Jiamin 《Chinese Geographical Science》 2025年第6期1315-1327,共13页
Green innovation is an important driving force for high-quality development and an important guarantee for the revitalization of the old industrial base in Northeast China.However,research on green innovation is still... Green innovation is an important driving force for high-quality development and an important guarantee for the revitalization of the old industrial base in Northeast China.However,research on green innovation is still insufficient.Using the super-efficiency epsilon-based measure Malmquist model,kernel density estimation,and spatial econometric model,this study investigated the spatiotemporal evolution characteristics and influencing factors of green innovation efficiency(GIE)in Northeast China from 2005 to 2020.The results reveal that:1)The GIE in Northeast China has obvious phased characteristics,where 2005-2011 was a period of fluctuating decline while 2012-2020 was a period of fluctuating increase,reflecting the severe resource and environmental constraints faced by the green innovation process.2)The GIE in the Northeast China has a significant spatial dependence,which has not formed a relatively stable spatial club feature.The process for improving the GIE in the Northeast China in the future is still arduous and far off.3)The interweaving and mutual influence of nonequilibrium factors have led to the diversity and complexity of the spatiotemporal pattern evolution of GIE.Overall,the level of economic development and industrial structure has a positive effect,while foreign investment and industrial agglomeration have a negative effect.The direct effects of government regulation,resource endowment,science and technology,environmental regulation,and urbanization are not significant.The research conclusion of this article can provide important reference for the revitalization of Northeast China. 展开更多
关键词 green innovation efficiency(GIE) spatial and temporal patterns influencing factors spatial econometric model Northeast China
在线阅读 下载PDF
Risk factors and predictive model for mortality in acute myocardial infarction with ventricular septal rupture at high altitudes
12
作者 Li-Hong Zhang Zhi-Fu Cen +8 位作者 Qian Qiao Xue-Rui Ye Lu Cheng Gui-Qin Liu Yi Liu Xing-Qiang Zhang Xian-Feng Pan Hao-Ling Zhang Jing-Jing Zhang 《World Journal of Cardiology》 2025年第7期143-158,共16页
BACKGROUND Acute myocardial infarction(AMI)combined with ventricular septal perforation(VSR)is still a highly fatal condition in the era of reperfusion therapy.The incidence rate has decreased to 0.2%-0.4%due to the p... BACKGROUND Acute myocardial infarction(AMI)combined with ventricular septal perforation(VSR)is still a highly fatal condition in the era of reperfusion therapy.The incidence rate has decreased to 0.2%-0.4%due to the popularization of percutaneous coronary intervention.However,the risk is significantly increased for those who fail to undergo revascularization in time,and the mortality rate remains high.The current core contradiction in clinical practice lies in the selection of surgical timing,and the disparity in medical resources significantly affects prognosis.There is an urgent need to optimize the identification of high-risk populations and individualized treatment strategies.AIM To investigate the clinical features,determine the prognostic factors,and develop a predictive model for 30-day mortality in patients with acute myocardial infarction complicated by ventricular septal rupture(AMI-VSR)residing in high-altitude regions.METHODS This study retrospectively analyzed 48 AMI-VSR patients admitted to a Yunnan hospital from 2017 to 2024,with the establishment of survival(n=30)and mortality(n=18)groups based on patients’survival status.Risk factors were identified by univariate and multivariate logistic regression analyses.A nomogram model was developed using R software and validated via receiver operating characteristic(ROC)analysis and calibration curves.RESULTS Age,uric acid(UA),interleukin-6(IL-6),and low hemoglobin(Hb)were independent risk factors for 30-day mortality(odds ratios:1.147,1.006,1.034,and 0.941,respectively;P<0.05).The nomogram demonstrated excellent discrimination(area under the ROC curve=0.939)and calibration(Hosmer-Lemeshowχ²=2.268,P=0.971).In addition,patients’poor outcomes could be synergistically predicted by IL-6 and UA,advanced age,and reduced Hb.CONCLUSION This study highlights age,UA,IL-6,and Hb as critical predictors of mortality in AMI-VSR patients at high altitudes.The validated nomogram provides a practical tool for early risk stratification and tailored interventions,addressing gaps in managing this high-risk population in resource-limited settings. 展开更多
关键词 High-altitude regions Acute myocardial infarction complicated by ventricular septal rupture Mortality risk factors Nomogram predictive model
暂未订购
Factors in Work-Related Musculoskeletal Disorders in Dentists:A Structural Equation Model
13
作者 Shunhang Li Jian Li +6 位作者 Xin Xu Yushan Huang Yilin Zhang Xiaoshuang Xu Weizhen Guan Xiaoping Liu Jing Li 《Biomedical and Environmental Sciences》 2025年第5期639-643,共5页
Dentistry is a profession with a high prevalence of work-related musculoskeletal disorders(WMSDs),with symptoms often appearing very early in one’s career[1].WMSDs are conditions affecting the muscles,bones,and nervo... Dentistry is a profession with a high prevalence of work-related musculoskeletal disorders(WMSDs),with symptoms often appearing very early in one’s career[1].WMSDs are conditions affecting the muscles,bones,and nervous system due to occupational factors.In 2002,the International Labor Organization included musculoskeletal diseases in the International List of Occupational Diseases.China’s recently updated Classification and Catalog of Occupational Diseases has introduced two new categories of occupational illnesses,including occupational musculoskeletal disorders.WMSDs significantly impact the health and work of dentists,reducing their quality of life and causing economic losses.These disorders are multifactorial in nature,influenced by personal,psychosocial,biomechanical,and environmental factors.Dentists frequently maintain static or awkward postures during procedures,which leads to musculoskeletal strain and discomfort;additionally,long working hours contribute to psychological stress,further increasing the risk of WMSDs[2]. 展开更多
关键词 DENTISTS occupational factors classification catalog occupational diseases musculoskeletal disorders wmsds awkward postures work related musculoskeletal disorders structural equation model static postures
暂未订购
Video action recognition meets vision-language models exploring human factors in scene interaction: a review
14
作者 GUO Yuping GAO Hongwei +3 位作者 YU Jiahui GE Jinchao HAN Meng JU Zhaojie 《Optoelectronics Letters》 2025年第10期626-640,共15页
Video action recognition(VAR)aims to analyze dynamic behaviors in videos and achieve semantic understanding.VAR faces challenges such as temporal dynamics,action-scene coupling,and the complexity of human interactions... Video action recognition(VAR)aims to analyze dynamic behaviors in videos and achieve semantic understanding.VAR faces challenges such as temporal dynamics,action-scene coupling,and the complexity of human interactions.Existing methods can be categorized into motion-level,event-level,and story-level ones based on spatiotemporal granularity.However,single-modal approaches struggle to capture complex behavioral semantics and human factors.Therefore,in recent years,vision-language models(VLMs)have been introduced into this field,providing new research perspectives for VAR.In this paper,we systematically review spatiotemporal hierarchical methods in VAR and explore how the introduction of large models has advanced the field.Additionally,we propose the concept of“Factor”to identify and integrate key information from both visual and textual modalities,enhancing multimodal alignment.We also summarize various multimodal alignment methods and provide in-depth analysis and insights into future research directions. 展开更多
关键词 human factors video action recognition vision language models analyze dynamic behaviors spatiotemporal granularity video action recognition var aims multimodal alignment scene interaction
原文传递
Multi-factor high-order intuitionistic fuzzy timeseries forecasting model 被引量:1
15
作者 Ya'nan Wang Yingjie Lei +1 位作者 Yang Lei Xiaoshi Fan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第5期1054-1062,共9页
Fuzzy sets theory cannot describe the neutrality degreeof data, which has largely limited the objectivity of fuzzy time seriesin uncertain data forecasting. With this regard, a multi-factor highorderintuitionistic fuz... Fuzzy sets theory cannot describe the neutrality degreeof data, which has largely limited the objectivity of fuzzy time seriesin uncertain data forecasting. With this regard, a multi-factor highorderintuitionistic fuzzy time series forecasting model is built. Inthe new model, a fuzzy clustering algorithm is used to get unequalintervals, and a more objective technique for ascertaining membershipand non-membership functions of the intuitionistic fuzzy setis proposed. On these bases, forecast rules based on multidimensionalintuitionistic fuzzy modus ponens inference are established.Finally, contrast experiments on the daily mean temperature ofBeijing are carried out, which show that the novel model has aclear advantage of improving the forecast accuracy. 展开更多
关键词 multi-factor high-order intuitionistic fuzzy time series forecasting model intuitionistic fuzzy inference.
在线阅读 下载PDF
Predictive factors and model validation of post-colon polyp surgery Helicobacter pylori infection 被引量:4
16
作者 Zheng-Sen Zhang 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第1期173-185,共13页
BACKGROUND Recently,research has linked Helicobacter pylori(H.pylori)stomach infection to colonic inflammation,mediated by toxin production,potentially impacting colorectal cancer occurrence.AIM To investigate the ris... BACKGROUND Recently,research has linked Helicobacter pylori(H.pylori)stomach infection to colonic inflammation,mediated by toxin production,potentially impacting colorectal cancer occurrence.AIM To investigate the risk factors for post-colon polyp surgery,H.pylori infection,and its correlation with pathologic type.METHODS Eighty patients who underwent colon polypectomy in our hospital between January 2019 and January 2023 were retrospectively chosen.They were then randomly split into modeling(n=56)and model validation(n=24)sets using R.The modeling cohort was divided into an H.pylori-infected group(n=37)and an H.pylori-uninfected group(n=19).Binary logistic regression analysis was used to analyze the factors influencing the occurrence of H.pylori infection after colon polyp surgery.A roadmap prediction model was established and validated.Finally,the correlation between the different pathological types of colon polyps and the occurrence of H.pylori infection was analyzed after colon polyp surgery.RESULTS Univariate results showed that age,body mass index(BMI),literacy,alcohol consumption,polyp pathology type,high-risk adenomas,and heavy diet were all influential factors in the development of H.pylori infection after intestinal polypectomy.Binary multifactorial logistic regression analysis showed that age,BMI,and type of polyp pathology were independent predictors of the occurrence of H.pylori infection after intestinal polypectomy.The area under the receiver operating characteristic curve was 0.969[95%confidence interval(95%CI):0.928–1.000]and 0.898(95%CI:0.773–1.000)in the modeling and validation sets,respectively.The slope of the calibration curve of the graph was close to 1,and the goodness-of-fit test was P>0.05 in the two sets.The decision analysis curve showed a high rate of return in both sets.The results of the correlation analysis between different pathological types and the occurrence of H.pylori infection after colon polyp surgery showed that hyperplastic polyps,inflammatory polyps,and the occurrence of H.pylori infection were not significantly correlated.In contrast,adenomatous polyps showed a significant positive correlation with the occurrence of H.pylori infection.CONCLUSION Age,BMI,and polyps of the adenomatous type were independent predictors of H.pylori infection after intestinal polypectomy.Moreover,the further constructed column-line graph prediction model of H.pylori infection after intestinal polypectomy showed good predictive ability. 展开更多
关键词 Colon polyps Helicobacter pylori Risk factors Pathologic type Columnar graphic modeling
暂未订购
Analysis of risk factors leading to anxiety and depression in patients with prostate cancer after castration and the construction of a risk prediction model 被引量:4
17
作者 Rui-Xiao Li Xue-Lian Li +4 位作者 Guo-Jun Wu Yong-Hua Lei Xiao-Shun Li Bo Li Jian-Xin Ni 《World Journal of Psychiatry》 SCIE 2024年第2期255-265,共11页
BACKGROUND Cancer patients often suffer from severe stress reactions psychologically,such as anxiety and depression.Prostate cancer(PC)is one of the common cancer types,with most patients diagnosed at advanced stages ... BACKGROUND Cancer patients often suffer from severe stress reactions psychologically,such as anxiety and depression.Prostate cancer(PC)is one of the common cancer types,with most patients diagnosed at advanced stages that cannot be treated by radical surgery and which are accompanied by complications such as bodily pain and bone metastasis.Therefore,attention should be given to the mental health status of PC patients as well as physical adverse events in the course of clinical treatment.AIM To analyze the risk factors leading to anxiety and depression in PC patients after castration and build a risk prediction model.METHODS A retrospective analysis was performed on the data of 120 PC cases treated in Xi'an People's Hospital between January 2019 and January 2022.The patient cohort was divided into a training group(n=84)and a validation group(n=36)at a ratio of 7:3.The patients’anxiety symptoms and depression levels were assessed 2 wk after surgery with the Self-Rating Anxiety Scale(SAS)and the Selfrating Depression Scale(SDS),respectively.Logistic regression was used to analyze the risk factors affecting negative mood,and a risk prediction model was constructed.RESULTS In the training group,35 patients and 37 patients had an SAS score and an SDS score greater than or equal to 50,respectively.Based on the scores,we further subclassified patients into two groups:a bad mood group(n=35)and an emotional stability group(n=49).Multivariate logistic regression analysis showed that marital status,castration scheme,and postoperative Visual Analogue Scale(VAS)score were independent risk factors affecting a patient's bad mood(P<0.05).In the training and validation groups,patients with adverse emotions exhibited significantly higher risk scores than emotionally stable patients(P<0.0001).The area under the curve(AUC)of the risk prediction model for predicting bad mood in the training group was 0.743,the specificity was 70.96%,and the sensitivity was 66.03%,while in the validation group,the AUC,specificity,and sensitivity were 0.755,66.67%,and 76.19%,respectively.The Hosmer-Lemeshow test showed aχ^(2) of 4.2856,a P value of 0.830,and a C-index of 0.773(0.692-0.854).The calibration curve revealed that the predicted curve was basically consistent with the actual curve,and the calibration curve showed that the prediction model had good discrimination and accuracy.Decision curve analysis showed that the model had a high net profit.CONCLUSION In PC patients,marital status,castration scheme,and postoperative pain(VAS)score are important factors affecting postoperative anxiety and depression.The logistic regression model can be used to successfully predict the risk of adverse psychological emotions. 展开更多
关键词 Prostate cancer CASTRATION Anxiety and depression Risk factors Risk prediction model
暂未订购
Analysis of risk factors of suicidal ideation in adolescent patients with depression and construction of prediction model 被引量:2
18
作者 Jun-Chao Zhou Yan Cao +1 位作者 Xu-Yuan Xu Zhen-Ping Xian 《World Journal of Psychiatry》 SCIE 2024年第3期388-397,共10页
BACKGROUND Major depressive disorder is a common mental illness among adolescents and is the largest disease burden in this age group.Most adolescent patients with depression have suicidal ideation(SI);however,few stu... BACKGROUND Major depressive disorder is a common mental illness among adolescents and is the largest disease burden in this age group.Most adolescent patients with depression have suicidal ideation(SI);however,few studies have focused on the factors related to SI,and effective predictive models are lacking.AIM To construct a risk prediction model for SI in adolescent depression and provide a reference assessment tool for prevention.METHODS The data of 150 adolescent patients with depression at the First People's Hospital of Lianyungang from June 2020 to December 2022 were retrospectively analyzed.Based on whether or not they had SI,they were divided into a SI group(n=91)and a non-SI group(n=59).The general data and laboratory indices of the two groups were compared.Logistic regression was used to analyze the factors influencing SI in adolescent patients with depression,a nomogram prediction model was constructed based on the analysis results,and internal evaluation was performed.Receiver operating characteristic and calibration curves were used to evaluate the model’s efficacy,and the clinical application value was evaluated using decision curve analysis(DCA).RESULTS There were differences in trauma history,triggers,serum ferritin levels(SF),highsensitivity C-reactive protein levels(hs-CRP),and high-density lipoprotein(HDLC)levels between the two groups(P<0.05).Logistic regression analysis showed that trauma history,predisposing factors,SF,hs-CRP,and HDL-C were factors influencing SI in adolescent patients with depression.The area under the curve of the nomogram prediction model was 0.831(95%CI:0.763–0.899),sensitivity was 0.912,and specificity was 0.678.The higher net benefit of the DCA and the average absolute error of the calibration curve were 0.043,indicating that the model had a good fit.CONCLUSION The nomogram prediction model based on trauma history,triggers,ferritin,serum hs-CRP,and HDL-C levels can effectively predict the risk of SI in adolescent patients with depression. 展开更多
关键词 Adolescents DEPRESSION Suicidal ideation Risk factors Prediction model FERRITIN
暂未订购
From Digital Human Modeling to Human Digital Twin: Framework and Perspectives in Human Factors 被引量:1
19
作者 Qiqi He Li Li +5 位作者 Dai Li Tao Peng Xiangying Zhang Yincheng Cai Xujun Zhang Renzhong Tang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期1-14,共14页
The human digital twin(HDT)emerges as a promising human-centric technology in Industry 5.0,but challenges remain in human modeling and simulation.Digital human modeling(DHM)provides solutions for modeling and simulati... The human digital twin(HDT)emerges as a promising human-centric technology in Industry 5.0,but challenges remain in human modeling and simulation.Digital human modeling(DHM)provides solutions for modeling and simulating human physical and cognitive aspects to support ergonomic analysis.However,it has limitations in real-time data usage,personalized services,and timely interaction.The emerging HDT concept offers new possibilities by integrating multi-source data and artificial intelligence for continuous monitoring and assessment.Hence,this paper reviews the evolution from DHM to HDT and proposes a unified HDT framework from a human factors perspective.The framework comprises the physical twin,the virtual twin,and the linkage between these two.The virtual twin integrates human modeling and AI engines to enable model-data-hybrid-enabled simulation.HDT can potentially upgrade traditional ergonomic methods to intelligent services through real-time analysis,timely feedback,and bidirectional interactions.Finally,the future perspectives of HDT for industrial applications as well as technical and social challenges are discussed.In general,this study outlines a human factors perspective on HDT for the first time,which is useful for cross-disciplinary research and human factors innovation to enhance the development of HDT in industry. 展开更多
关键词 Human digital twin Digital human modeling Human factors Human-centric technology
暂未订购
Risk factors and survival prediction model establishment for prognosis in patients with radical resection of gallbladder cancer 被引量:3
20
作者 Xing-Fei Li Tan-Tu Ma Tao Li 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第10期3239-3252,共14页
BACKGROUND Gallbladder cancer(GBC)is the most common malignant tumor of the biliary system,and is often undetected until advanced stages,making curative surgery unfeasible for many patients.Curative surgery remains th... BACKGROUND Gallbladder cancer(GBC)is the most common malignant tumor of the biliary system,and is often undetected until advanced stages,making curative surgery unfeasible for many patients.Curative surgery remains the only option for long-term survival.Accurate postsurgical prognosis is crucial for effective treatment planning.tumor-node-metastasis staging,which focuses on tumor infiltration,lymph node metastasis,and distant metastasis,limits the accuracy of prognosis.Nomograms offer a more comprehensive and personalized approach by visually analyzing a broader range of prognostic factors,enhancing the precision of treatment planning for patients with GBC.AIM A retrospective study analyzed the clinical and pathological data of 93 patients who underwent radical surgery for GBC at Peking University People's Hospital from January 2015 to December 2020.Kaplan-Meier analysis was used to calculate the 1-,2-and 3-year survival rates.The log-rank test was used to evaluate factors impacting prognosis,with survival curves plotted for significant variables.Single-factor analysis revealed statistically significant differences,and multivariate Cox regression identified independent prognostic factors.A nomogram was developed and validated with receiver operating characteristic curves and calibration curves.Among 93 patients who underwent radical surgery for GBC,30 patients survived,accounting for 32.26%of the sample,with a median survival time of 38 months.The 1-year,2-year,and 3-year survival rates were 83.87%,68.82%,and 53.57%,respectively.Univariate analysis revealed that carbohydrate antigen 19-9 expre-ssion,T stage,lymph node metastasis,histological differentiation,surgical margins,and invasion of the liver,ex-trahepatic bile duct,nerves,and vessels(P≤0.001)significantly impacted patient prognosis after curative surgery.Multivariate Cox regression identified lymph node metastasis(P=0.03),histological differentiation(P<0.05),nerve invasion(P=0.036),and extrahepatic bile duct invasion(P=0.014)as independent risk factors.A nomogram model with a concordance index of 0.838 was developed.Internal validation confirmed the model's consistency in predicting the 1-year,2-year,and 3-year survival rates.CONCLUSION Lymph node metastasis,tumor differentiation,extrahepatic bile duct invasion,and perineural invasion are independent risk factors.A nomogram based on these factors can be used to personalize and improve treatment strategies. 展开更多
关键词 Gallbladder cancer radical surgery Prognosis of gallbladder cancer Multifactor analysis Independent risk factors NOMOGRAM Survival prediction model
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部