A family of neural networks is proposed to solve linear complementarity problems(LCP).The neural networks are constructed from the novel equivalent model of LCP,which is reformulated by utilizing the modulus and smoot...A family of neural networks is proposed to solve linear complementarity problems(LCP).The neural networks are constructed from the novel equivalent model of LCP,which is reformulated by utilizing the modulus and smoothing technologies.Some important properties of the proposed novel equivalent model are summarized.In addition,the stability properties of the proposed steepest descent-based neural networks for LCP are analyzed.In order to illustrate the theoretical results,we provide some numerical simulations and compare the proposed neural networks with existing neural networks based on the NCP-functions.Numerical results indicate that the performance of the proposed neural networks is effective and robust.展开更多
Images with complementary spectral information can be recorded using image sensors that can identify visible and near-infrared spectrum.The fusion of visible and nearinfrared(NIR)aims to enhance the quality of images ...Images with complementary spectral information can be recorded using image sensors that can identify visible and near-infrared spectrum.The fusion of visible and nearinfrared(NIR)aims to enhance the quality of images acquired by video monitoring systems for the ease of user observation and data processing.Unfortunately,current fusion algorithms produce artefacts and colour distortion since they cannot make use of spectrum properties and are lacking in information complementarity.Therefore,an information complementarity fusion(ICF)model is designed based on physical signals.In order to separate high-frequency noise from important information in distinct frequency layers,the authors first extracted texture-scale and edge-scale layers using a two-scale filter.Second,the difference map between visible and near-infrared was filtered using the extended-DoG filter to produce the initial visible-NIR complementary weight map.Then,to generate a guide map,the near-infrared image with night adjustment was processed as well.The final complementarity weight map was subsequently derived via an arctanI function mapping using the guide map and the initial weight maps.Finally,fusion images were generated with the complementarity weight maps.The experimental results demonstrate that the proposed approach outperforms the state-of-the-art in both avoiding artificial colours as well as effectively utilising information complementarity.展开更多
We theoretically investigate the high-order harmonic generation(HHG)of defect-free solids by solving the timedependent Schr¨odinger equation(TDSE).The results show that the harmonic intensity can be enhanced,harm...We theoretically investigate the high-order harmonic generation(HHG)of defect-free solids by solving the timedependent Schr¨odinger equation(TDSE).The results show that the harmonic intensity can be enhanced,harmonic order can be extended,and modulation near the cutoff order becomes smaller for the second plateau by increasing the time delay.These effects are due to an increase of the electron population in higher energy bands,where the larger band gap allows electrons to release more energy,and the long electronic paths are suppressed.Additionally,we also investigate the HHG of defective solids by Bohmian trajectories(BT).It is found that the harmonic intensity of the second plateau can be further enhanced.Simultaneously,cutoff order is also extended due to Bohmian particles moving farther away from the defective zone.展开更多
We investigate theoretically the effects of chirped laser pulses on high-order harmonic generation(HHG)from solids.We find that the harmonic spectra display redshifts for the driving laser pulses with negative chirp a...We investigate theoretically the effects of chirped laser pulses on high-order harmonic generation(HHG)from solids.We find that the harmonic spectra display redshifts for the driving laser pulses with negative chirp and blueshifts for those with positive chirp,which is due to the change in the instantaneous frequency of the driving laser for different chirped pulses.The analysis of crystal-momentum-resolved(k-resolved)HHG reveals that the frequency shifts are equal for the harmonics generated by different crystal momentum channels.The frequency shifts in the cutoff region are larger than those in the plateau region.With the increase of the absolute value of the chirp parameters,the frequency shifts of HHG become more significant,leading to the shifts from odd-to even-order harmonics.We also demonstrate that the frequency shifts of harmonic spectra are related to the duration of the chirped laser field,but are insensitive to the laser intensity and dephasing time.展开更多
A new oxidative N-heterocyclic carbene(NHC)-catalyzed high-order[7+3]annulation reaction ofγ-indolyl phenols as 1,7-dinucleophiles andα,β-alkynals with the aid of Sc(OTf)_(3)is reported,enabling the highly regiosel...A new oxidative N-heterocyclic carbene(NHC)-catalyzed high-order[7+3]annulation reaction ofγ-indolyl phenols as 1,7-dinucleophiles andα,β-alkynals with the aid of Sc(OTf)_(3)is reported,enabling the highly regioselective access to unprecedented polyarene-fused ten-membered lactams bearing a bridged aryl-aryl-indole scaffold in moderate to good yields.This protocol demonstrates a broad substrate scope,good compatibility with substituents and complete regioselectivity,providing an organocatalytic modular synthetic strategy for creating medium-sized lactams.展开更多
Thermal expansion is crucial for various industrial processes and is increasingly the focus of research endeavors aimed at improving material performance.However,it is the continuous advancements in first-principles c...Thermal expansion is crucial for various industrial processes and is increasingly the focus of research endeavors aimed at improving material performance.However,it is the continuous advancements in first-principles calculations that have enabled researchers to understand the microscopic origins of thermal expansion.In this study,we propose a coefficient of thermal expansion(CTE)calculation scheme based on self-consistent phonon theory,incorporating the fourth-order anharmonicity.We selected four structures(Si,CaZrF_(6),SrTiO_(3),NaBr)to investigate high-order anharmonicity’s impact on their CTEs,based on bonding types.The results indicate that our method goes beyond the second-order quasi-harmonic approximation and the third-order perturbation theory,aligning closely with experimental data.Furthermore,we observed that an increase in the ionicity of the structures leads to a more pronounced influence of high-order anharmonicity on CTE,with this effect primarily manifesting in variations of the Grüneisen parameter.Our research provides a theoretical foundation for accurately predicting and regulating the thermal expansion behavior of materials.展开更多
In this paper,we propose a new full-Newton step feasible interior-point algorithm for the special weighted linear complementarity problems.The proposed algorithm employs the technique of algebraic equivalent transform...In this paper,we propose a new full-Newton step feasible interior-point algorithm for the special weighted linear complementarity problems.The proposed algorithm employs the technique of algebraic equivalent transformation to derive the search direction.It is shown that the proximity measure reduces quadratically at each iteration.Moreover,the iteration bound of the algorithm is as good as the best-known polynomial complexity for these types of problems.Furthermore,numerical results are presented to show the efficiency of the proposed algorithm.展开更多
An efficient and accurate scalar auxiliary variable(SAV)scheme for numerically solving nonlinear parabolic integro-differential equation(PIDE)is developed in this paper.The original equation is first transformed into ...An efficient and accurate scalar auxiliary variable(SAV)scheme for numerically solving nonlinear parabolic integro-differential equation(PIDE)is developed in this paper.The original equation is first transformed into an equivalent system,and the k-order backward differentiation formula(BDF k)and central difference formula are used to discretize the temporal and spatial derivatives,respectively.Different from the traditional discrete method that adopts full implicit or full explicit for the nonlinear integral terms,the proposed scheme is based on the SAV idea and can be treated semi-implicitly,taking into account both accuracy and effectiveness.Numerical results are presented to demonstrate the high-order convergence(up to fourth-order)of the developed schemes and it is computationally efficient in long-time computations.展开更多
In this paper,a fu-Newton step interior-point algorithm is proposed for solving P_(*)(k)-linear complementarity problem based on a new search direction,which is an extension of Grimes'algorithm.It is proved that t...In this paper,a fu-Newton step interior-point algorithm is proposed for solving P_(*)(k)-linear complementarity problem based on a new search direction,which is an extension of Grimes'algorithm.It is proved that the number of iterations of the algorithm is O(n^(1/2)(1+4κ)logn/ε),which matches the best known iteration bound of the interior-point method for P_(*)(k)-linear complementarity problem.Some numerical results have proved the feasibility and efficiency of the proposed algorithm.展开更多
This paper presents a new capacity planning method that utilizes the complementary characteristics of wind and solar power output.It addresses the limitations of relying on a single metric for a comprehensive assessme...This paper presents a new capacity planning method that utilizes the complementary characteristics of wind and solar power output.It addresses the limitations of relying on a single metric for a comprehensive assessment of complementarity.To enable more accurate predictions of the optimal wind-solar ratio,a comprehensive complementarity rate is proposed,which allows for the optimization of wind-solar capacity based on this measure.Initially,the Clayton Copula function is employed to create a joint probability distribution model for wind and solar power,enabling the calculation of the comprehensive complementarity rate.Following this,a joint planning model is developed to enhance the system’s economy and reliability.The goal is to minimize total costs,load deficit rates,and curtailment rates by applying an ImprovedMulti-Objective Particle SwarmOptimization algorithm(IMOPSO).Results show that when the proportion of wind power reaches 70%,the comprehensive complementarity rate is optimized.This optimization leads to a 14.83%reduction in total costs and a 9.27%decrease in curtailment rates.Compared to existing studies,this paper offers a multidimensional analysis of the relationship between the comprehensive complementarity rate and the optimal wind-solar ratio,thereby improving predictive accuracy and providing a valuable reference for research on the correlation between wind and solar power.展开更多
We present a comprehensive study on the role of various excited states in high-order harmonic generation of hydrogen atoms driven by a long-wavelength(1500 nm)laser field.By numerically solving the time-dependent Schr...We present a comprehensive study on the role of various excited states in high-order harmonic generation of hydrogen atoms driven by a long-wavelength(1500 nm)laser field.By numerically solving the time-dependent Schrodinger equation(TDSE)and performing a time-frequency analysis,we investigate the influence of individual excited states on the harmonic spectrum.Our results reveal that the 2s excited state primarily contributes to the enhancement of high-energy harmonic yields by facilitating long electron trajectories,while the 2p excited state predominantly suppresses harmonic yields in the lower-energy region(20th-50th orders)by altering the contributions of electron trajectories.Our results highlight the critical role of the excited states in the HHG process,even at longer laser wavelengths.展开更多
We performed real-time and real-space numerical simulations of high-order harmonic generation in the threedimensional structured molecule methane(CH_(4)) using time-dependent density functional theory. By irradiating ...We performed real-time and real-space numerical simulations of high-order harmonic generation in the threedimensional structured molecule methane(CH_(4)) using time-dependent density functional theory. By irradiating the methane molecule with an elliptically polarized laser pulse polarized in the x–y plane, we observed significant even-order harmonic emission in the z-direction. By analyzing the electron dynamics in the electric field and the multi-orbital effects of the molecule, we revealed that electron recombination near specific atoms in methane is the primary source of highorder harmonic generation in the z-direction. Furthermore, we identified the dominant molecular orbitals responsible for the enhancement of harmonics in this direction and demonstrated the critical role played by multi-orbital effects in this process.展开更多
The high-speed development of space defense technology demands a high state estimation capacity for spacecraft tracking methods.However,reentry flight is accompanied by complex flight environments,which brings to the ...The high-speed development of space defense technology demands a high state estimation capacity for spacecraft tracking methods.However,reentry flight is accompanied by complex flight environments,which brings to the uncertain,complex,and strongly coupled non-Gaussian detection noise.As a result,there are several intractable considerations on the problem of state estimation tasks corrupted by complex non-Gaussian outliers for non-linear dynamics systems in practical application.To address these issues,a new iterated rational quadratic(RQ)kernel high-order unscented Kalman filtering(IRQHUKF)algorithm via capturing the statistics to break through the limitations of the Gaussian assumption is proposed.Firstly,the characteristic analysis of the RQ kernel is investigated in detail,which is the first attempt to carry out an exploration of the heavy-tailed characteristic and the ability on capturing highorder moments of the RQ kernel.Subsequently,the RQ kernel method is first introduced into the UKF algorithm as an error optimization criterion,termed the iterated RQ kernel-UKF(RQ-UKF)algorithm by derived analytically,which not only retains the high-order moments propagation process but also enhances the approximation capacity in the non-Gaussian noise problem for its ability in capturing highorder moments and heavy-tailed characteristics.Meanwhile,to tackle the limitations of the Gaussian distribution assumption in the linearization process of the non-linear systems,the high-order Sigma Points(SP)as a subsidiary role in propagating the state high-order statistics is devised by the moments matching method to improve the RQ-UKF.Finally,to further improve the flexibility of the IRQ-HUKF algorithm in practical application,an adaptive kernel parameter is derived analytically grounded in the Kullback-Leibler divergence(KLD)method and parametric sensitivity analysis of the RQ kernel.The simulation results demonstrate that the novel IRQ-HUKF algorithm is more robust and outperforms the existing advanced UKF with respect to the kernel method in reentry vehicle tracking scenarios under various noise environments.展开更多
With the availability of high-performance computing technology and the development of advanced numerical simulation methods, Computational Fluid Dynamics (CFD) is becoming more and more practical and efficient in engi...With the availability of high-performance computing technology and the development of advanced numerical simulation methods, Computational Fluid Dynamics (CFD) is becoming more and more practical and efficient in engineering. As one of the high-precision representative algorithms, the high-order Discontinuous Galerkin Method (DGM) has not only attracted widespread attention from scholars in the CFD research community, but also received strong development. However, when DGM is extended to high-speed aerodynamic flow field calculations, non-physical numerical Gibbs oscillations near shock waves often significantly affect the numerical accuracy and even cause calculation failure. Data driven approaches based on machine learning techniques can be used to learn the characteristics of Gibbs noise, which motivates us to use it in high-speed DG applications. To achieve this goal, labeled data need to be generated in order to train the machine learning models. This paper proposes a new method for denoising modeling of Gibbs phenomenon using a machine learning technique, the zero-shot learning strategy, to eliminate acquiring large amounts of CFD data. The model adopts a graph convolutional network combined with graph attention mechanism to learn the denoising paradigm from synthetic Gibbs noise data and generalize to DGM numerical simulation data. Numerical simulation results show that the Gibbs denoising model proposed in this paper can suppress the numerical oscillation near shock waves in the high-order DGM. Our work automates the extension of DGM to high-speed aerodynamic flow field calculations with higher generalization and lower cost.展开更多
In the field of discretization-based meshfree/meshless methods,the improvements in the higher-order consistency,stability,and computational efficiency are of great concerns in computational science and numerical solut...In the field of discretization-based meshfree/meshless methods,the improvements in the higher-order consistency,stability,and computational efficiency are of great concerns in computational science and numerical solutions to partial differential equations.Various alternative numerical methods of the finite particle method(FPM)frame have been extended from mathematical theories to numerical applications separately.As a comprehensive numerical scheme,this study suggests a unified resolved program for numerically investigating their accuracy,stability,consistency,computational efficiency,and practical applicability in industrial engineering contexts.The high-order finite particle method(HFPM)and corrected methods based on the multivariate Taylor series expansion are constructed and analyzed to investigate the whole applicability in different benchmarks of computational fluid dynamics.Specifically,four benchmarks are designed purposefully from statical exact solutions to multifaceted hydrodynamic tests,which possess different numerical performances on the particle consistency,numerical discretized forms,particle distributions,and transient time evolutional stabilities.This study offers a numerical reference for the current unified resolved program.展开更多
The Runge-Kutta discontinuous Galerkin finite element method (RK-DGFEM) is introduced to solve the classical resonator problem in the time domain. DGFEM uses unstructured grid discretization in the space domain and ...The Runge-Kutta discontinuous Galerkin finite element method (RK-DGFEM) is introduced to solve the classical resonator problem in the time domain. DGFEM uses unstructured grid discretization in the space domain and it is explicit in the time domain. Consequently it is a best mixture of FEM and finite volume method (FVM). RK-DGFEM can obtain local high-order accuracy by using high-order polynomial basis. Numerical experiments of transverse magnetic (TM) wave propagation in a 2-D resonator are performed. A high-order Lagrange polynomial basis is adopted. Numerical results agree well with analytical solution. And different order Lagrange interpolation polynomial basis impacts on simulation result accuracy are discussed. Computational results indicate that the accuracy is evidently improved when the order of interpolation basis is increased. Finally, L^2 errors of different order polynomial basis in RK-DGFEM are presented. Computational results show that L^2 error declines exponentially as the order of basis increases.展开更多
In this paper, first we calculate finite-difference coefficients of implicit finite- difference methods (IFDM) for the first and second-order derivatives on normal grids and first- order derivatives on staggered gri...In this paper, first we calculate finite-difference coefficients of implicit finite- difference methods (IFDM) for the first and second-order derivatives on normal grids and first- order derivatives on staggered grids and find that small coefficients of high-order IFDMs exist. Dispersion analysis demonstrates that omitting these small coefficients can retain approximately the same order accuracy but greatly reduce computational costs. Then, we introduce a mirrorimage symmetric boundary condition to improve IFDMs accuracy and stability and adopt the hybrid absorbing boundary condition (ABC) to reduce unwanted reflections from the model boundary. Last, we give elastic wave modeling examples for homogeneous and heterogeneous models to demonstrate the advantages of the proposed scheme.展开更多
The modified AOR method for solving linear complementarity problem(LCP(M,p))was proposed in literature,with some convergence results.In this paper,we considered the MAOR method for generalized-order linear complementa...The modified AOR method for solving linear complementarity problem(LCP(M,p))was proposed in literature,with some convergence results.In this paper,we considered the MAOR method for generalized-order linear complementarity problem(ELCP(M,N,p,q)),where M,N are nonsingular matrices of the following form:M=[D11H1K1D2],N=[D12H2K2D22],D11,D12,D21 and D22 are square nonsingular diagonal matrices.展开更多
Based on the research and exploration of lithostratigraphic reservoir in the Jizhong depression of the Bohai Bay basin and Erlian basin, the hydrocarbon distribution in a continental oil-rich sag has "complementa...Based on the research and exploration of lithostratigraphic reservoir in the Jizhong depression of the Bohai Bay basin and Erlian basin, the hydrocarbon distribution in a continental oil-rich sag has "complementarity" feature, viz. the hydrocarbon resources configuration and plane distribution of the structural reservoir and lithostratigraphic reservoir have the "complementarity". This distribution feature is controlled by many factors such as the macroscopical geological setting, reservoir-forming condition, and the reservoir-forming mechanism of structural reservoir and lithostratigraphic reservoir. More research shows that the "complementarity" of hydrocarbon distribution is prevalent in every kind of continental basin. This "rule" helps to establish a new exploration theory, a scientific exploration program, and make proper exploration deployments in hydrocarbon exploration. Therefore, it is significant for the exploration work in continental petroliferous basins of China.展开更多
Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate o...Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate of this method is investigated.展开更多
基金Supported by the National Natural Science Foundation of China(12371378,41725017,11901098).
文摘A family of neural networks is proposed to solve linear complementarity problems(LCP).The neural networks are constructed from the novel equivalent model of LCP,which is reformulated by utilizing the modulus and smoothing technologies.Some important properties of the proposed novel equivalent model are summarized.In addition,the stability properties of the proposed steepest descent-based neural networks for LCP are analyzed.In order to illustrate the theoretical results,we provide some numerical simulations and compare the proposed neural networks with existing neural networks based on the NCP-functions.Numerical results indicate that the performance of the proposed neural networks is effective and robust.
基金supports in part by the Natural Science Foundation of China(NSFC)under contract No.62171253the Young Elite Scientists Sponsorship Program by CAST under program No.2022QNRC001,as well as the Fundamental Research Funds for the Central Universities.
文摘Images with complementary spectral information can be recorded using image sensors that can identify visible and near-infrared spectrum.The fusion of visible and nearinfrared(NIR)aims to enhance the quality of images acquired by video monitoring systems for the ease of user observation and data processing.Unfortunately,current fusion algorithms produce artefacts and colour distortion since they cannot make use of spectrum properties and are lacking in information complementarity.Therefore,an information complementarity fusion(ICF)model is designed based on physical signals.In order to separate high-frequency noise from important information in distinct frequency layers,the authors first extracted texture-scale and edge-scale layers using a two-scale filter.Second,the difference map between visible and near-infrared was filtered using the extended-DoG filter to produce the initial visible-NIR complementary weight map.Then,to generate a guide map,the near-infrared image with night adjustment was processed as well.The final complementarity weight map was subsequently derived via an arctanI function mapping using the guide map and the initial weight maps.Finally,fusion images were generated with the complementarity weight maps.The experimental results demonstrate that the proposed approach outperforms the state-of-the-art in both avoiding artificial colours as well as effectively utilising information complementarity.
基金supported by the Natural Science Foundation of Jilin Province of China(Grant No.20230101014JC)the Fundamental Research Funds for the Central Universities(Grant No.2572021BC05)the National Natural Science Foundation of China(Grant No.12374265)。
文摘We theoretically investigate the high-order harmonic generation(HHG)of defect-free solids by solving the timedependent Schr¨odinger equation(TDSE).The results show that the harmonic intensity can be enhanced,harmonic order can be extended,and modulation near the cutoff order becomes smaller for the second plateau by increasing the time delay.These effects are due to an increase of the electron population in higher energy bands,where the larger band gap allows electrons to release more energy,and the long electronic paths are suppressed.Additionally,we also investigate the HHG of defective solids by Bohmian trajectories(BT).It is found that the harmonic intensity of the second plateau can be further enhanced.Simultaneously,cutoff order is also extended due to Bohmian particles moving farther away from the defective zone.
基金Project supported by the Natural Science Foundation of Jilin Province of China(Grant No.20230101014JC)the National Natural Science Foundation of China(Grant No.12374265)。
文摘We investigate theoretically the effects of chirped laser pulses on high-order harmonic generation(HHG)from solids.We find that the harmonic spectra display redshifts for the driving laser pulses with negative chirp and blueshifts for those with positive chirp,which is due to the change in the instantaneous frequency of the driving laser for different chirped pulses.The analysis of crystal-momentum-resolved(k-resolved)HHG reveals that the frequency shifts are equal for the harmonics generated by different crystal momentum channels.The frequency shifts in the cutoff region are larger than those in the plateau region.With the increase of the absolute value of the chirp parameters,the frequency shifts of HHG become more significant,leading to the shifts from odd-to even-order harmonics.We also demonstrate that the frequency shifts of harmonic spectra are related to the duration of the chirped laser field,but are insensitive to the laser intensity and dephasing time.
基金National Natural Science Foundation of China(Nos.21971090 and 22271123)the NSF of Jiangsu Province(No.BK20230201)+1 种基金the Natural Science Foundation of Jiangsu Education Committee(No.22KJB150024)the Natural Science Foundation of Jiangsu Normal University(No.21XSRX010)。
文摘A new oxidative N-heterocyclic carbene(NHC)-catalyzed high-order[7+3]annulation reaction ofγ-indolyl phenols as 1,7-dinucleophiles andα,β-alkynals with the aid of Sc(OTf)_(3)is reported,enabling the highly regioselective access to unprecedented polyarene-fused ten-membered lactams bearing a bridged aryl-aryl-indole scaffold in moderate to good yields.This protocol demonstrates a broad substrate scope,good compatibility with substituents and complete regioselectivity,providing an organocatalytic modular synthetic strategy for creating medium-sized lactams.
基金Project supported by the National Natural Science Foundation of China(Grant No.62125402).
文摘Thermal expansion is crucial for various industrial processes and is increasingly the focus of research endeavors aimed at improving material performance.However,it is the continuous advancements in first-principles calculations that have enabled researchers to understand the microscopic origins of thermal expansion.In this study,we propose a coefficient of thermal expansion(CTE)calculation scheme based on self-consistent phonon theory,incorporating the fourth-order anharmonicity.We selected four structures(Si,CaZrF_(6),SrTiO_(3),NaBr)to investigate high-order anharmonicity’s impact on their CTEs,based on bonding types.The results indicate that our method goes beyond the second-order quasi-harmonic approximation and the third-order perturbation theory,aligning closely with experimental data.Furthermore,we observed that an increase in the ionicity of the structures leads to a more pronounced influence of high-order anharmonicity on CTE,with this effect primarily manifesting in variations of the Grüneisen parameter.Our research provides a theoretical foundation for accurately predicting and regulating the thermal expansion behavior of materials.
基金Supported by the Optimisation Theory and Algorithm Research Team(Grant No.23kytdzd004)University Science Research Project of Anhui Province(Grant No.2024AH050631)the General Programs for Young Teacher Cultivation of Educational Commission of Anhui Province(Grant No.YQYB2023090).
文摘In this paper,we propose a new full-Newton step feasible interior-point algorithm for the special weighted linear complementarity problems.The proposed algorithm employs the technique of algebraic equivalent transformation to derive the search direction.It is shown that the proximity measure reduces quadratically at each iteration.Moreover,the iteration bound of the algorithm is as good as the best-known polynomial complexity for these types of problems.Furthermore,numerical results are presented to show the efficiency of the proposed algorithm.
基金Supported by the National Natural Science Foundation of China(Grant Nos.12001210 and 12261103)the Natural Science Foundation of Henan(Grant No.252300420308)the Yunnan Fundamental Research Projects(Grant No.202301AT070117).
文摘An efficient and accurate scalar auxiliary variable(SAV)scheme for numerically solving nonlinear parabolic integro-differential equation(PIDE)is developed in this paper.The original equation is first transformed into an equivalent system,and the k-order backward differentiation formula(BDF k)and central difference formula are used to discretize the temporal and spatial derivatives,respectively.Different from the traditional discrete method that adopts full implicit or full explicit for the nonlinear integral terms,the proposed scheme is based on the SAV idea and can be treated semi-implicitly,taking into account both accuracy and effectiveness.Numerical results are presented to demonstrate the high-order convergence(up to fourth-order)of the developed schemes and it is computationally efficient in long-time computations.
基金Supported by the Optimization Theory and Algorithm Research Team(23kytdzd004)the General Programs for Young Teacher Cultivation of Educational Commission of Anhui Province of China(YQYB2023090)the University Science Research Project of Anhui Province(2024AH050631)。
文摘In this paper,a fu-Newton step interior-point algorithm is proposed for solving P_(*)(k)-linear complementarity problem based on a new search direction,which is an extension of Grimes'algorithm.It is proved that the number of iterations of the algorithm is O(n^(1/2)(1+4κ)logn/ε),which matches the best known iteration bound of the interior-point method for P_(*)(k)-linear complementarity problem.Some numerical results have proved the feasibility and efficiency of the proposed algorithm.
基金This work was supported by Inner Mongolia Natural Science Foundation Project and the Optimization of Exergy Efficiency of a Hybrid Energy Storage System with Crossover Control for Wind Power(2023JQ04).
文摘This paper presents a new capacity planning method that utilizes the complementary characteristics of wind and solar power output.It addresses the limitations of relying on a single metric for a comprehensive assessment of complementarity.To enable more accurate predictions of the optimal wind-solar ratio,a comprehensive complementarity rate is proposed,which allows for the optimization of wind-solar capacity based on this measure.Initially,the Clayton Copula function is employed to create a joint probability distribution model for wind and solar power,enabling the calculation of the comprehensive complementarity rate.Following this,a joint planning model is developed to enhance the system’s economy and reliability.The goal is to minimize total costs,load deficit rates,and curtailment rates by applying an ImprovedMulti-Objective Particle SwarmOptimization algorithm(IMOPSO).Results show that when the proportion of wind power reaches 70%,the comprehensive complementarity rate is optimized.This optimization leads to a 14.83%reduction in total costs and a 9.27%decrease in curtailment rates.Compared to existing studies,this paper offers a multidimensional analysis of the relationship between the comprehensive complementarity rate and the optimal wind-solar ratio,thereby improving predictive accuracy and providing a valuable reference for research on the correlation between wind and solar power.
基金supported by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi。
文摘We present a comprehensive study on the role of various excited states in high-order harmonic generation of hydrogen atoms driven by a long-wavelength(1500 nm)laser field.By numerically solving the time-dependent Schrodinger equation(TDSE)and performing a time-frequency analysis,we investigate the influence of individual excited states on the harmonic spectrum.Our results reveal that the 2s excited state primarily contributes to the enhancement of high-energy harmonic yields by facilitating long electron trajectories,while the 2p excited state predominantly suppresses harmonic yields in the lower-energy region(20th-50th orders)by altering the contributions of electron trajectories.Our results highlight the critical role of the excited states in the HHG process,even at longer laser wavelengths.
基金Project supported by the National Natural Science Foundation of China (Grant No. 12204214)the National Key Research and Development Program of China (Grant No. 2022YFE0134200)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No. GK202207012), QCYRCXM-2022-241the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2025A1515011117)。
文摘We performed real-time and real-space numerical simulations of high-order harmonic generation in the threedimensional structured molecule methane(CH_(4)) using time-dependent density functional theory. By irradiating the methane molecule with an elliptically polarized laser pulse polarized in the x–y plane, we observed significant even-order harmonic emission in the z-direction. By analyzing the electron dynamics in the electric field and the multi-orbital effects of the molecule, we revealed that electron recombination near specific atoms in methane is the primary source of highorder harmonic generation in the z-direction. Furthermore, we identified the dominant molecular orbitals responsible for the enhancement of harmonics in this direction and demonstrated the critical role played by multi-orbital effects in this process.
基金supported by the National Natural Science Foundation of China under Grant No.12072090.
文摘The high-speed development of space defense technology demands a high state estimation capacity for spacecraft tracking methods.However,reentry flight is accompanied by complex flight environments,which brings to the uncertain,complex,and strongly coupled non-Gaussian detection noise.As a result,there are several intractable considerations on the problem of state estimation tasks corrupted by complex non-Gaussian outliers for non-linear dynamics systems in practical application.To address these issues,a new iterated rational quadratic(RQ)kernel high-order unscented Kalman filtering(IRQHUKF)algorithm via capturing the statistics to break through the limitations of the Gaussian assumption is proposed.Firstly,the characteristic analysis of the RQ kernel is investigated in detail,which is the first attempt to carry out an exploration of the heavy-tailed characteristic and the ability on capturing highorder moments of the RQ kernel.Subsequently,the RQ kernel method is first introduced into the UKF algorithm as an error optimization criterion,termed the iterated RQ kernel-UKF(RQ-UKF)algorithm by derived analytically,which not only retains the high-order moments propagation process but also enhances the approximation capacity in the non-Gaussian noise problem for its ability in capturing highorder moments and heavy-tailed characteristics.Meanwhile,to tackle the limitations of the Gaussian distribution assumption in the linearization process of the non-linear systems,the high-order Sigma Points(SP)as a subsidiary role in propagating the state high-order statistics is devised by the moments matching method to improve the RQ-UKF.Finally,to further improve the flexibility of the IRQ-HUKF algorithm in practical application,an adaptive kernel parameter is derived analytically grounded in the Kullback-Leibler divergence(KLD)method and parametric sensitivity analysis of the RQ kernel.The simulation results demonstrate that the novel IRQ-HUKF algorithm is more robust and outperforms the existing advanced UKF with respect to the kernel method in reentry vehicle tracking scenarios under various noise environments.
基金co-supported by the Aeronautical Science Foundation of China(Nos.2018ZA52002,2019ZA052011).
文摘With the availability of high-performance computing technology and the development of advanced numerical simulation methods, Computational Fluid Dynamics (CFD) is becoming more and more practical and efficient in engineering. As one of the high-precision representative algorithms, the high-order Discontinuous Galerkin Method (DGM) has not only attracted widespread attention from scholars in the CFD research community, but also received strong development. However, when DGM is extended to high-speed aerodynamic flow field calculations, non-physical numerical Gibbs oscillations near shock waves often significantly affect the numerical accuracy and even cause calculation failure. Data driven approaches based on machine learning techniques can be used to learn the characteristics of Gibbs noise, which motivates us to use it in high-speed DG applications. To achieve this goal, labeled data need to be generated in order to train the machine learning models. This paper proposes a new method for denoising modeling of Gibbs phenomenon using a machine learning technique, the zero-shot learning strategy, to eliminate acquiring large amounts of CFD data. The model adopts a graph convolutional network combined with graph attention mechanism to learn the denoising paradigm from synthetic Gibbs noise data and generalize to DGM numerical simulation data. Numerical simulation results show that the Gibbs denoising model proposed in this paper can suppress the numerical oscillation near shock waves in the high-order DGM. Our work automates the extension of DGM to high-speed aerodynamic flow field calculations with higher generalization and lower cost.
基金supported by the National Natural Science Foundation of China(No.12002290)。
文摘In the field of discretization-based meshfree/meshless methods,the improvements in the higher-order consistency,stability,and computational efficiency are of great concerns in computational science and numerical solutions to partial differential equations.Various alternative numerical methods of the finite particle method(FPM)frame have been extended from mathematical theories to numerical applications separately.As a comprehensive numerical scheme,this study suggests a unified resolved program for numerically investigating their accuracy,stability,consistency,computational efficiency,and practical applicability in industrial engineering contexts.The high-order finite particle method(HFPM)and corrected methods based on the multivariate Taylor series expansion are constructed and analyzed to investigate the whole applicability in different benchmarks of computational fluid dynamics.Specifically,four benchmarks are designed purposefully from statical exact solutions to multifaceted hydrodynamic tests,which possess different numerical performances on the particle consistency,numerical discretized forms,particle distributions,and transient time evolutional stabilities.This study offers a numerical reference for the current unified resolved program.
文摘The Runge-Kutta discontinuous Galerkin finite element method (RK-DGFEM) is introduced to solve the classical resonator problem in the time domain. DGFEM uses unstructured grid discretization in the space domain and it is explicit in the time domain. Consequently it is a best mixture of FEM and finite volume method (FVM). RK-DGFEM can obtain local high-order accuracy by using high-order polynomial basis. Numerical experiments of transverse magnetic (TM) wave propagation in a 2-D resonator are performed. A high-order Lagrange polynomial basis is adopted. Numerical results agree well with analytical solution. And different order Lagrange interpolation polynomial basis impacts on simulation result accuracy are discussed. Computational results indicate that the accuracy is evidently improved when the order of interpolation basis is increased. Finally, L^2 errors of different order polynomial basis in RK-DGFEM are presented. Computational results show that L^2 error declines exponentially as the order of basis increases.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No. 41074100)the Program for New Century Excellent Talents in University of Ministry of Education of China(Grant No. NCET-10-0812)
文摘In this paper, first we calculate finite-difference coefficients of implicit finite- difference methods (IFDM) for the first and second-order derivatives on normal grids and first- order derivatives on staggered grids and find that small coefficients of high-order IFDMs exist. Dispersion analysis demonstrates that omitting these small coefficients can retain approximately the same order accuracy but greatly reduce computational costs. Then, we introduce a mirrorimage symmetric boundary condition to improve IFDMs accuracy and stability and adopt the hybrid absorbing boundary condition (ABC) to reduce unwanted reflections from the model boundary. Last, we give elastic wave modeling examples for homogeneous and heterogeneous models to demonstrate the advantages of the proposed scheme.
文摘The modified AOR method for solving linear complementarity problem(LCP(M,p))was proposed in literature,with some convergence results.In this paper,we considered the MAOR method for generalized-order linear complementarity problem(ELCP(M,N,p,q)),where M,N are nonsingular matrices of the following form:M=[D11H1K1D2],N=[D12H2K2D22],D11,D12,D21 and D22 are square nonsingular diagonal matrices.
文摘Based on the research and exploration of lithostratigraphic reservoir in the Jizhong depression of the Bohai Bay basin and Erlian basin, the hydrocarbon distribution in a continental oil-rich sag has "complementarity" feature, viz. the hydrocarbon resources configuration and plane distribution of the structural reservoir and lithostratigraphic reservoir have the "complementarity". This distribution feature is controlled by many factors such as the macroscopical geological setting, reservoir-forming condition, and the reservoir-forming mechanism of structural reservoir and lithostratigraphic reservoir. More research shows that the "complementarity" of hydrocarbon distribution is prevalent in every kind of continental basin. This "rule" helps to establish a new exploration theory, a scientific exploration program, and make proper exploration deployments in hydrocarbon exploration. Therefore, it is significant for the exploration work in continental petroliferous basins of China.
文摘Under suitable conditions,the monotone convergence about the projected iteration method for solving linear complementarity problem is proved and the influence of the involved parameter matrix on the convergence rate of this method is investigated.