期刊文献+
共找到2,010篇文章
< 1 2 101 >
每页显示 20 50 100
Quantum Inspired Adaptive Resource Management Algorithm for Scalable and Energy Efficient Fog Computing in Internet of Things(IoT)
1
作者 Sonia Khan Naqash Younas +3 位作者 Musaed Alhussein Wahib Jamal Khan Muhammad Shahid Anwar Khursheed Aurangzeb 《Computer Modeling in Engineering & Sciences》 2025年第3期2641-2660,共20页
Effective resource management in the Internet of Things and fog computing is essential for efficient and scalable networks.However,existing methods often fail in dynamic and high-demand environments,leading to resourc... Effective resource management in the Internet of Things and fog computing is essential for efficient and scalable networks.However,existing methods often fail in dynamic and high-demand environments,leading to resource bottlenecks and increased energy consumption.This study aims to address these limitations by proposing the Quantum Inspired Adaptive Resource Management(QIARM)model,which introduces novel algorithms inspired by quantum principles for enhanced resource allocation.QIARM employs a quantum superposition-inspired technique for multi-state resource representation and an adaptive learning component to adjust resources in real time dynamically.In addition,an energy-aware scheduling module minimizes power consumption by selecting optimal configurations based on energy metrics.The simulation was carried out in a 360-minute environment with eight distinct scenarios.This study introduces a novel quantum-inspired resource management framework that achieves up to 98%task offload success and reduces energy consumption by 20%,addressing critical challenges of scalability and efficiency in dynamic fog computing environments. 展开更多
关键词 quantum computing resource management energy efficiency fog computing Internet of Things
在线阅读 下载PDF
Quantum Computing Gamble Bets on Stealthy Majorana Qubits
2
作者 Chris Palmer 《Engineering》 2025年第12期8-10,共3页
With a paper published in the 19 February 2025 issue of Nature[1],Microsoft(Redmond,WA,USA)fanned the flames of its unique vision for quantum computing:a stable,error-resistant qubit based on the Majorana fermion,one ... With a paper published in the 19 February 2025 issue of Nature[1],Microsoft(Redmond,WA,USA)fanned the flames of its unique vision for quantum computing:a stable,error-resistant qubit based on the Majorana fermion,one of the strangest and most elusive particles in physics.The Microsoft Azure Quantum research team’s descriptions of a means to detect the as-yet theoretical particles[1]—called“an entirely new state of matter”by Microsoft’s chief executive officer[2]—and a design for a chip powered by them(Fig.1)[3]have refocused attention on the company’s ambition to build a topological quantum computer.The approach—if it works—could potentially leapfrog every other in the field. 展开更多
关键词 stealthy qubits topological quantum computer majorana fermions stable qubits majorana fermionone error resistant qubits quantum computing microsoft azure
在线阅读 下载PDF
Developing a Predictive Platform for Salmonella Antimicrobial Resistance Based on a Large Language Model and Quantum Computing
3
作者 Yujie You Kan Tan +1 位作者 Zekun Jiang Le Zhang 《Engineering》 2025年第5期174-184,共11页
As a common foodborne pathogen,Salmonella poses risks to public health safety,common given the emergence of antimicrobial-resistant strains.However,there is currently a lack of systematic platforms based on large lang... As a common foodborne pathogen,Salmonella poses risks to public health safety,common given the emergence of antimicrobial-resistant strains.However,there is currently a lack of systematic platforms based on large language models(LLMs)for Salmonella resistance prediction,data presentation,and data sharing.To overcome this issue,we firstly propose a two-step feature-selection process based on the chi-square test and conditional mutual information maximization to find the key Salmonella resistance genes in a pan-genomics analysis and develop an LLM-based Salmonella antimicrobial-resistance predictive(SARPLLM)algorithm to achieve accurate antimicrobial-resistance prediction,based on Qwen2 LLM and low-rank adaptation.Secondly,we optimize the time complexity to compute the sample distance from the linear to logarithmic level by constructing a quantum data augmentation algorithm denoted as QSMOTEN.Thirdly,we build up a user-friendly Salmonella antimicrobial-resistance predictive online platform based on knowledge graphs,which not only facilitates online resistance prediction for users but also visualizes the pan-genomics analysis results of the Salmonella datasets. 展开更多
关键词 Salmonella resistance prediction Pan-genomics Large language model quantum computing BIOINFORMATICS
在线阅读 下载PDF
Scaled Up Chip Pushes Quantum Computing a Bit Closer to Reality
4
作者 Chris Palmer 《Engineering》 2025年第7期6-8,共3页
In the 9 December 2024 issue of Nature[1],a team of Google engineers reported breakthrough results using“Willow”,their lat-est quantum computing chip(Fig.1).By meeting a milestone“below threshold”reduction in the ... In the 9 December 2024 issue of Nature[1],a team of Google engineers reported breakthrough results using“Willow”,their lat-est quantum computing chip(Fig.1).By meeting a milestone“below threshold”reduction in the rate of errors that plague super-conducting circuit-based quantum computing systems(Fig.2),the work moves the field another step towards its promised super-charged applications,albeit likely still many years away.Areas expected to benefit from quantum computing include,among others,drug discovery,materials science,finance,cybersecurity,and machine learning. 展开更多
关键词 materials science BREAKTHROUGH drug discovery willow chip quantum computing superconducting circuits error reduction applications
在线阅读 下载PDF
From portfolio optimization to quantum blockchain and security: a systematic review of quantum computing in finance
5
作者 Abha Satyavan Naik Esra Yeniaras +2 位作者 Gerhard Hellstern Grishma Prasad Sanjay Kumar Lalta Prasad Vishwakarma 《Financial Innovation》 2025年第1期2536-2602,共67页
The rapid advancement of quantum computing has sparked a considerable increase in research attention to quantum technologies.These advances span fundamental theoretical inquiries into quantum information and the explo... The rapid advancement of quantum computing has sparked a considerable increase in research attention to quantum technologies.These advances span fundamental theoretical inquiries into quantum information and the exploration of diverse applications arising from this evolving quantum computing paradigm.The scope of the related research is notably diverse.This paper consolidates and presents quantum computing research related to the financial sector.The finance applications considered in this study include portfolio optimization,fraud detection,and Monte Carlo methods for derivative pricing and risk calculation.In addition,we provide a comprehensive analysis of quantum computing’s applications and effects on blockchain technologies,particularly in relation to cryptocurrencies,which are central to financial technology research.As discussed in this study,quantum computing applications in finance are based on fundamental quantum physics principles and key quantum algorithms.This review aims to bridge the research gap between quantum computing and finance.We adopt a two-fold methodology,involving an analysis of quantum algorithms,followed by a discussion of their applications in specific financial contexts.Our study is based on an extensive review of online academic databases,search tools,online journal repositories,and whitepapers from 1952 to 2023,including CiteSeerX,DBLP,Research-Gate,Semantic Scholar,and scientific conference publications.We present state-of-theart findings at the intersection of finance and quantum technology and highlight open research questions that will be valuable for industry practitioners and academicians as they shape future research agendas. 展开更多
关键词 Portfolio optimization Fraud detection Derivative pricing Risk calculation Monte carlo quantum blockchain quantum-resistant blockchain Digital signature algorithms Post-quantum cryptography SECURITY Privacy-preserving blockchain quantum computing
在线阅读 下载PDF
Duality Computing in Quantum Computers 被引量:9
6
作者 LONG Gui-Lu LIU Yang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第12期1303-1306,共4页
In this letter,we propose a duality computing mode,which resembles particle-wave duality property whena quantum system such as a quantum computer passes through a double-slit.In this mode,computing operations arenot n... In this letter,we propose a duality computing mode,which resembles particle-wave duality property whena quantum system such as a quantum computer passes through a double-slit.In this mode,computing operations arenot necessarily unitary.The duality mode provides a natural link between classical computing and quantum computing.In addition,the duality mode provides a new tool for quantum algorithm design. 展开更多
关键词 duality computer duality quantum computer duality computing mode
在线阅读 下载PDF
A New Quantum Algorithm for Computing RSA Ciphertext Period 被引量:2
7
作者 WANG Yahui YAN Songyuan ZHANG Huanguo 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2017年第1期68-72,共5页
Shor proposed a quantum polynomial-time integer factorization algorithm to break the RSA public-key cryptosystem.In this paper,we propose a new quantum algorithm for breaking RSA by computing the order of the RSA ciph... Shor proposed a quantum polynomial-time integer factorization algorithm to break the RSA public-key cryptosystem.In this paper,we propose a new quantum algorithm for breaking RSA by computing the order of the RSA ciphertext C.The new algorithm has the following properties:1)recovering the RSA plaintext M from the ciphertext C without factoring n; 2)avoiding the even order of the element; 3)having higher success probability than Shor's; 4)having the same complexity as Shor's. 展开更多
关键词 information security CRYPTOLOGY RSA cryptography quantum computing
原文传递
Quantum Mechanical Nature in Liquid NMR Quantum Computing 被引量:1
8
作者 LONG Gui-Lu YAN Hai-Yang LI Yan-Song TU Chang-Cun ZHU Sheng-Jiang RUAN Dong SUN Yang TAO Jia-Xun CHEN Hao-Ming 《Communications in Theoretical Physics》 SCIE CAS CSCD 2002年第9期305-308,共4页
The quantum nature of bulk ensemble NMR quantum computing the center of recent heated debate,is addressed. Concepts of the mixed state and entanglement are examined, and the data in a two-qubit liquid NMRquantum compu... The quantum nature of bulk ensemble NMR quantum computing the center of recent heated debate,is addressed. Concepts of the mixed state and entanglement are examined, and the data in a two-qubit liquid NMRquantum computation are analyzed. The main points in this paper are: i) Density matrix describes the "state" of anaverage particle in an ensemble. It does not describe the state of an individual particle in an ensemble; ii) Entanglementis a property of the wave function of a microscopic particle (such as a molecule in a liquid NMR sample), and separabilityof the density matrix cannot be used to measure the entanglement of mixed ensemble; iii) The state evolution in bulk-ensemble NMRquantum computation is quantum-mechanical; iv) The coefficient before the effective pure state densitymatrix, e, is a measure of the simultaneity of the molecules in an ensemble. It reflects the intensity of the NMR signaland has no significance in quantifying the entanglement in the bulk ensemble NMR system. The decomposition of thedensity matrix into product states is only an indication that the ensemble can be prepared by an ensemble with theparticles unentangled. We conclude that effective-pure-state NMR quantum computation is genuine, not just classicalsimulations. 展开更多
关键词 quantum mechanical nature NMR quantum computing MIXED state ENTANGLEMENT
在线阅读 下载PDF
Selected topics of quantum computing for nuclear physics 被引量:1
9
作者 Dan-Bo Zhang Hongxi Xing +2 位作者 Hui Yan Enke Wang Shi-Liang Zhu 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第2期23-34,共12页
Nuclear physics,whose underling theory is described by quantum gauge field coupled with matter,is fundamentally important and yet is formidably challenge for simulation with classical computers.Quantum computing provi... Nuclear physics,whose underling theory is described by quantum gauge field coupled with matter,is fundamentally important and yet is formidably challenge for simulation with classical computers.Quantum computing provides a perhaps transformative approach for studying and understanding nuclear physics.With rapid scaling-up of quantum processors as well as advances on quantum algorithms,the digital quantum simulation approach for simulating quantum gauge fields and nuclear physics has gained lots of attention.In this review,we aim to summarize recent efforts on solving nuclear physics with quantum computers.We first discuss a formulation of nuclear physics in the language of quantum computing.In particular,we review how quantum gauge fields(both Abelian and non-Abelian)and their coupling to matter field can be mapped and studied on a quantum computer.We then introduce related quantum algorithms for solving static properties and real-time evolution for quantum systems,and show their applications for a broad range of problems in nuclear physics,including simulation of lattice gauge field,solving nucleon and nuclear structures,quantum advantage for simulating scattering in quantum field theory,non-equilibrium dynamics,and so on.Finally,a short outlook on future work is given. 展开更多
关键词 quantum computing nuclear physics quantum field theory quantum simulation quantum algorithm
原文传递
Quantum Mechanical Nature in Liquid NMR Quantum Computing 被引量:1
10
作者 LONGGui-Lu YANHai-Yang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2002年第3期305-308,共4页
The quantum nature of bulk ensemble NMR quantum computing — the center of recent heated debate, is addressed. Concepts of the mixed state and entanglement are examined, and the data in a two-qubit liquid NMR quantum ... The quantum nature of bulk ensemble NMR quantum computing — the center of recent heated debate, is addressed. Concepts of the mixed state and entanglement are examined, and the data in a two-qubit liquid NMR quantum computation are analyzed. The main points in this paper are: i) Density matrix describes the 'state' of an average particle in an ensemble. It does not describe the state of an individual particle in an ensemble; ii) Entanglement is a property of the wave function of a microscopic particle (such as a molecule in a liquid NMR sample), and separability of the density matrix cannot be used to measure the entanglement of mixed ensemble; iii) The state evolution in bulk-ensemble NMR quantum computation is quantum-mechanical; iv) The coefficient before the effective pure state density matrix, ?, is a measure of the simultaneity of the molecules in an ensemble. It reflects the intensity of the NMR signal and has no significance in quantifying the entanglement in the bulk ensemble NMR system. The decomposition of the density matrix into product states is only an indication that the ensemble can be prepared by an ensemble with the particles unentangled. We conclude that effective-pure-state NMR quantum computation is genuine, not just classical simulations. 展开更多
关键词 quantum mechanical nature NMR quantum computing mixed state ENTANGLEMENT
在线阅读 下载PDF
Universal resources for quantum computing 被引量:1
11
作者 Dong-Sheng Wang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2023年第12期57-74,共18页
Unravelling the source of quantum computing power has been a major goal in the field of quantum information science.In recent years,the quantum resource theory(QRT)has been established to characterize various quantum ... Unravelling the source of quantum computing power has been a major goal in the field of quantum information science.In recent years,the quantum resource theory(QRT)has been established to characterize various quantum resources,yet their roles in quantum computing tasks still require investigation.The so-called universal quantum computing model(UQCM),e.g.the circuit model,has been the main framework to guide the design of quantum algorithms,creation of real quantum computers etc.In this work,we combine the study of UQCM together with QRT.We find,on one hand,using QRT can provide a resource-theoretic characterization of a UQCM,the relation among models and inspire new ones,and on the other hand,using UQCM offers a framework to apply resources,study relation among these resources and classify them.We develop the theory of universal resources in the setting of UQCM,and find a rich spectrum of UQCMs and the corresponding universal resources.Depending on a hierarchical structure of resource theories,we find models can be classified into families.In this work,we study three natural families of UQCMs in detail:the amplitude family,the quasi-probability family,and the Hamiltonian family.They include some well known models,like the measurement-based model and adiabatic model,and also inspire new models such as the contextual model that we introduce.Each family contains at least a triplet of models,and such a succinct structure of families of UQCMs offers a unifying picture to investigate resources and design models.It also provides a rigorous framework to resolve puzzles,such as the role of entanglement versus interference,and unravel resource-theoretic features of quantum algorithms. 展开更多
关键词 quantum resource computing model quantum algorithm
原文传递
Scalable Cavity Quantum Electrodynamics System for Quantum Computing 被引量:1
12
作者 Mohammad Hasan Aram Sina Khorasani 《Journal of Modern Physics》 2015年第11期1467-1477,共11页
We introduce a new scalable cavity quantum electrodynamics platform which can be used for quantum computing. This system is composed of coupled photonic crystal (PC) cavities which their modes lie on a Dirac cone in t... We introduce a new scalable cavity quantum electrodynamics platform which can be used for quantum computing. This system is composed of coupled photonic crystal (PC) cavities which their modes lie on a Dirac cone in the whole super crystal band structure. Quantum information is stored in quantum dots that are positioned inside the cavities. We show if there is just one quantum dot in the system, energy as photon is exchanged between the quantum dot and the Dirac modes sinusoidally. Meanwhile the quantum dot becomes entangled with Dirac modes. If we insert more quantum dots into the system, they also become entangled with each other. 展开更多
关键词 CAVITY quantum Electro Dynamics PHOTONIC Crystal DIRAC CONE quantum computing
在线阅读 下载PDF
Dissipative Quantum Computing with Majorana Fermions 被引量:1
13
作者 Henning Soller 《Journal of Applied Mathematics and Physics》 2016年第2期227-232,共6页
We describe a scheme for universal quantum computation with Majorana fermions. We investigate two possible dissipative couplings of Majorana fermions to external systems, including metallic leads and local phonons. Wh... We describe a scheme for universal quantum computation with Majorana fermions. We investigate two possible dissipative couplings of Majorana fermions to external systems, including metallic leads and local phonons. While the dissipation when coupling to metallic leads to uninteresting states for the Majorana fermions, we show that coupling the Majorana fermions to local phonons allows to generate arbitrary dissipations and therefore universal quantum operations on a single QuBit that can be enhanced by additional two-QuBit operations. 展开更多
关键词 Dissipative quantum computing Phonon Interaction Majorana Fermions Universal quantum computation
在线阅读 下载PDF
Quantum computing in power systems 被引量:5
14
作者 Yifan Zhou Zefan Tang +5 位作者 Nima Nikmehr Pouya Babahajiani Fei Feng Tzu-Chieh Wei Honghao Zheng Peng Zhang 《iEnergy》 2022年第2期170-187,共18页
Electric power systems provide the backbone of modern industrial societies.Enabling scalable grid analytics is the keystone to successfully operating large transmission and distribution systems.However,today’s power ... Electric power systems provide the backbone of modern industrial societies.Enabling scalable grid analytics is the keystone to successfully operating large transmission and distribution systems.However,today’s power systems are suffering from ever-increasing computational burdens in sustaining the expanding communities and deep integration of renewable energy resources,as well as managing huge volumes of data accordingly.These unprecedented challenges call for transformative analytics to support the resilient operations of power systems.Recently,the explosive growth of quantum computing techniques has ignited new hopes of revolutionizing power system computations.Quantum computing harnesses quantum mechanisms to solve traditionally intractable computational problems,which may lead to ultra-scalable and efficient power grid analytics.This paper reviews the newly emerging application of quantum computing techniques in power systems.We present a comprehensive overview of existing quantum-engineered power analytics from different operation perspectives,including static analysis,transient analysis,stochastic analysis,optimization,stability,and control.We thoroughly discuss the related quantum algorithms,their benefits and limitations,hardware implementations,and recommended practices.We also review the quantum networking techniques to ensure secure communication of power systems in the quantum era.Finally,we discuss challenges and future research directions.This paper will hopefully stimulate increasing attention to the development of quantum-engineered smart grids. 展开更多
关键词 quantum computing power system variational quantum algorithms quantum optimization quantum machine learning quantum security
在线阅读 下载PDF
A Critical Overview on Quantum Computing 被引量:1
15
作者 Saptarshi Sahoo Amit Kumar Mandal +2 位作者 Pijus Kanti Samanta Indranil Basu Pratik Roy 《Journal of Quantum Computing》 2020年第4期181-192,共12页
Quantum Computing and Quantum Information Science seem very promising and developing rapidly since its inception in early 1980s by Paul Benioff with the proposal of quantum mechanical model of the Turing machine and l... Quantum Computing and Quantum Information Science seem very promising and developing rapidly since its inception in early 1980s by Paul Benioff with the proposal of quantum mechanical model of the Turing machine and later By Richard Feynman and Yuri Manin for the proposal of a quantum computers for simulating various problems that classical computer could not.Quantum computers have a computational advantage for some problems,over classical computers and most applications are trying to use an efficient combination of classical and quantum computers like Shor’s factoring algorithm.Other areas that are expected to be benefitted from quantum computing are Machine Learning and deep learning,molecular biology,genomics and cancer research,space exploration,atomic and nuclear research and macro-economic forecasting.This paper represents a brief overview of the state of art of quantum computing and quantum information science with discussions of various theoretical and experimental aspects adopted by the researchers. 展开更多
关键词 quantum computing quantum information science
在线阅读 下载PDF
Accelerating Quantum Computing Readiness: Risk Management and Strategies for Sectors 被引量:1
16
作者 Abdullah Ibrahim Salman Alsalman 《Journal of Quantum Information Science》 2023年第2期33-44,共12页
The potential impact of quantum computing on various industries such as finance, healthcare, cryptography, and transportation is significant;therefore, sectors face challenges in understanding where to start because o... The potential impact of quantum computing on various industries such as finance, healthcare, cryptography, and transportation is significant;therefore, sectors face challenges in understanding where to start because of the complex nature of this technology. Starting early to explore what is supposed to be done is crucial for providing sectors with the necessary knowledge, tools, and processes to keep pace with rapid advancements in quantum computing. This article emphasizes the importance of consultancy and governance solutions that aid sectors in preparing for the quantum computing revolution. The article begins by discussing the reasons why sectors need to be prepared for quantum computing and emphasizes the importance of proactive preparation. It illustrates this point by providing a real-world example of a partnership. Subsequently, the article mentioned the benefits of quantum computing readiness, including increased competitiveness, improved security, and structured data. In addition, this article discusses the steps that various sectors can take to achieve quantum readiness, considering the potential risks and opportunities in industries. The proposed solutions for achieving quantum computing readiness include establishing a quantum computing office, contracting with major quantum computing companies, and learning from quantum computing organizations. This article provides the detailed advantages and disadvantages of each of these steps and emphasizes the need to carefully evaluate their potential drawbacks to ensure that they align with the sector’s unique needs, goals, and available resources. Finally, this article proposes various solutions and recommendations for sectors to achieve quantum-computing readiness. 展开更多
关键词 quantum computing CONSULTANCY Governance Solutions quantum Readiness Benefits of quantum Readiness Increased Competitiveness Improved Security Structured Data quantum Algorithms quantum Service Provider CYBERSECURITY Data Management
在线阅读 下载PDF
Near Term Hybrid Quantum Computing Solution to the Matrix Riccati Equations 被引量:1
17
作者 Augusto Gonzalez Bonorino Malick Ndiaye Casimer DeCusatis 《Journal of Quantum Computing》 2022年第3期135-146,共12页
The well-known Riccati differential equations play a key role in many fields,including problems in protein folding,control and stabilization,stochastic control,and cybersecurity(risk analysis and malware propaga-tion)... The well-known Riccati differential equations play a key role in many fields,including problems in protein folding,control and stabilization,stochastic control,and cybersecurity(risk analysis and malware propaga-tion).Quantum computer algorithms have the potential to implement faster approximate solutions to the Riccati equations compared with strictly classical algorithms.While systems with many qubits are still under development,there is significant interest in developing algorithms for near-term quantum computers to determine their accuracy and limitations.In this paper,we propose a hybrid quantum-classical algorithm,the Matrix Riccati Solver(MRS).This approach uses a transformation of variables to turn a set of nonlinear differential equation into a set of approximate linear differential equations(i.e.,second order non-constant coefficients)which can in turn be solved using a version of the Harrow-Hassidim-Lloyd(HHL)quantum algorithm for the case of Hermitian matrices.We implement this approach using the Qiskit language and compute near-term results using a 4 qubit IBM Q System quantum computer.Comparisons with classical results and areas for future research are discussed. 展开更多
关键词 quantum computing matrix ricatti equations differential equations qiskit hybrid algorithm HHL algorithm
在线阅读 下载PDF
Accelerating Hartree-Fock Self-consistent Field Calculation on C86/DCU Heterogenous Computing Platform
18
作者 Ji Qi Huimin Zhang +1 位作者 Dezun Shan Minghui Yang 《Chinese Journal of Chemical Physics》 2025年第1期81-94,I0056,共15页
In this study,we investigate the ef-ficacy of a hybrid parallel algo-rithm aiming at enhancing the speed of evaluation of two-electron repulsion integrals(ERI)and Fock matrix generation on the Hygon C86/DCU(deep compu... In this study,we investigate the ef-ficacy of a hybrid parallel algo-rithm aiming at enhancing the speed of evaluation of two-electron repulsion integrals(ERI)and Fock matrix generation on the Hygon C86/DCU(deep computing unit)heterogeneous computing platform.Multiple hybrid parallel schemes are assessed using a range of model systems,including those with up to 1200 atoms and 10000 basis func-tions.The findings of our research reveal that,during Hartree-Fock(HF)calculations,a single DCU ex-hibits 33.6 speedups over 32 C86 CPU cores.Compared with the efficiency of Wuhan Electronic Structure Package on Intel X86 and NVIDIA A100 computing platform,the Hygon platform exhibits good cost-effective-ness,showing great potential in quantum chemistry calculation and other high-performance scientific computations. 展开更多
关键词 quantum chemistry Self-consistent field HARTREE-FOCK Electron repulsion inte-grals Heterogenous parallel computing C86/deep computing unit
在线阅读 下载PDF
Quantum-accelerated active distribution network planning based on coherent photonic quantum computers
19
作者 Yu Xin Haipeng Xie Wei Fu 《iEnergy》 2025年第2期107-120,共14页
Active distribution network(ADN)planning is crucial for achieving a cost-effective transition to modern power systems,yet it poses significant challenges as the system scale increases.The advent of quantum computing o... Active distribution network(ADN)planning is crucial for achieving a cost-effective transition to modern power systems,yet it poses significant challenges as the system scale increases.The advent of quantum computing offers a transformative approach to solve ADN planning.To fully leverage the potential of quantum computing,this paper proposes a photonic quantum acceleration algorithm.First,a quantum-accelerated framework for ADN planning is proposed on the basis of coherent photonic quantum computers.The ADN planning model is then formulated and decomposed into discrete master problems and continuous subproblems to facilitate the quantum optimization process.The photonic quantum-embedded adaptive alternating direction method of multipliers(PQA-ADMM)algorithm is subsequently proposed to equivalently map the discrete master problem onto a quantum-interpretable model,enabling its deployment on a photonic quantum computer.Finally,a comparative analysis with various solvers,including Gurobi,demonstrates that the proposed PQA-ADMM algorithm achieves significant speedup on the modified IEEE 33-node and IEEE 123-node systems,highlighting its effectiveness. 展开更多
关键词 Active distribution network planning coherent photonic quantum computer photonic quantum-embedded adaptive ADMM algorithm quantum computing
在线阅读 下载PDF
Adiabatic holonomic quantum computation in decoherence-free subspace with two-body interaction
20
作者 Xiaoyu Sun Lei Qiao Peizi Zhao 《Chinese Physics B》 2025年第9期97-102,共6页
Adiabatic holonomic gates possess the geometric robustness of adiabatic geometric phases,i.e.,dependence only on the evolution path of the parameter space but not on the evolution details of the quantum system,which,w... Adiabatic holonomic gates possess the geometric robustness of adiabatic geometric phases,i.e.,dependence only on the evolution path of the parameter space but not on the evolution details of the quantum system,which,when coordinated with decoherence-free subspaces,permits additional resilience to the collective dephasing environment.However,the previous scheme[Phys.Rev.Lett.95130501(2005)]of adiabatic holonomic quantum computation in decoherence-free subspaces requires four-body interaction that is challenging in practical implementation.In this work,we put forward a scheme to realize universal adiabatic holonomic quantum computation in decoherence-free subspaces using only realistically available two-body interaction,thereby avoiding the difficulty of implementing four-body interaction.Furthermore,an arbitrary one-qubit gate in our scheme can be realized by a single-shot implementation,which eliminates the need to combine multiple gates for realizing such a gate. 展开更多
关键词 adiabatic evolution holonomic quantum computation decoherence-free subspaces
原文传递
上一页 1 2 101 下一页 到第
使用帮助 返回顶部