A dual-band and high-isolation shared-aperture antenna for unmanned aerial vehicle(UAV)platforms has been proposed.This shared-aperture antenna consists of a rectangular monopole antenna and a 4-element multiple input...A dual-band and high-isolation shared-aperture antenna for unmanned aerial vehicle(UAV)platforms has been proposed.This shared-aperture antenna consists of a rectangular monopole antenna and a 4-element multiple input multiple output(MIMO)antenna.In order to increase the isolation,several double split ring metamaterial(MTM)structures are introduced between antenna elements.The antenna radiator and the MTM structure are located on the front and back of the same dielectric substrate,respectively,and are perpendicular to a circular metal plate.The overall size of the antenna substrate is 124 mm×38 mm×1.016 mm.Moreover,the antenna prototype is constructed and measured,and the simulated and measured results are in good agreement.The measured results show that the-10 dB bandwidth of the monopole antenna is 1.92 GHz to 2.75 GHz,and the common-6.0 dB bandwidth of the MIMO antenna element is 4.75 GHz to 4.91 GHz,covering 2.2 GHz to 2.4 GHz in the S-band and 4.8 GHz to 4.9 GHz in the 5G band,respectively.In the 5G band,the isolation between any element of the MIMO antenna and the S-band monopole antenna is not less than 21 dB,and the isolation between the MIMO antenna elements is better than 23 dB,indicating t-hat the isolation between the antenna elements is high.The proposed antenna is suitable for the application on UAV airborne platforms.展开更多
GaAs PIN diodes optimized for X-band low loss and high isolation switch application are presented. The impact of diode physical characteristics and electrical parameters on switch performance is discussed. A new struc...GaAs PIN diodes optimized for X-band low loss and high isolation switch application are presented. The impact of diode physical characteristics and electrical parameters on switch performance is discussed. A new structure for GaAs PIN diodes is proposed and the fabrication process is described. GaAs PIN diodes with an on-state resistance of 〈2. 2Ω and off-state capacitance -〈20fF in the range of 100MHz to 12.1GHz are obtained.展开更多
基金supported by the National Natural Science Foundation of China under Grants No.61801406 and No.U23A20651in part by the Research Fund of Sichuan Provincial under Grants No.2024NSFSC0478 and No.2022YFG0259+1 种基金in part by the Research Fund of Key R&D Projects in Sichuan Province under Grant No.2022-ZY00-00009-GXin part by the Mianyang Central Guiding Local Science and Technology Development Fund Project under Grants No.2023ZYDF002 and No.2023ZYDF092.
文摘A dual-band and high-isolation shared-aperture antenna for unmanned aerial vehicle(UAV)platforms has been proposed.This shared-aperture antenna consists of a rectangular monopole antenna and a 4-element multiple input multiple output(MIMO)antenna.In order to increase the isolation,several double split ring metamaterial(MTM)structures are introduced between antenna elements.The antenna radiator and the MTM structure are located on the front and back of the same dielectric substrate,respectively,and are perpendicular to a circular metal plate.The overall size of the antenna substrate is 124 mm×38 mm×1.016 mm.Moreover,the antenna prototype is constructed and measured,and the simulated and measured results are in good agreement.The measured results show that the-10 dB bandwidth of the monopole antenna is 1.92 GHz to 2.75 GHz,and the common-6.0 dB bandwidth of the MIMO antenna element is 4.75 GHz to 4.91 GHz,covering 2.2 GHz to 2.4 GHz in the S-band and 4.8 GHz to 4.9 GHz in the 5G band,respectively.In the 5G band,the isolation between any element of the MIMO antenna and the S-band monopole antenna is not less than 21 dB,and the isolation between the MIMO antenna elements is better than 23 dB,indicating t-hat the isolation between the antenna elements is high.The proposed antenna is suitable for the application on UAV airborne platforms.
文摘GaAs PIN diodes optimized for X-band low loss and high isolation switch application are presented. The impact of diode physical characteristics and electrical parameters on switch performance is discussed. A new structure for GaAs PIN diodes is proposed and the fabrication process is described. GaAs PIN diodes with an on-state resistance of 〈2. 2Ω and off-state capacitance -〈20fF in the range of 100MHz to 12.1GHz are obtained.