A high frequency(HF)transformer is key equipment for dc-dc converter to achieve galvanic isolation and voltage transformation.As operating frequency increases,voltage and current transfer ratio of HF transformer may s...A high frequency(HF)transformer is key equipment for dc-dc converter to achieve galvanic isolation and voltage transformation.As operating frequency increases,voltage and current transfer ratio of HF transformer may significantly deviate from the turn ratio due to parasitic effects,failing to transfer expected voltage and current from the primary side to the secondary side.In this paper,design considerations on voltage and current transfer ratio of the HF transformer are investigated to obtain expected transfer performance.By revealing parasitic effects on transfer characteristic(TC)of the HF transformer with load,deviation between voltage/current transfer ratio and turn ratio is correlated with the ratio of voltage/current TC resonant frequency and operating frequency.Accordingly,constraints for parasitic parameters to obtain expected transfer ratio are proposed,and practical measures to achieve improvements in transformer design are discussed.A 20kHz HF transformer prototype is used as an application,by which evaluations on deviation of voltage/current transfer ratio and turn ratio are verified,and voltage/current transfer performance of the prototype are effectively improved by optimal design based on the proposed principles.展开更多
Quickly and accurately obtaining the internal temperature distribution of a transformer plays a key role in predicting its operating conditions and simplifying the maintenance process.A reasonable equivalent thermal c...Quickly and accurately obtaining the internal temperature distribution of a transformer plays a key role in predicting its operating conditions and simplifying the maintenance process.A reasonable equivalent thermal circuit model is a relatively reliable method of obtaining the internal temperature distribution.However,thermal circuit models without targeted consideration of operating conditions and parameter corrections usually limit the accuracy of the results.This paper proposed a five-node transient thermal circuit model with the introduction of nonlinear thermal resistance,which considered the internal structure and winding layout of the core-type high-frequency transformer.The Nusselt number,a crucial variable in heat convection calculations and directly related to the accuracy of thermal resistance parameters,was calibrated on the basis of the distribution of external cooling air.After parameter calibration,the maximum computational error of the hotspot temperature is reduced by 5.48%compared with that of the uncalibrated model.Finally,an experimental platform for temperature monitoring was established to validate the five-node model and its ability to track the temperature change at each reference point after calibrating the Nusselt number.展开更多
Single-shot ultrafast compressed imaging(UCI)is an effective tool for studying ultrafast dynamics in physics,chemistry,or material science because of its excellent high frame rate and large frame number.However,the ra...Single-shot ultrafast compressed imaging(UCI)is an effective tool for studying ultrafast dynamics in physics,chemistry,or material science because of its excellent high frame rate and large frame number.However,the random code(Rcode)used in traditional UCI will lead to low-frequency noise covering high-frequency information due to its uneven sampling interval,which is a great challenge in the fidelity of large-frame reconstruction.Here,a high-frequency enhanced compressed active photography(H-CAP)is proposed.By uniformizing the sampling interval of R-code,H-CAP capture the ultrafast process with a random uniform sampling mode.This sampling mode makes the high-frequency sampling energy dominant,which greatly suppresses the low-frequency noise blurring caused by R-code and achieves high-frequency information of image enhanced.The superior dynamic performance and large-frame reconstruction ability of H-CAP are verified by imaging optical self-focusing effect and static object,respectively.We applied H-CAP to the spatial-temporal characterization of double-pulse induced silicon surface ablation dynamics,which is performed within 220 frames in a single-shot of 300 ps.H-CAP provides a high-fidelity imaging method for observing ultrafast unrepeatable dynamic processes with large frames.展开更多
The rise of social media platforms has revolutionized communication, enabling the exchange of vast amounts of data through text, audio, images, and videos. These platforms have become critical for sharing opinions and...The rise of social media platforms has revolutionized communication, enabling the exchange of vast amounts of data through text, audio, images, and videos. These platforms have become critical for sharing opinions and insights, influencing daily habits, and driving business, political, and economic decisions. Text posts are particularly significant, and natural language processing (NLP) has emerged as a powerful tool for analyzing such data. While traditional NLP methods have been effective for structured media, social media content poses unique challenges due to its informal and diverse nature. This has spurred the development of new techniques tailored for processing and extracting insights from unstructured user-generated text. One key application of NLP is the summarization of user comments to manage overwhelming content volumes. Abstractive summarization has proven highly effective in generating concise, human-like summaries, offering clear overviews of key themes and sentiments. This enhances understanding and engagement while reducing cognitive effort for users. For businesses, summarization provides actionable insights into customer preferences and feedback, enabling faster trend analysis, improved responsiveness, and strategic adaptability. By distilling complex data into manageable insights, summarization plays a vital role in improving user experiences and empowering informed decision-making in a data-driven landscape. This paper proposes a new implementation framework by fine-tuning and parameterizing Transformer Large Language Models to manage and maintain linguistic and semantic components in abstractive summary generation. The system excels in transforming large volumes of data into meaningful summaries, as evidenced by its strong performance across metrics like fluency, consistency, readability, and semantic coherence.展开更多
The oil-based mud(OBM) borehole measurement environment presents significant limitations on the application of existing electrical logging instruments in high-resistance formations. In this paper, we propose a novel l...The oil-based mud(OBM) borehole measurement environment presents significant limitations on the application of existing electrical logging instruments in high-resistance formations. In this paper, we propose a novel logging method for detection of high-resistance formations in OBM using highfrequency electrodes. The method addresses the issue of shallow depth of investigation(DOI) in existing electrical logging instruments, while simultaneously ensuring the vertical resolution. Based on the principle of current continuity, the total impedance of the loop is obtained by equating the measurement loop to the series form of a capacitively coupled circuit. and its validity is verified in a homogeneous formation model and a radial two-layer formation model with a mud standoff. Then, the instrument operating frequency and electrode system parameters were preferentially determined by numerical simulation, and the effect of mud gap on impedance measurement was investigated. Subsequently, the DOI of the instrument was investigated utilizing the pseudo-geometric factor defined by the real part of impedance. It was determined that the detection depth of the instrument is 8.74 cm, while the effective vertical resolution was not less than 2 cm. Finally, a focused high-frequency electrode-type instrument was designed by introducing a pair of focused electrodes, which effectively enhanced the DOI of the instrument and was successfully deployed in the Oklahoma formation model. The simulation results demonstrate that the novel method can achieve a detection depth of 17.40 cm in highly-resistive formations drilling with OBM, which is approximately twice the depth of detection of the existing oil-based mud microimager instruments. Furthermore, its effective vertical resolution remains at or above 2 cm,which is comparable to the resolution of the existing OBM electrical logging instrument.展开更多
Objective:To analyze the significance of high-frequency ultrasound in differentiating benign and malignant breast micronodules.Methods:Eighty-five patients with breast micronodules admitted for diagnosis between Octob...Objective:To analyze the significance of high-frequency ultrasound in differentiating benign and malignant breast micronodules.Methods:Eighty-five patients with breast micronodules admitted for diagnosis between October 2022 and October 2024 were selected for high-frequency ultrasound diagnosis.The diagnostic efficacy of high-frequency ultrasound was evaluated by comparing it with the results of surgical pathology.Results:High-frequency ultrasound detected 50 benign nodules,primarily breast fibroadenomas,and 35 malignant nodules,mainly breast ductal carcinoma in situ.Based on surgical pathology results,the diagnostic accuracy of high-frequency ultrasound was 96.47%,specificity was 97.96%,and sensitivity was 94.44%.In high-frequency ultrasound diagnosis,the proportion of grade III and IV blood flow in malignant nodules was higher than that in benign nodules,while the proportion of regular shape and clear margins was lower.The proportion of microcalcifications and posterior echo attenuation was higher in malignant nodules,and the resistance index(RI)and peak blood flow velocity were lower than those in benign nodules(P<0.05).Conclusion:High-frequency ultrasound can effectively differentiate benign and malignant breast micronodules,determine specific nodule types,and exhibits high diagnostic accuracy and sensitivity.Additionally,benign and malignant nodules can be differentiated based on the grading of blood flow signals,sonographic features,and blood flow velocity,providing reasonable guidance for subsequent treatment plans.展开更多
China has a long history of coal mining,among which open-pit coal mines have a large number of small coal mine goafs underground.The distribution,shape,structure and other characteristics of goafs are isolated and dis...China has a long history of coal mining,among which open-pit coal mines have a large number of small coal mine goafs underground.The distribution,shape,structure and other characteristics of goafs are isolated and discontinuous,and there is no definite geological law to follow,which seriously threatens the safety of coal mine production and personnel life.Conventional ground geophysical methods have low accuracy in detecting goaf areas affected by mechanical interference from open-pit mines,especially for waterless goaf areas,which cannot be detected by existing methods.This article proposes the use of high-frequency electromagnetic waves for goaf detection.The feasibility of using drilling radar to detect goaf was theoretically analyzed,and a goaf detection model was established.The response characteristics of different fillers in the goaf under different frequencies of high-frequency electromagnetic waves were simulated and analyzed.In a certain open-pit mine in Inner Mongolia,100MHz high-frequency electromagnetic waves were used to detect the goaf through directional drilling on the ground.After detection,excavation verification was carried out,and the location of one goaf detected was verified.The results of engineering practice show that the application of high-frequency electromagnetic waves in goaf detection expands the detection radius of boreholes,has the advantages of high efficiency and accuracy,and has important theoretical and practical significance.展开更多
Objective:To analyze the therapeutic effect of high-frequency electrosurgical knife surgery guided by painless digestive endoscopy(PDE)in elderly patients with gastrointestinal polyps(GP).Methods:A total of 100 elderl...Objective:To analyze the therapeutic effect of high-frequency electrosurgical knife surgery guided by painless digestive endoscopy(PDE)in elderly patients with gastrointestinal polyps(GP).Methods:A total of 100 elderly GP patients admitted between June 2021 and December 2022 were selected.Patients were randomly divided into two groups:the painless group(50 cases)underwent high-frequency electrosurgical knife surgery guided by PDE,while the conventional group(50 cases)underwent the same surgery guided by traditional digestive endoscopy(DE).The total treatment efficacy,perioperative indicators,gastrointestinal hormone levels,oxidative stress(OS)markers,and complication rates were compared between the two groups.Results:The total treatment efficacy in the painless group was higher than that in the conventional group,and perioperative indicators were superior in the painless group(P<0.05).One week after treatment,the gastrointestinal hormone levels and OS-related markers in the painless group were better than those in the conventional group(P<0.05).The complication rate in the painless group was lower than in the conventional group(P<0.05).Conclusion:High-frequency electrosurgical knife surgery guided by PDE improves the effectiveness of polyp removal in elderly GP patients and accelerates postoperative recovery.It also protects gastrointestinal function,reduces postoperative OS,and ensures higher surgical safety.展开更多
In recent years,Transformer has achieved remarkable results in the field of computer vision,with its built-in attention layers effectively modeling global dependencies in images by transforming image features into tok...In recent years,Transformer has achieved remarkable results in the field of computer vision,with its built-in attention layers effectively modeling global dependencies in images by transforming image features into token forms.However,Transformers often face high computational costs when processing large-scale image data,which limits their feasibility in real-time applications.To address this issue,we propose Token Masked Pose Transformers(TMPose),constructing an efficient Transformer network for pose estimation.This network applies semantic-level masking to tokens and employs three different masking strategies to optimize model performance,aiming to reduce computational complexity.Experimental results show that TMPose reduces computational complexity by 61.1%on the COCO validation dataset,with negligible loss in accuracy.Additionally,our performance on the MPII dataset is also competitive.This research not only enhances the accuracy of pose estimation but also significantly reduces the demand for computational resources,providing new directions for further studies in this field.展开更多
Cyberbullying is a remarkable issue in the Arabic-speaking world,affecting children,organizations,and businesses.Various efforts have been made to combat this problem through proposed models using machine learning(ML)...Cyberbullying is a remarkable issue in the Arabic-speaking world,affecting children,organizations,and businesses.Various efforts have been made to combat this problem through proposed models using machine learning(ML)and deep learning(DL)approaches utilizing natural language processing(NLP)methods and by proposing relevant datasets.However,most of these endeavors focused predominantly on the English language,leaving a substantial gap in addressing Arabic cyberbullying.Given the complexities of the Arabic language,transfer learning techniques and transformers present a promising approach to enhance the detection and classification of abusive content by leveraging large and pretrained models that use a large dataset.Therefore,this study proposes a hybrid model using transformers trained on extensive Arabic datasets.It then fine-tunes the hybrid model on a newly curated Arabic cyberbullying dataset collected from social media platforms,in particular Twitter.Additionally,the following two hybrid transformer models are introduced:the first combines CAmelid Morphologically-aware pretrained Bidirectional Encoder Representations from Transformers(CAMeLBERT)with Arabic Generative Pre-trained Transformer 2(AraGPT2)and the second combines Arabic BERT(AraBERT)with Cross-lingual Language Model-RoBERTa(XLM-R).Two strategies,namely,feature fusion and ensemble voting,are employed to improve the model performance accuracy.Experimental results,measured through precision,recall,F1-score,accuracy,and AreaUnder the Curve-Receiver Operating Characteristic(AUC-ROC),demonstrate that the combined CAMeLBERT and AraGPT2 models using feature fusion outperformed traditional DL models,such as Long Short-Term Memory(LSTM)and Bidirectional Long Short-Term Memory(BiLSTM),as well as other independent Arabic-based transformer models.展开更多
This paper focuses on the research of the main transformer selection and layout scheme for new energy step-up substations.From the perspective of engineering design,it analyzes the principles of main transformer selec...This paper focuses on the research of the main transformer selection and layout scheme for new energy step-up substations.From the perspective of engineering design,it analyzes the principles of main transformer selection,key parameters,and their matching with the characteristics of new energy.It also explores the layout methods and optimization strategies.Combined with typical case studies,optimization suggestions are proposed for the design of main transformers in new energy step-up substations.The research shows that rational main transformer selection and scientific layout schemes can better adapt to the characteristics of new energy projects while effectively improving land use efficiency and economic viability.This study can provide technical experience support for the design of new energy projects.展开更多
As the plasma current power in tokamak devices increases,a significant number of stray magnetic fields are generated around the equipment.These stray magnetic fields can disrupt the operation of electronic power devic...As the plasma current power in tokamak devices increases,a significant number of stray magnetic fields are generated around the equipment.These stray magnetic fields can disrupt the operation of electronic power devices,particularly transformers in switched-mode power supplies.Testing flyback converters with transformers under strong background magnetic fields highlights electromagnetic compatibility(EMC)issues for such switched-mode power supplies.This study utilizes finite element analysis software to simulate the electromagnetic environment of switched-mode power supply transformers and investigates the impact of variations in different magnetic field parameters on the performance of switched-mode power supplies under strong stray magnetic fields.The findings indicate that EMC issues are associated with transformer core saturation and can be alleviated through appropriate configurations of the core size,air gap,fillet radius,and installation direction.This study offers novel solutions for addressing EMC issues in high magnetic field environments.展开更多
X(formerly known as Twitter)is one of the most prominent social media platforms,enabling users to share short messages(tweets)with the public or their followers.It serves various purposes,from real-time news dissemina...X(formerly known as Twitter)is one of the most prominent social media platforms,enabling users to share short messages(tweets)with the public or their followers.It serves various purposes,from real-time news dissemination and political discourse to trend spotting and consumer engagement.X has emerged as a key space for understanding shifting brand perceptions,consumer preferences,and product-related sentiment in the fashion industry.However,the platform’s informal,dynamic,and context-dependent language poses substantial challenges for sentiment analysis,mainly when attempting to detect sarcasm,slang,and nuanced emotional tones.This study introduces a hybrid deep learning framework that integrates Transformer encoders,recurrent neural networks(i.e.,Long Short-Term Memory(LSTM)and Gated Recurrent Unit(GRU)),and attention mechanisms to improve the accuracy of fashion-related sentiment classification.These methods were selected due to their proven strength in capturing both contextual dependencies and sequential structures,which are essential for interpreting short-form text.Our model was evaluated on a dataset of 20,000 fashion tweets.The experimental results demonstrate a classification accuracy of 92.25%,outperforming conventional models such as Logistic Regression,Linear Support Vector Machine(SVM),and even standalone LSTM by a margin of up to 8%.This improvement highlights the importance of hybrid architectures in handling noisy,informal social media data.This study’s findings offer strong implications for digital marketing and brand management,where timely sentiment detection is critical.Despite the promising results,challenges remain regarding the precise identification of negative sentiments,indicating that further work is needed to detect subtle and contextually embedded expressions.展开更多
Critical for metering and protection in electric railway traction power supply systems(TPSSs),the measurement performance of voltage transformers(VTs)must be timely and reliably monitored.This paper outlines a three-s...Critical for metering and protection in electric railway traction power supply systems(TPSSs),the measurement performance of voltage transformers(VTs)must be timely and reliably monitored.This paper outlines a three-step,RMS data only method for evaluating VTs in TPSSs.First,a kernel principal component analysis approach is used to diagnose the VT exhibiting significant measurement deviations over time,mitigating the influence of stochastic fluctuations in traction loads.Second,a back propagation neural network is employed to continuously estimate the measurement deviations of the targeted VT.Third,a trend analysis method is developed to assess the evolution of the measurement performance of VTs.Case studies conducted on field data from an operational TPSS demonstrate the effectiveness of the proposed method in detecting VTs with measurement deviations exceeding 1%relative to their original accuracy levels.Additionally,the method accurately tracks deviation trends,enabling the identification of potential early-stage faults in VTs and helping prevent significant economic losses in TPSS operations.展开更多
Integrating multiple medical imaging techniques,including Magnetic Resonance Imaging(MRI),Computed Tomography,Positron Emission Tomography(PET),and ultrasound,provides a comprehensive view of the patient health status...Integrating multiple medical imaging techniques,including Magnetic Resonance Imaging(MRI),Computed Tomography,Positron Emission Tomography(PET),and ultrasound,provides a comprehensive view of the patient health status.Each of these methods contributes unique diagnostic insights,enhancing the overall assessment of patient condition.Nevertheless,the amalgamation of data from multiple modalities presents difficulties due to disparities in resolution,data collection methods,and noise levels.While traditional models like Convolutional Neural Networks(CNNs)excel in single-modality tasks,they struggle to handle multi-modal complexities,lacking the capacity to model global relationships.This research presents a novel approach for examining multi-modal medical imagery using a transformer-based system.The framework employs self-attention and cross-attention mechanisms to synchronize and integrate features across various modalities.Additionally,it shows resilience to variations in noise and image quality,making it adaptable for real-time clinical use.To address the computational hurdles linked to transformer models,particularly in real-time clinical applications in resource-constrained environments,several optimization techniques have been integrated to boost scalability and efficiency.Initially,a streamlined transformer architecture was adopted to minimize the computational load while maintaining model effectiveness.Methods such as model pruning,quantization,and knowledge distillation have been applied to reduce the parameter count and enhance the inference speed.Furthermore,efficient attention mechanisms such as linear or sparse attention were employed to alleviate the substantial memory and processing requirements of traditional self-attention operations.For further deployment optimization,researchers have implemented hardware-aware acceleration strategies,including the use of TensorRT and ONNX-based model compression,to ensure efficient execution on edge devices.These optimizations allow the approach to function effectively in real-time clinical settings,ensuring viability even in environments with limited resources.Future research directions include integrating non-imaging data to facilitate personalized treatment and enhancing computational efficiency for implementation in resource-limited environments.This study highlights the transformative potential of transformer models in multi-modal medical imaging,offering improvements in diagnostic accuracy and patient care outcomes.展开更多
This paper proposes an improved modularizable high-frequency battery equalizer with multi-winding transformer for energy storage systems. The involvement of parasitic components in circuit resonance, along with the ad...This paper proposes an improved modularizable high-frequency battery equalizer with multi-winding transformer for energy storage systems. The involvement of parasitic components in circuit resonance, along with the addition of a resonant network, enables soft-switching for the power switches to reduce the switch voltage stress due to high frequency switching operation. The proposed circuit is designed to operate at switching frequency of 1 MHz. The detailed analysis of circuit operation is provided. At last, the feasibility and performance of the proposed battery equalizer are demonstrated through the system implementation and experimental tests of a prototype circuit. Experimental results have shown zero voltage switching (ZVS) is achieved on the switches.展开更多
文摘A high frequency(HF)transformer is key equipment for dc-dc converter to achieve galvanic isolation and voltage transformation.As operating frequency increases,voltage and current transfer ratio of HF transformer may significantly deviate from the turn ratio due to parasitic effects,failing to transfer expected voltage and current from the primary side to the secondary side.In this paper,design considerations on voltage and current transfer ratio of the HF transformer are investigated to obtain expected transfer performance.By revealing parasitic effects on transfer characteristic(TC)of the HF transformer with load,deviation between voltage/current transfer ratio and turn ratio is correlated with the ratio of voltage/current TC resonant frequency and operating frequency.Accordingly,constraints for parasitic parameters to obtain expected transfer ratio are proposed,and practical measures to achieve improvements in transformer design are discussed.A 20kHz HF transformer prototype is used as an application,by which evaluations on deviation of voltage/current transfer ratio and turn ratio are verified,and voltage/current transfer performance of the prototype are effectively improved by optimal design based on the proposed principles.
基金supported by the National Natural Science Foundation of China(Grant 52207180)Xi'an High Voltage Apparatus Research Institute Co.Ltd.(Grant K222301-01)the Anhui Provincial Natural Science Foundation(Grant 2208085UD18).
文摘Quickly and accurately obtaining the internal temperature distribution of a transformer plays a key role in predicting its operating conditions and simplifying the maintenance process.A reasonable equivalent thermal circuit model is a relatively reliable method of obtaining the internal temperature distribution.However,thermal circuit models without targeted consideration of operating conditions and parameter corrections usually limit the accuracy of the results.This paper proposed a five-node transient thermal circuit model with the introduction of nonlinear thermal resistance,which considered the internal structure and winding layout of the core-type high-frequency transformer.The Nusselt number,a crucial variable in heat convection calculations and directly related to the accuracy of thermal resistance parameters,was calibrated on the basis of the distribution of external cooling air.After parameter calibration,the maximum computational error of the hotspot temperature is reduced by 5.48%compared with that of the uncalibrated model.Finally,an experimental platform for temperature monitoring was established to validate the five-node model and its ability to track the temperature change at each reference point after calibrating the Nusselt number.
基金supported by the National Science Foundation of China(No.12127806,No.62175195 and No.12304382)the International Joint Research Laboratory for Micro/Nano Manufacturing and Measurement Technologies.
文摘Single-shot ultrafast compressed imaging(UCI)is an effective tool for studying ultrafast dynamics in physics,chemistry,or material science because of its excellent high frame rate and large frame number.However,the random code(Rcode)used in traditional UCI will lead to low-frequency noise covering high-frequency information due to its uneven sampling interval,which is a great challenge in the fidelity of large-frame reconstruction.Here,a high-frequency enhanced compressed active photography(H-CAP)is proposed.By uniformizing the sampling interval of R-code,H-CAP capture the ultrafast process with a random uniform sampling mode.This sampling mode makes the high-frequency sampling energy dominant,which greatly suppresses the low-frequency noise blurring caused by R-code and achieves high-frequency information of image enhanced.The superior dynamic performance and large-frame reconstruction ability of H-CAP are verified by imaging optical self-focusing effect and static object,respectively.We applied H-CAP to the spatial-temporal characterization of double-pulse induced silicon surface ablation dynamics,which is performed within 220 frames in a single-shot of 300 ps.H-CAP provides a high-fidelity imaging method for observing ultrafast unrepeatable dynamic processes with large frames.
文摘The rise of social media platforms has revolutionized communication, enabling the exchange of vast amounts of data through text, audio, images, and videos. These platforms have become critical for sharing opinions and insights, influencing daily habits, and driving business, political, and economic decisions. Text posts are particularly significant, and natural language processing (NLP) has emerged as a powerful tool for analyzing such data. While traditional NLP methods have been effective for structured media, social media content poses unique challenges due to its informal and diverse nature. This has spurred the development of new techniques tailored for processing and extracting insights from unstructured user-generated text. One key application of NLP is the summarization of user comments to manage overwhelming content volumes. Abstractive summarization has proven highly effective in generating concise, human-like summaries, offering clear overviews of key themes and sentiments. This enhances understanding and engagement while reducing cognitive effort for users. For businesses, summarization provides actionable insights into customer preferences and feedback, enabling faster trend analysis, improved responsiveness, and strategic adaptability. By distilling complex data into manageable insights, summarization plays a vital role in improving user experiences and empowering informed decision-making in a data-driven landscape. This paper proposes a new implementation framework by fine-tuning and parameterizing Transformer Large Language Models to manage and maintain linguistic and semantic components in abstractive summary generation. The system excels in transforming large volumes of data into meaningful summaries, as evidenced by its strong performance across metrics like fluency, consistency, readability, and semantic coherence.
基金the National Natural Science Foundation of China(42074134,42474152,42374150)CNPC Innovation Found(2024DQ02-0152).
文摘The oil-based mud(OBM) borehole measurement environment presents significant limitations on the application of existing electrical logging instruments in high-resistance formations. In this paper, we propose a novel logging method for detection of high-resistance formations in OBM using highfrequency electrodes. The method addresses the issue of shallow depth of investigation(DOI) in existing electrical logging instruments, while simultaneously ensuring the vertical resolution. Based on the principle of current continuity, the total impedance of the loop is obtained by equating the measurement loop to the series form of a capacitively coupled circuit. and its validity is verified in a homogeneous formation model and a radial two-layer formation model with a mud standoff. Then, the instrument operating frequency and electrode system parameters were preferentially determined by numerical simulation, and the effect of mud gap on impedance measurement was investigated. Subsequently, the DOI of the instrument was investigated utilizing the pseudo-geometric factor defined by the real part of impedance. It was determined that the detection depth of the instrument is 8.74 cm, while the effective vertical resolution was not less than 2 cm. Finally, a focused high-frequency electrode-type instrument was designed by introducing a pair of focused electrodes, which effectively enhanced the DOI of the instrument and was successfully deployed in the Oklahoma formation model. The simulation results demonstrate that the novel method can achieve a detection depth of 17.40 cm in highly-resistive formations drilling with OBM, which is approximately twice the depth of detection of the existing oil-based mud microimager instruments. Furthermore, its effective vertical resolution remains at or above 2 cm,which is comparable to the resolution of the existing OBM electrical logging instrument.
文摘Objective:To analyze the significance of high-frequency ultrasound in differentiating benign and malignant breast micronodules.Methods:Eighty-five patients with breast micronodules admitted for diagnosis between October 2022 and October 2024 were selected for high-frequency ultrasound diagnosis.The diagnostic efficacy of high-frequency ultrasound was evaluated by comparing it with the results of surgical pathology.Results:High-frequency ultrasound detected 50 benign nodules,primarily breast fibroadenomas,and 35 malignant nodules,mainly breast ductal carcinoma in situ.Based on surgical pathology results,the diagnostic accuracy of high-frequency ultrasound was 96.47%,specificity was 97.96%,and sensitivity was 94.44%.In high-frequency ultrasound diagnosis,the proportion of grade III and IV blood flow in malignant nodules was higher than that in benign nodules,while the proportion of regular shape and clear margins was lower.The proportion of microcalcifications and posterior echo attenuation was higher in malignant nodules,and the resistance index(RI)and peak blood flow velocity were lower than those in benign nodules(P<0.05).Conclusion:High-frequency ultrasound can effectively differentiate benign and malignant breast micronodules,determine specific nodule types,and exhibits high diagnostic accuracy and sensitivity.Additionally,benign and malignant nodules can be differentiated based on the grading of blood flow signals,sonographic features,and blood flow velocity,providing reasonable guidance for subsequent treatment plans.
文摘China has a long history of coal mining,among which open-pit coal mines have a large number of small coal mine goafs underground.The distribution,shape,structure and other characteristics of goafs are isolated and discontinuous,and there is no definite geological law to follow,which seriously threatens the safety of coal mine production and personnel life.Conventional ground geophysical methods have low accuracy in detecting goaf areas affected by mechanical interference from open-pit mines,especially for waterless goaf areas,which cannot be detected by existing methods.This article proposes the use of high-frequency electromagnetic waves for goaf detection.The feasibility of using drilling radar to detect goaf was theoretically analyzed,and a goaf detection model was established.The response characteristics of different fillers in the goaf under different frequencies of high-frequency electromagnetic waves were simulated and analyzed.In a certain open-pit mine in Inner Mongolia,100MHz high-frequency electromagnetic waves were used to detect the goaf through directional drilling on the ground.After detection,excavation verification was carried out,and the location of one goaf detected was verified.The results of engineering practice show that the application of high-frequency electromagnetic waves in goaf detection expands the detection radius of boreholes,has the advantages of high efficiency and accuracy,and has important theoretical and practical significance.
文摘Objective:To analyze the therapeutic effect of high-frequency electrosurgical knife surgery guided by painless digestive endoscopy(PDE)in elderly patients with gastrointestinal polyps(GP).Methods:A total of 100 elderly GP patients admitted between June 2021 and December 2022 were selected.Patients were randomly divided into two groups:the painless group(50 cases)underwent high-frequency electrosurgical knife surgery guided by PDE,while the conventional group(50 cases)underwent the same surgery guided by traditional digestive endoscopy(DE).The total treatment efficacy,perioperative indicators,gastrointestinal hormone levels,oxidative stress(OS)markers,and complication rates were compared between the two groups.Results:The total treatment efficacy in the painless group was higher than that in the conventional group,and perioperative indicators were superior in the painless group(P<0.05).One week after treatment,the gastrointestinal hormone levels and OS-related markers in the painless group were better than those in the conventional group(P<0.05).The complication rate in the painless group was lower than in the conventional group(P<0.05).Conclusion:High-frequency electrosurgical knife surgery guided by PDE improves the effectiveness of polyp removal in elderly GP patients and accelerates postoperative recovery.It also protects gastrointestinal function,reduces postoperative OS,and ensures higher surgical safety.
基金supported in part by the Scientific Research Start-Up Fund of Zhejiang Sci-Tech University,under the project titled“(National Treasury)Development of a Digital Silk Museum System Based on Metaverse and AR”(Project No.11121731282202-01).
文摘In recent years,Transformer has achieved remarkable results in the field of computer vision,with its built-in attention layers effectively modeling global dependencies in images by transforming image features into token forms.However,Transformers often face high computational costs when processing large-scale image data,which limits their feasibility in real-time applications.To address this issue,we propose Token Masked Pose Transformers(TMPose),constructing an efficient Transformer network for pose estimation.This network applies semantic-level masking to tokens and employs three different masking strategies to optimize model performance,aiming to reduce computational complexity.Experimental results show that TMPose reduces computational complexity by 61.1%on the COCO validation dataset,with negligible loss in accuracy.Additionally,our performance on the MPII dataset is also competitive.This research not only enhances the accuracy of pose estimation but also significantly reduces the demand for computational resources,providing new directions for further studies in this field.
基金funded by the Deanship of Scientific Research at Northern Border University,Arar,Saudi Arabia,through the project number“NBU-FFR-2025-1197-01”.
文摘Cyberbullying is a remarkable issue in the Arabic-speaking world,affecting children,organizations,and businesses.Various efforts have been made to combat this problem through proposed models using machine learning(ML)and deep learning(DL)approaches utilizing natural language processing(NLP)methods and by proposing relevant datasets.However,most of these endeavors focused predominantly on the English language,leaving a substantial gap in addressing Arabic cyberbullying.Given the complexities of the Arabic language,transfer learning techniques and transformers present a promising approach to enhance the detection and classification of abusive content by leveraging large and pretrained models that use a large dataset.Therefore,this study proposes a hybrid model using transformers trained on extensive Arabic datasets.It then fine-tunes the hybrid model on a newly curated Arabic cyberbullying dataset collected from social media platforms,in particular Twitter.Additionally,the following two hybrid transformer models are introduced:the first combines CAmelid Morphologically-aware pretrained Bidirectional Encoder Representations from Transformers(CAMeLBERT)with Arabic Generative Pre-trained Transformer 2(AraGPT2)and the second combines Arabic BERT(AraBERT)with Cross-lingual Language Model-RoBERTa(XLM-R).Two strategies,namely,feature fusion and ensemble voting,are employed to improve the model performance accuracy.Experimental results,measured through precision,recall,F1-score,accuracy,and AreaUnder the Curve-Receiver Operating Characteristic(AUC-ROC),demonstrate that the combined CAMeLBERT and AraGPT2 models using feature fusion outperformed traditional DL models,such as Long Short-Term Memory(LSTM)and Bidirectional Long Short-Term Memory(BiLSTM),as well as other independent Arabic-based transformer models.
文摘This paper focuses on the research of the main transformer selection and layout scheme for new energy step-up substations.From the perspective of engineering design,it analyzes the principles of main transformer selection,key parameters,and their matching with the characteristics of new energy.It also explores the layout methods and optimization strategies.Combined with typical case studies,optimization suggestions are proposed for the design of main transformers in new energy step-up substations.The research shows that rational main transformer selection and scientific layout schemes can better adapt to the characteristics of new energy projects while effectively improving land use efficiency and economic viability.This study can provide technical experience support for the design of new energy projects.
基金supported by the Natural Science Foundation of Anhui Province(No.228085ME142)the Comprehensive Research Facility for the Fusion Technology Program of China(No.20180000527301001228)the Open Fund of the Magnetic Confinement Fusion Laboratory of Anhui Province(No.2024AMF04003)。
文摘As the plasma current power in tokamak devices increases,a significant number of stray magnetic fields are generated around the equipment.These stray magnetic fields can disrupt the operation of electronic power devices,particularly transformers in switched-mode power supplies.Testing flyback converters with transformers under strong background magnetic fields highlights electromagnetic compatibility(EMC)issues for such switched-mode power supplies.This study utilizes finite element analysis software to simulate the electromagnetic environment of switched-mode power supply transformers and investigates the impact of variations in different magnetic field parameters on the performance of switched-mode power supplies under strong stray magnetic fields.The findings indicate that EMC issues are associated with transformer core saturation and can be alleviated through appropriate configurations of the core size,air gap,fillet radius,and installation direction.This study offers novel solutions for addressing EMC issues in high magnetic field environments.
文摘X(formerly known as Twitter)is one of the most prominent social media platforms,enabling users to share short messages(tweets)with the public or their followers.It serves various purposes,from real-time news dissemination and political discourse to trend spotting and consumer engagement.X has emerged as a key space for understanding shifting brand perceptions,consumer preferences,and product-related sentiment in the fashion industry.However,the platform’s informal,dynamic,and context-dependent language poses substantial challenges for sentiment analysis,mainly when attempting to detect sarcasm,slang,and nuanced emotional tones.This study introduces a hybrid deep learning framework that integrates Transformer encoders,recurrent neural networks(i.e.,Long Short-Term Memory(LSTM)and Gated Recurrent Unit(GRU)),and attention mechanisms to improve the accuracy of fashion-related sentiment classification.These methods were selected due to their proven strength in capturing both contextual dependencies and sequential structures,which are essential for interpreting short-form text.Our model was evaluated on a dataset of 20,000 fashion tweets.The experimental results demonstrate a classification accuracy of 92.25%,outperforming conventional models such as Logistic Regression,Linear Support Vector Machine(SVM),and even standalone LSTM by a margin of up to 8%.This improvement highlights the importance of hybrid architectures in handling noisy,informal social media data.This study’s findings offer strong implications for digital marketing and brand management,where timely sentiment detection is critical.Despite the promising results,challenges remain regarding the precise identification of negative sentiments,indicating that further work is needed to detect subtle and contextually embedded expressions.
基金supported by the National Natural Science Foundation of China(No.52107125)Applied Basic Research Project of Sichuan Province(No.2022NSFSC0250)Chengdu Guojia Electrical Engineering Co.,Ltd.(No.KYL202312-0043).
文摘Critical for metering and protection in electric railway traction power supply systems(TPSSs),the measurement performance of voltage transformers(VTs)must be timely and reliably monitored.This paper outlines a three-step,RMS data only method for evaluating VTs in TPSSs.First,a kernel principal component analysis approach is used to diagnose the VT exhibiting significant measurement deviations over time,mitigating the influence of stochastic fluctuations in traction loads.Second,a back propagation neural network is employed to continuously estimate the measurement deviations of the targeted VT.Third,a trend analysis method is developed to assess the evolution of the measurement performance of VTs.Case studies conducted on field data from an operational TPSS demonstrate the effectiveness of the proposed method in detecting VTs with measurement deviations exceeding 1%relative to their original accuracy levels.Additionally,the method accurately tracks deviation trends,enabling the identification of potential early-stage faults in VTs and helping prevent significant economic losses in TPSS operations.
基金supported by the Deanship of Research and Graduate Studies at King Khalid University under Small Research Project grant number RGP1/139/45.
文摘Integrating multiple medical imaging techniques,including Magnetic Resonance Imaging(MRI),Computed Tomography,Positron Emission Tomography(PET),and ultrasound,provides a comprehensive view of the patient health status.Each of these methods contributes unique diagnostic insights,enhancing the overall assessment of patient condition.Nevertheless,the amalgamation of data from multiple modalities presents difficulties due to disparities in resolution,data collection methods,and noise levels.While traditional models like Convolutional Neural Networks(CNNs)excel in single-modality tasks,they struggle to handle multi-modal complexities,lacking the capacity to model global relationships.This research presents a novel approach for examining multi-modal medical imagery using a transformer-based system.The framework employs self-attention and cross-attention mechanisms to synchronize and integrate features across various modalities.Additionally,it shows resilience to variations in noise and image quality,making it adaptable for real-time clinical use.To address the computational hurdles linked to transformer models,particularly in real-time clinical applications in resource-constrained environments,several optimization techniques have been integrated to boost scalability and efficiency.Initially,a streamlined transformer architecture was adopted to minimize the computational load while maintaining model effectiveness.Methods such as model pruning,quantization,and knowledge distillation have been applied to reduce the parameter count and enhance the inference speed.Furthermore,efficient attention mechanisms such as linear or sparse attention were employed to alleviate the substantial memory and processing requirements of traditional self-attention operations.For further deployment optimization,researchers have implemented hardware-aware acceleration strategies,including the use of TensorRT and ONNX-based model compression,to ensure efficient execution on edge devices.These optimizations allow the approach to function effectively in real-time clinical settings,ensuring viability even in environments with limited resources.Future research directions include integrating non-imaging data to facilitate personalized treatment and enhancing computational efficiency for implementation in resource-limited environments.This study highlights the transformative potential of transformer models in multi-modal medical imaging,offering improvements in diagnostic accuracy and patient care outcomes.
文摘This paper proposes an improved modularizable high-frequency battery equalizer with multi-winding transformer for energy storage systems. The involvement of parasitic components in circuit resonance, along with the addition of a resonant network, enables soft-switching for the power switches to reduce the switch voltage stress due to high frequency switching operation. The proposed circuit is designed to operate at switching frequency of 1 MHz. The detailed analysis of circuit operation is provided. At last, the feasibility and performance of the proposed battery equalizer are demonstrated through the system implementation and experimental tests of a prototype circuit. Experimental results have shown zero voltage switching (ZVS) is achieved on the switches.