期刊文献+
共找到12,060篇文章
< 1 2 250 >
每页显示 20 50 100
Cyclic shear responses of rough-walled rock joints subjected to dynamic normal loads
1
作者 Qiang Zhu Qian Yin +1 位作者 Zhigang Tao Manchao He 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期3289-3297,共9页
In rock engineering,the cyclic shear characteristics of rough joints under dynamic disturbances are still insufficiently studied.This study conducted cyclic shear experiments on rough joints under dynamic normal loads... In rock engineering,the cyclic shear characteristics of rough joints under dynamic disturbances are still insufficiently studied.This study conducted cyclic shear experiments on rough joints under dynamic normal loads to assess the impact of shear frequency(f_(h))and shear displacement amplitude(u_(d))on the frictional properties of the joint.The results reveal that within a single shearing cycle,the normal displacement negatively correlates with the dynamic normal force.As the shear cycle number increases,the joint surface undergoes progressive wear,resulting in an exponential decrease in the peak normal displacement.In the cyclic shearing procedure,the forward peak values of shear force and friction coefficient display larger fluctuations at either lower or higher shear frequencies.However,under moderate shear frequency conditions,the changes in the shear strength of the joint surface are smaller,and the degree of degradation post-shearing is relatively limited.As the shear displacement amplitude increases,the range of normal deformation within the joint widens.Furthermore,after shearing,the corresponding joint roughness coefficient trend shows a gradual decrease with an increasing shear displacement amplitude,while varying with the shearing frequency in a pattern that initially rises and then falls,with a turning point at 0.05 Hz.The findings of this research contribute to a profound comprehension of the cyclic frictional properties of rock joints under dynamic disturbances. 展开更多
关键词 dynamic normal load dynamic shear load Rough joints Friction mechanisms
在线阅读 下载PDF
Cumulative damage characteristics of fully grouted GFRP bolts in rock under blasting dynamic loads
2
作者 WANG Wenjie SONG Jiale +2 位作者 LIU Chao YU Longzhe KABILA Kevin 《Journal of Mountain Science》 2025年第5期1871-1887,共17页
In the civil and mining industries,bolts are critical components of support systems,playing a vital role in ensuring their stability.Glass fibre reinforced polymer(GFRP)bolts are widely used because they are corrosion... In the civil and mining industries,bolts are critical components of support systems,playing a vital role in ensuring their stability.Glass fibre reinforced polymer(GFRP)bolts are widely used because they are corrosion-resistant and cost-effective.However,the damage mechanisms of GFRP bolts under blasting dynamic loads are still unclear,especially compared to metal bolts.This study investigates the cumulative damage of fully grouted GFRP bolts under blasting dynamic loads.The maximum axial stress at the tails of the bolts is defined as the damage variable,based on the failure characteristics of GFRP bolts.By combining this with Miner's cumulative damage theory,a comprehensive theoretical and numerical model is established to calculate cumulative damage.Field data collected from the Jinchuan No.3 Mining Area,including GFRP bolts parameters and blasting vibration data are used for further analysis of cumulative damage in fully grouted GFRP bolts.Results indicate that with an increasing number of blasts,axial stress increases in all parts of GFRP bolts.The tail exhibits the most significant rise,with stress extending deeper into the anchorage zone.Cumulative damage follows an exponential trend with the number of blasts,although the incremental damage per blast decelerates over time.Higher dynamic load intensities accelerate damage accumulation,leading to an exponential decline in the maximum loading cycles before failure.Additionally,stronger surrounding rock and grout mitigate damage accumulation,with the effect of surrounding rock strength being more pronounced than that of grout.In contrast,the maximum axial stress of metal bolts increases quickly to a certain point and then stabilizes.This shows a clear difference between GFRP and metal bolts.This study presents a new cumulative damage theory that underpins the design of GFRP bolt support systems under blasting conditions,identifies key damage factors,and suggests mitigation measures to enhance system stability. 展开更多
关键词 Blasting dynamic load Fully grouted GFRP bolt Cumulative damage Axial stress
原文传递
Dynamic properties and shakedown behavior of red clay under intermittent cyclic loading
3
作者 LIU Mingxing LU Weihong +3 位作者 XU Yijian DENG Ye ZHONG Yuhuang LIU Enlong 《Journal of Mountain Science》 2025年第10期3835-3849,共15页
Red clay,widely used as a subgrade material in southern China,requires a reliable evaluation of its dynamic behavior to ensure infrastructure safety.Long-term cyclic triaxial tests were conducted on red clay from typi... Red clay,widely used as a subgrade material in southern China,requires a reliable evaluation of its dynamic behavior to ensure infrastructure safety.Long-term cyclic triaxial tests were conducted on red clay from typical,complex subway subgrades to investigate its dynamic properties and shakedown behavior under intermittent cyclic loading.Results show that intermittent cyclic loading,especially with multiple amplitudes,causes greater axial plastic strain and lower post-cyclic strength than continuous loading.These effects diminish with increasing confining pressure.Notably,axial strain partially recovers during loading intervals,with recovery ratios depending on the number and sequence of pauses.Based on the rules of cumulative plastic strain rates and cumulative plastic strain increments,shakedown behavior for red clay under intermittent cyclic loading is divided into three categories:plastic shakedown,critical shakedown,and plastic creep.A quantitative shakedown limit criterion is proposed using the Boltzmann function.Shakedown behavior significantly influences the post-cyclic strengths,and the influence diminishes as confining pressure increases.Samples exhibiting plastic creep and plastic shakedown behavior have the lowest and highest strengths,and those with critical shakedown behaviors have medium strengths.Cyclic loading with relatively low-stress amplitude causes a hardening effect,while cyclic loading intermittence or cyclic loading with relatively high-stress amplitude causes a degradation effect,and both effects are mitigated by higher confining pressures. 展开更多
关键词 Red clay Intermittent cyclic loading dynamic properties Shakedown behavior Post-cyclic strength
原文传递
Fracture evolution in steel fiber reinforced concrete(SFRC)of tunnel under static and dynamic loading based on DEM‑FDM coupling model
4
作者 Yu Chen Dongfeng Yu +4 位作者 Yixian Wang Yanlin Zhao Hang Lin Jingjing Meng Haoliang Wu 《International Journal of Coal Science & Technology》 2025年第1期186-213,共28页
The frequent or occasional impact loads pose serious threats to the service safety of conventional concrete structures in tunnel.In this paper,a novel three-dimensional mesoscopic model of steel fiber reinforced concr... The frequent or occasional impact loads pose serious threats to the service safety of conventional concrete structures in tunnel.In this paper,a novel three-dimensional mesoscopic model of steel fiber reinforced concrete(SFRC)is constructed by discrete element method.The model encompasses the concrete matrix,aggregate,interfacial transition zone and steel fibers,taking into account the random shape of the coarse aggregate and the stochastic distribution of steel fibers.It captures microscopic-level interactions among the coarse aggregate,steel fibers,and matrix.Subsequently,a comprehensive procedure is formulated to calibrate the microscopic parameters required by the model,and the reliability of the model is verified by comparing with the experimental results.Furthermore,a coupled finite difference method-discrete element method approach is used to construct the model of the split Hopkinson pressure bar.Compression tests are simulated on SFRC specimens with varying steel fiber contents under static and dynamic loading conditions.Finally,based on the advantages of DEM analysis at the mesoscopic level,this study analyzed mechanisms of enhancement and crack arrest in SFRC.It shed a light on the perspectives of interface failure process,microcrack propagation,contact force field evolution and energy analysis,offering valuable insights for related mining engineering applications. 展开更多
关键词 Steel fiber reinforced concrete dynamic loading Contact force field ENERGY
在线阅读 下载PDF
A new dimensionless number for dynamic plastic deformation analysis of clamped circular plates subjected to underwater blast loading
5
作者 Weizheng Xu Yu Huang +4 位作者 Tong Li Hao Tang Yexun Li Hua Fu Xianxu Zheng 《Defence Technology(防务技术)》 2025年第9期294-302,共9页
A new dimensionless number is proposed for dynamic plastic deformation analysis of clamped circular plates under underwater explosion loads by introducing dimensional analysis method to the basic dynamical governing e... A new dimensionless number is proposed for dynamic plastic deformation analysis of clamped circular plates under underwater explosion loads by introducing dimensional analysis method to the basic dynamical governing equations of circular plates.The relation between dimensionless final plastic deformation of circular plates and the new dimensionless number is established based on massive underwater explosion test data.Meanwhile,comparative analysis was discussed with two other published dimensionless parameters which indicated the new dimensionless number proposed in this paper is more effective and extensive to predict the dynamic plastic response of circular plates under underwater explosion condition. 展开更多
关键词 Dimensionless number Underwater blast loading Clamped circular plate dynamic plastic deformation
在线阅读 下载PDF
Dynamic failure analysis and support optimization for web pillars under static and dynamic loading using catastrophe theory
6
作者 Juyu Jiang Yulong Zhang +2 位作者 Laigui Wang Changbo Du Jun Xu 《International Journal of Mining Science and Technology》 2025年第9期1591-1602,共12页
Web pillars enduring complex coupled loads are critical for stability in high-wall mining.This study develops a dynamic failure criterion for web pillars under non-uniform loading using catastrophe theory.Through the ... Web pillars enduring complex coupled loads are critical for stability in high-wall mining.This study develops a dynamic failure criterion for web pillars under non-uniform loading using catastrophe theory.Through the analysis of the web pillar-overburden system’s dynamic stress and deformation,a total potential energy function and dynamic failure criterion were established for web pillars.An optimizing method for web pillar parameters was developed in highwall mining.The dynamic criterion established was used to evaluate the dynamic failure and stability of web pillars under static and dynamic loading.Key findings reveal that vertical displacements exhibit exponential-trigonometric variation under static loads and multi-variable power-law behavior under dynamic blasting.Instability risks arise when the roof’s tensile strength-to-stress ratio drops below 1.Using catastrophe theory,the bifurcation setΔ<0 signals sudden instability.The criterion defines failure as when the unstable web pillar section length l1 exceeds the roof’s critical collapse distance l2.Case studies and simulations determine an optimal web pillar width of 4.6 m.This research enhances safety and resource recovery,providing a theoretical framework for advancing highwall mining technology. 展开更多
关键词 Non-uniform loading Highwall mining Web pillar dynamic failure criterion Parameter optimization design
在线阅读 下载PDF
Investigation on dynamic response of liquid-filled cylindrical shellstructures under the action of combined blast and fragments loading
7
作者 Zhujie Zhao Hailiang Hou +4 位作者 Dian Li Xiaowei Wu Yongqing Li Zhenghan Chen Linzhi Wu 《Defence Technology(防务技术)》 2025年第7期334-354,共21页
This study designs four types of liquid-filled cylindrical shell structures to investigate their protection characteristics against explosive shock waves and high-speed fragments.Bare charge and charge-driven prefabri... This study designs four types of liquid-filled cylindrical shell structures to investigate their protection characteristics against explosive shock waves and high-speed fragments.Bare charge and charge-driven prefabricated fragments are employed to examine the damage under blast shock waves and combined blast and fragments loading on various liquid-filled cylindrical shell structures.The test results are compared to numerical calculations and theoretical analysis for the structure's deformation,the liquid medium's movement,and the pressure waves'propagation characteristics under different liquid-filling methods.The results showed that the filling method influences the blast protection and the struc-ture's energy absorption performance.The external filling method reduces the structural deformation,and the internal filling method increases the damage effect.The gapped internal filling method improves the structure's energy absorption efficiency.The pressure wave loading on the liquid-filled cylindrical shell structure differs depending on filling methods.Explosive shock waves and high-speed fragments show a damage enhancement effect on the liquid-filled cylindrical shell structure,depending on the thickness of the internal liquid container layer.The specific impulse on the inner surface of the cylindrical shell positively correlates to the radial deformation of the cylindrical shell structure,and the external liquid layer limits the radial structural deformation. 展开更多
关键词 Blast wave Combined blast and fragments loading Filling method Liquid-filled structure dynamic response
在线阅读 下载PDF
Dynamic properties of mode Ⅰ and mode Ⅱ fractures of shale under impact loading
8
作者 Zelin Yan Linjuan Wang +1 位作者 Jidong Jin Jianxiang Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期1053-1067,共15页
Controllable shock wave fracturing is an innovative engineering technique used for shale reservoir fracturing and reformation.Understanding the anisotropic fracture mechanism of shale under impact loading is vital for... Controllable shock wave fracturing is an innovative engineering technique used for shale reservoir fracturing and reformation.Understanding the anisotropic fracture mechanism of shale under impact loading is vital for optimizing shock wave fracturing equipment and enhancing shale oil production.In this study,using the well-known notched semi-circular bend(NSCB)sample and the novel double-edge notched flattened Brazilian disc(DNFBD)sample combined with a split Hopkinson pressure bar(SHPB),various dynamic anisotropic fracture properties of Lushan shale,including failure characteristics,fracture toughness,energy dissipation and crack propagation velocity,are comprehensively compared and discussed under mode Ⅰ and mode Ⅱ fracture scenarios.First,using a newly modified fracture criterion considering the strength anisotropy of shale,the DNFBD specimen is predicted to be a robust method for true mode Ⅱ fracture of anisotropic shale rocks.Our experimental results show that the dynamic mode Ⅱ fracture of shale induces a rougher and more complex fracture morphology and performs a higher fracture toughness or fracture energy compared to dynamic mode Ⅰ fracture.The minimal fracture toughness or fracture energy occurs in the Short-transverse orientation,while the maximal ones occur in the Divider orientation.In addition,it is interesting to find that the mode Ⅱ fracture toughness anisotropy index decreases more slowly than that in the mode Ⅰ fracture scenario.These results provide significant insights for understanding the different dynamic fracture mechanisms of anisotropic shale rocks under impact loading and have some beneficial implications for the controllable shock wave fracturing technique. 展开更多
关键词 SHALE Controllable shock wave fracturing dynamic fracture property Fracture toughness anisotropy loading rate effect
在线阅读 下载PDF
Shear mechanical responses and debonding failure mechanisms of bolt-resin-rock anchoring system under dynamic normal load boundary
9
作者 Xinxin Nie Qian Yin +5 位作者 Zhigang Tao Manchao He Gang Wang Wenhua Zha Zhaobo Li Yajun Ren 《International Journal of Mining Science and Technology》 2025年第9期1603-1625,共23页
Under external disturbances,the shear mechanical responses and debonding failure mechanisms at anisotropic interfaces of anchoring system composed of multiphase media are inherently difficult to characterize due to th... Under external disturbances,the shear mechanical responses and debonding failure mechanisms at anisotropic interfaces of anchoring system composed of multiphase media are inherently difficult to characterize due to the concealment nature of interfacial interactions.This study establishes an equivalent shear model for a bolt-resin-rock anchoring system and conducts direct shear tests under dynamic normal load(DNL)boundary from both laboratory experiments and discrete element method(DEM)simulations.The research investigates the influence of normal dynamic load amplitude(An)and rock type on shear strength parameters,elucidating the evolutionary characteristics and underlying mechanisms of shear load and normal displacement fluctuations induced by cyclic normal loading,with maximum shear load decreasing by 36.81%to 46.94%as An increases from 10%to 70%when rock type varies from coal to limestone.Through analysis of strain field evolution,the critical impact of rock type on localization of shear failure surface is revealed,with systematic summarization of differentiated wear characteristics,failure modes,and key controlling factors associated with shear failure surface.Mesoscopic investigations enabled by DEM simulations uncover the nonuniform distribution of contact force chains within the material matrix and across the anisotropic interfaces under various DNL boundaries,clarify rock type dependent crack propagation pathways,and quantitatively assess the damage extent of shear failure surface,with the anisotropic interface damage factor increasing from 34.9%to 56.6%as An rises from 10%to 70%,and decreasing from 49.6%to 23.4%as rock type varies from coal to limestone. 展开更多
关键词 Anchoring structure dynamic normal load boundary Shear mechanical responses Debonding failure Discrete element method
在线阅读 下载PDF
Models and methods for dynamic response of 3D flexible and rigid pavements to moving loads:A review by representative examples
10
作者 Edmond V.Muho Niki D.Beskou Jiang Qian 《Journal of Road Engineering》 2025年第1期65-91,共27页
This work reviews models and methods for determining the dynamic response of pavements to moving vehicle loads in the framework of continuum-based three dimensional models and linear theories.This review emphasizes th... This work reviews models and methods for determining the dynamic response of pavements to moving vehicle loads in the framework of continuum-based three dimensional models and linear theories.This review emphasizes the most representative models and methods of analysis in the existing literature and illustrates all of them by numerical examples.Thus,13 such examples are presented here in some detail.Both flexible and rigid(concrete)pavement models involving simple and elaborate cases with respect to geometry and material behavior are considered.Thus,homogeneous or layered half-spaces with isotropic or cross-anisotropic and elastic,viscoelastic or poroelastic properties are considered.The vehicles are modeled as simple point or distributed loads or discrete spring-mass-dashpot system moving with constant or variable velocity.The dynamic response of the above pavement-vehicle systems is obtained by analytical/numerical or purely numerical methods of solution.Analytical/numerical methods have mainly to do with Fourier transforms or complex Fourier series with respect to both space and time.Purely numerical methods involve the finite element method(FEM)and the boundary element method(BEM)working in time or frequency domain.Critical discussions on the advantages and disadvantages of the various pavement-vehicle models and their methods of analysis are provided and the effects of the main parameters on the pavement response are determined through parametric studies and presented in the examples.Finally,conclusions are provided and suggestions for future research are made. 展开更多
关键词 Flexible pavements Rigid(concrete)pavements Moving vehicle loads Three dimensional models LINEARITY dynamic response
在线阅读 下载PDF
Mechanical Behavior of Concrete Lintel-column Joint in Chinese Traditional Style Buildings Under Dynamic Cyclic Loading
11
作者 LIU Haipeng DU Luyi +1 位作者 LI Xiang DONG Jinshuang 《International Journal of Plant Engineering and Management》 2025年第3期129-145,共17页
In order to research the concrete archaized buildings with lintel-column joint,2 specimens were tested under dynamic experiment.The failure characteristics,skeleton curves,mechanical behavior such as the load-displace... In order to research the concrete archaized buildings with lintel-column joint,2 specimens were tested under dynamic experiment.The failure characteristics,skeleton curves,mechanical behavior such as the load-displacement hysteretic loops,load carrying capacity,degradation of strength and stiffness,ductility and energy dissipation of the joints were analyzed.The results indicate that comparies with the lintel-column joints,the loading capacity and energy dissipation of the concrete archaized buildings with dual lintel-column joints are higher,and the hysteretic loops is in plump-shape.However,the displacement ductility coefficient is less than that of lintel-column joints.Both of them of the regularity of rigidity degeneration are basically the same.Generally,the joints have the good energy dissipation capacity.And the concrete archaized buildings with lintel-column joints exhibit excellent seismic behavior. 展开更多
关键词 chinese traditional style buildings dual-lintel-column joint dynamic cyclic loading mechanical behavior
在线阅读 下载PDF
Shear mechanical properties of loaded rock under drilling and dynamic load and its influence on the plastic zone of roadway
12
作者 Yujiang Zhang Bingyuan Cui +4 位作者 Guorui Feng Chunwang Zhang Yuxia Guo Shuai Zhang Zhengjun Zhang 《International Journal of Mining Science and Technology》 2025年第7期1073-1091,共19页
Borehole pressure relief helps prevent rock bursts.However,this may change the physical and mechan-ical properties of the surrounding rock,affect the variation of the plastic zone of the roadway,and lead to the failur... Borehole pressure relief helps prevent rock bursts.However,this may change the physical and mechan-ical properties of the surrounding rock,affect the variation of the plastic zone of the roadway,and lead to the failure of roadway support,thus threatening the safety of the roadway.In this paper,the variable angle shear test of drilled specimens under the action of static and dynamic loads is used to study the evolution of mechanical parameters of the specimens and their influence on the plastic zone of the sur-rounding rock.The shear strength decreases linearly with the increase of drilling diameter.With the increase of pre-static load level and dynamic load amplitude,the cohesion first increases and then decreases,and the internal friction angle decreases.Moreover,the shear failure surface changes from rough to smooth.The reasons include that the static load enhances the tooth cutting effect and the repeated friction of cracks caused by the dynamic load.Borehole pressure relief leads to an increase in the radius of the plastic zone of the surrounding rock following a quadratic function.The research results of this paper provide a theoretical basis for designing drilling unloading parameters and supporting parameters for rock burst roadways. 展开更多
关键词 Borehole pressure relief dynamic and static combined loading Shear mechanical properties Failure characteristics Plastic zone of roadway
在线阅读 下载PDF
Dynamic Response of Foundations during Startup of High-Frequency Tunnel Equipment
13
作者 Dawei Ruan Mingwei Hu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期821-844,共24页
The specialized equipment utilized in long-line tunnel engineering is evolving towards large-scale,multifunctional,and complex orientations.The vibration caused by the high-frequency units during regular operation is ... The specialized equipment utilized in long-line tunnel engineering is evolving towards large-scale,multifunctional,and complex orientations.The vibration caused by the high-frequency units during regular operation is supported by the foundation of the units,and the magnitude of vibration and the operating frequency fluctuate in different engineering contexts,leading to variations in the dynamic response of the foundation.The high-frequency units yield significantly diverse outcomes under different startup conditions and times,resulting in failure to meet operational requirements,influencing the normal function of the tunnel,and causing harm to the foundation structure,personnel,and property in severe cases.This article formulates a finite element numerical computation model for solid elements using three-dimensional elastic body theory and integrates field measurements to substantiate and ascertain the crucial parameter configurations of the finite element model.By proposing a comprehensive startup timing function for high-frequency dynamic machines under different startup conditions,simulating the frequency andmagnitude variations during the startup process,and suggesting functions for changes in frequency and magnitude,a simulated startup schedule function for high-frequency machines is created through coupling.Taking into account the selection of the transient dynamic analysis step length,the dynamic response results for the lower dynamic foundation during its fundamental frequency crossing process are obtained.The validation checks if the structural magnitude surpasses the safety threshold during the critical phase of unit startup traversing the structural resonance region.The design recommendations for high-frequency units’dynamic foundations are provided,taking into account the startup process of the machine and ensuring the safe operation of the tunnel. 展开更多
关键词 Tunnel equipment high-frequency units startup conditions transient dynamics dynamic response foundation design
在线阅读 下载PDF
Energy mechanism of bolt supporting effect to fissured rock under static and dynamic loads in deep coal mines 被引量:7
14
作者 Deyuan Fan Xuesheng Liu +2 位作者 Yunliang Tan Xuebin Li Shenglong Yang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期371-384,共14页
The stability control of fissured rock is difficult,especially under static and dynamic loads in deep coal mines.In this paper,the dynamic mechanical properties,strain rate evolution and energy dissipation of fissured... The stability control of fissured rock is difficult,especially under static and dynamic loads in deep coal mines.In this paper,the dynamic mechanical properties,strain rate evolution and energy dissipation of fissured and anchored rocks were respectively obtained by SHPB tests.It was found that bolt can provide supporting efficiency-improving effect for fissured rock against dynamic disturbance,and this effect increased quadratically with decrease in anchoring angles.Then,the energy dissipation mechanism of anchored rock was obtained by slipping model.Furthermore,bolt energy-absorbing mechanism by instantaneous tensile-shear deformation was expressed based on material mechanics,which was the larger the anchoring angle,the smaller the energy absorption,and the less the contribution to supporting efficiency improvement.On this basis,the functional relationship between energy dissipation of anchored rock and energy absorption of bolt was established.Taking the coal-gangue separation system of Longgu coal mine as an example,the optimal anchoring angle can be determined as 57.5°–67.5°.Field monitoring showed fissured rock with the optimal anchoring angle,can not only effectively control the deformation,but also fully exert the energy-absorbing and efficiency-improving effect of bolt itself.This study provides guidance to the stability control and supporting design for deep engineering under the same or similar conditions. 展开更多
关键词 Static and dynamic loads Anchored rock Energy absorption Anchoring angle Engineering verification
在线阅读 下载PDF
Evaluation of the dynamic sealing performance of cap rocks of underground gas storage under multi-cycle alternating loads 被引量:5
15
作者 Lidong Mi Yandong Guo +3 位作者 Yanfeng Li Daqian Zeng Chunhua Lu Guangquan Zhang 《Energy Geoscience》 EI 2024年第4期125-132,共8页
The static sealing of underground gas storage(UGS),including the integrity of cap rocks and the stability of faults,is analyzed from a macro perspective using a comprehensive geological evaluation method.Changes in po... The static sealing of underground gas storage(UGS),including the integrity of cap rocks and the stability of faults,is analyzed from a macro perspective using a comprehensive geological evaluation method.Changes in pore structure,permeability,and mechanical strength of cap rocks under cyclic loads may impact the rock sealing integrity during the injection and recovery phases of UGS.In this work,the mechanical deformation and failure tests of rocks,as well as rock damage tests under alternating loads,are conducted to analyze the changes in the strength and permeability of rocks under multiple-cycle intense injection and recovery of UGS.Additionally,this study proposes an evaluation method for the dynamic sealing performance of UGS cap rocks under multi-cycle alternating loads.The findings suggest that the failure strength(70%)can be used as the critical value for rock failure,thus providing theoretical support for determining the upper limit of operating pressure and the number of injection-recovery cycles for the safe operation of a UGS system. 展开更多
关键词 Alternating load Cap rock dynamic sealing performance Underground gas storage
在线阅读 下载PDF
Microscopic defects formation and dynamic mechanical response analysis of Q345 steel plate subjected to explosive load 被引量:2
16
作者 Zhengqing Zhou Zechen Du +6 位作者 Yulong Zhang Guili Yang Ruixiang Wang Yuzhe Liu Peize Zhang Yaxin Zhang Xiao Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期430-442,共13页
As the basic protective element, steel plate had attracted world-wide attention because of frequent threats of explosive loads. This paper reports the relationships between microscopic defects of Q345 steel plate unde... As the basic protective element, steel plate had attracted world-wide attention because of frequent threats of explosive loads. This paper reports the relationships between microscopic defects of Q345 steel plate under the explosive load and its macroscopic dynamics simulation. Firstly, the defect characteristics of the steel plate were investigated by stereoscopic microscope(SM) and scanning electron microscope(SEM). At the macroscopic level, the defect was the formation of cave which was concentrated in the range of 0-3.0 cm from the explosion center, while at the microscopic level, the cavity and void formation were the typical damage characteristics. It also explains that the difference in defect morphology at different positions was the combining results of high temperature and high pressure. Secondly, the variation rules of mechanical properties of steel plate under explosive load were studied. The Arbitrary Lagrange-Euler(ALE) algorithm and multi-material fluid-structure coupling method were used to simulate the explosion process of steel plate. The accuracy of the method was verified by comparing the deformation of the simulation results with the experimental results, the pressure and stress at different positions on the surface of the steel plate were obtained. The simulation results indicated that the critical pressure causing the plate defects may be approximately 2.01 GPa. On this basis, it was found that the variation rules of surface pressure and microscopic defect area of the Q345 steel plate were strikingly similar, and the corresponding mathematical relationship between them was established. Compared with Monomolecular growth fitting models(MGFM) and Logistic fitting models(LFM), the relationship can be better expressed by cubic polynomial fitting model(CPFM). This paper illustrated that the explosive defect characteristics of metal plate at the microscopic level can be explored by analyzing its macroscopic dynamic mechanical response. 展开更多
关键词 Explosive load Q345 steel Micro defect Finite element simulation dynamic response Data fitting
在线阅读 下载PDF
Mechanical behavior and failure mechanisms of rock bolts subjected to static-dynamic loads 被引量:1
17
作者 Hongpu Kang Guiyang Yuan +4 位作者 Linpo Si Fuqiang Gao Jinfu Lou Jinghe Yang Shuangyong Dong 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期281-288,共8页
This study explores the effects of dynamic and static loading on rock bolt performance a key factor in maintaining the structural safety of coal mine roadways susceptible to coal bursts.Employing a housemade load fram... This study explores the effects of dynamic and static loading on rock bolt performance a key factor in maintaining the structural safety of coal mine roadways susceptible to coal bursts.Employing a housemade load frame to simulate various failure scenarios,pretension-impact-pull tests on rock bolts were conducted to scrutinize their dynamic responses under varied static load conditions and their failure traits under combined loads.The experimental results denote that with increased impact energy,maximum and average impact loads on rock bolts escalate significantly under pretension,initiating plastic deformation beyond a certain threshold.Despite minor reductions in the yield load due to impactinduced damage,pretension aids in constraining post-impact deformation rate and fluctuation degree of rock bolts.Moreover,impact-induced plastic deformation causes internal microstructure dislocation,fortifying the stiffness of the rock bolt support system.The magnitude of this fortification is directly related to the plastic deformation induced by the impact.These findings provide crucial guidance for designing rock bolt support in coal mine roadway excavation,emphasizing the necessity to consider both static and dynamic loads for improved safety and efficiency. 展开更多
关键词 Rock bolt PRETENSION Static and dynamic load IMPACT
在线阅读 下载PDF
Flexible Load Participation in Peaking Shaving and Valley Filling Based on Dynamic Price Incentives 被引量:1
18
作者 Lifeng Wang Jing Yu Wenlu Ji 《Energy Engineering》 EI 2024年第2期523-540,共18页
Considering the widening of the peak-valley difference in the power grid and the difficulty of the existing fixed time-of-use electricity price mechanism in meeting the energy demand of heterogeneous users at various ... Considering the widening of the peak-valley difference in the power grid and the difficulty of the existing fixed time-of-use electricity price mechanism in meeting the energy demand of heterogeneous users at various moments or motivating users,the design of a reasonable dynamic pricing mechanism to actively engage users in demand response becomes imperative for power grid companies.For this purpose,a power grid-flexible load bilevel model is constructed based on dynamic pricing,where the leader is the dispatching center and the lower-level flexible load acts as the follower.Initially,an upper-level day-ahead dispatching model for the power grid is established,considering the lowest power grid dispatching cost as the objective function and incorporating the power grid-side constraints.Then,the lower level comprehensively considers the load characteristics of industrial load,energy storage,and data centers,and then establishes a lower-level flexible load operation model with the lowest user power-consuming cost as the objective function.Finally,the proposed method is validated using the IEEE-118 system,and the findings indicate that the dynamic pricing mechanism for peaking shaving and valley filling can effectively guide users to respond actively,thereby reducing the peak-valley difference and decreasing users’purchasing costs. 展开更多
关键词 Demand response fixed time-of-use electricity price mechanism dynamic price incentives mechanism bi-level model flexible load
在线阅读 下载PDF
Experimental investigation of dynamic characteristic during civil aircraft ditching
19
作者 Wenli LUO Weibin GU +1 位作者 Yong HUANG Liang CHANG 《Chinese Journal of Aeronautics》 2025年第4期233-243,共11页
A series of scaled model aircraft ditching tests are performed by launch facility system in Hydraulics Laboratory.According to the measured pitch angle,acceleration and pressure history,research on the impact characte... A series of scaled model aircraft ditching tests are performed by launch facility system in Hydraulics Laboratory.According to the measured pitch angle,acceleration and pressure history,research on the impact characteristic of ditching is conducted.To solve the problem of cavitation effect which may occur in full scale aircraft,the action mechanism and effect of cavitation are studied,and an innovative experimental simulation measure is taken.It is shown that the cavitation bar directly and effectively separates aircraft bottom from water surface and therefore reduces negative pressure,thus enhancing the authenticity of the test results.The dynamic responses including stability and overload after impacting water at different initial pitch angles are analyzed to find the optimum one,which turns out to be heavily dependent on the bottom curvature of fuselage,and rebound phenomenon occurs when pitch angle exceeds a certain value because of the huge positive pressure acting at the spray root on rear fuselage.In addition,the influences of descent rate and horizontal velocity are analyzed.The results show that the descent rate mainly affects the overall load,which is of higher level of importance,while the horizontal velocity mainly affects the load of local structure. 展开更多
关键词 Civil aircraft EXPERIMENTS DITCHING Fluid dynamics loads
原文传递
A Structural Dynamic Response Reconstruction Method for Continuous System Based on Kalman Filter
20
作者 LI Hongqiu JIANG Jinhui MOHAMED M Shadi 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第2期250-260,共11页
The structural dynamic response reconstruction technology can extract unmeasured information from limited measured data,significantly impacting vibration control,load identification,parameter identification,fault diag... The structural dynamic response reconstruction technology can extract unmeasured information from limited measured data,significantly impacting vibration control,load identification,parameter identification,fault diagnosis,and related fields.This paper proposes a dynamic response reconstruction method based on the Kalman filter,which simultaneously identifies external excitation and reconstructs dynamic responses at unmeasured positions.The weighted least squares method determines the load weighting matrix for excitation identification,while the minimum variance unbiased estimation determines the Kalman filter gain.The excitation prediction Kalman filter is constructed through time,excitation,and measurement updates.Subsequently,the response at the target point is reconstructed using the state vector,observation matrix,and excitation influence matrix obtained through the excitation prediction Kalman filter algorithm.An algorithm for reconstructing responses in continuous system using the excitation prediction Kalman filtering algorithm in modal space is derived.The proposed structural dynamic response reconstruction method evaluates the response reconstruction and the load identification performance under various load types and errors through simulation examples.Results demonstrate the accurate excitation identification under different load conditions and simultaneous reconstruction of target point responses,verifying the feasibility and reliability of the proposed method. 展开更多
关键词 dynamic load identification structural response reconstruction excitation identification Kalman filter continuous system
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部