The stability of the plane grating monochromator in the Hefei Advanced Light Facility is highly important for beamline focusing,with angular vibration being a key indicator for assessing its stability.This paper propo...The stability of the plane grating monochromator in the Hefei Advanced Light Facility is highly important for beamline focusing,with angular vibration being a key indicator for assessing its stability.This paper proposes an elastic fitting method based on fifth-order polynomial fitting for the precise analysis of microangular vibrations on grating surfaces.Compared with the traditional rigid body method,this method fully considers the three major elastic characteristics exhibited by optical components during vibration:significant phase differences,nonuniform deformation gradients,and spatial distribution differences in angular deformation.The research results indicate that this method can accurately reflect the actual vibration state of the grating surface,not only enabling the quantitative prediction of local angular microvibration but also establishing a reliable theoretical analysis framework for the stability assessment of high-precision instruments.展开更多
With the gradual increase in the size and flexibility of composite blades in large wind turbines,problems related toaeroelastic instability and blade vibration are becoming increasingly more important.Given their impa...With the gradual increase in the size and flexibility of composite blades in large wind turbines,problems related toaeroelastic instability and blade vibration are becoming increasingly more important.Given their impact on thelifespan of wind turbines,these subjects have become important topics in turbine blade design.In this article,firstaspects related to the aeroelastic(structural and aerodynamic)modeling of large wind turbine blades are summarized.Then,two main methods for blade vibration control are outlined(passive control and active control),including the case of composite blades.Some improvement schemes are proposed accordingly,with a specialfocus on the industry’s outstanding suppression scheme for stall-induced nonlinear flutter and a new high-frequencymicro-vibration control scheme.Finally,future research directions are indicated based on existingresearch.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12372187 and 12402228)Fundamental Research Funds for the Central Universities(Grant No.WK2480000010)+3 种基金Fellowship of China Postdoctoral Science Foundation(Grant No.2024M753103)CAS Talent Introduction Program(Grant No.KJ2090007006)Anhui Provincial Natural Science Foundation(Grant No.2408085QA014)National Synchrotron Radiation Laboratory Joint Foundation(Grant Nos.KY2090000097 and KY2090000124).
文摘The stability of the plane grating monochromator in the Hefei Advanced Light Facility is highly important for beamline focusing,with angular vibration being a key indicator for assessing its stability.This paper proposes an elastic fitting method based on fifth-order polynomial fitting for the precise analysis of microangular vibrations on grating surfaces.Compared with the traditional rigid body method,this method fully considers the three major elastic characteristics exhibited by optical components during vibration:significant phase differences,nonuniform deformation gradients,and spatial distribution differences in angular deformation.The research results indicate that this method can accurately reflect the actual vibration state of the grating surface,not only enabling the quantitative prediction of local angular microvibration but also establishing a reliable theoretical analysis framework for the stability assessment of high-precision instruments.
基金supported by the Natural Science Foundation of Shandong Provincial of China(Grant Number ZR2022ME093)the Natural Science Foundation of China(Grant Number 51675315).
文摘With the gradual increase in the size and flexibility of composite blades in large wind turbines,problems related toaeroelastic instability and blade vibration are becoming increasingly more important.Given their impact on thelifespan of wind turbines,these subjects have become important topics in turbine blade design.In this article,firstaspects related to the aeroelastic(structural and aerodynamic)modeling of large wind turbine blades are summarized.Then,two main methods for blade vibration control are outlined(passive control and active control),including the case of composite blades.Some improvement schemes are proposed accordingly,with a specialfocus on the industry’s outstanding suppression scheme for stall-induced nonlinear flutter and a new high-frequencymicro-vibration control scheme.Finally,future research directions are indicated based on existingresearch.