The mechanisms of oxide metallurgy include inducing the formation of intragranular acicular ferrite(IAF)using micron-sized inclusions and restricting the growth of prior austenite grains(PAGs)by nanosized particles du...The mechanisms of oxide metallurgy include inducing the formation of intragranular acicular ferrite(IAF)using micron-sized inclusions and restricting the growth of prior austenite grains(PAGs)by nanosized particles during welding.The chaotically oriented IAF and refined PAGs inhibit crack initiation and propagation in the steel,resulting in high impact toughness.This work summarizes the com-bined effect of deoxidizers and alloying elements,with the aim to provide a new perspective for the research and practice related to im-proving the impact toughness of the heat affected zone(HAZ)during the high heat input welding.Ti complex deoxidation with other strong deoxidants,such as Mg,Ca,Zr,and rare earth metals(REMs),can improve the toughness of the heat-affected zone(HAZ)by re-fining PAGs or increasing IAF contents.However,it is difficult to identify the specific phase responsible for IAF nucleation because ef-fective inclusions formed by complex deoxidation are usually multiphase.Increasing alloying elements,such as C,Si,Al,Nb,or Cr,con-tents can impair HAZ toughness.A high C content typically increases the number of coarse carbides and decreases the potency of IAF formation.Si,Cr,or Al addition leads to the formation of undesirable microstructures.Nb reduces the high-temperature stability of the precipitates.Mo,V,and B can enhance HAZ toughness.Mo-containing precipitates present good thermal stability.VN or V(C,N)is ef-fective in promoting IAF nucleation due to its good coherent crystallographic relationship with ferrite.The formation of the B-depleted zone around the inclusion promotes IAF formation.The interactions between alloying elements are complex,and the effect of adding dif-ferent alloying elements remains to be evaluated.In the future,the interactions between various alloying elements and their effects on ox-ide metallurgy,as well as the calculation of the nucleation effects of effective inclusions using first principles calculations will become the focus of oxide metallurgy.展开更多
Nitric oxide(NO)is a gaseous molecule produced by 3 different NO synthase(NOS)isoforms:Neural/brain NOS(nNOS/bNOS,type 1),endothelial NOS(eNOS,type 3)and inducible NOS(type 2).Type 1 and 3 NOS are constitutively expre...Nitric oxide(NO)is a gaseous molecule produced by 3 different NO synthase(NOS)isoforms:Neural/brain NOS(nNOS/bNOS,type 1),endothelial NOS(eNOS,type 3)and inducible NOS(type 2).Type 1 and 3 NOS are constitutively expressed.NO can serve different purposes:As a vasoactive molecule,as a neurotransmitter or as an immunomodulator.It plays a key role in cerebral ischemia/reperfusion injury(CIRI).Hypoxic episodes simulate the production of oxygen free radicals,leading to mitochondrial and phospholipid damage.Upon reperfusion,increased levels of oxygen trigger oxide synthases;whose products are associated with neuronal damage by promoting lipid peroxidation,nitrosylation and excitotoxicity.Molecular pathways in CIRI can be altered by NOS.Neuroprotective effects are observed with eNOS activity.While nNOS interplay is prone to endothelial inflammation,oxidative stress and apoptosis.Therefore,nNOS appears to be detrimental.The interaction between NO and other free radicals develops peroxynitrite;which is a cytotoxic agent.It plays a main role in the likelihood of hemorrhagic events by tissue plasminogen activator(t-PA).Peroxynitrite scavengers are currently being studied as potential targets to prevent hemorrhagic transformation in CIRI.展开更多
Alzheimer's disease is an age-related neurodegenerative disorder with a complex and incompletely understood pathogenesis. Despite extensive research, a cure for Alzheimer's disease has not yet been found. Oxid...Alzheimer's disease is an age-related neurodegenerative disorder with a complex and incompletely understood pathogenesis. Despite extensive research, a cure for Alzheimer's disease has not yet been found. Oxidative stress mediates excessive oxidative responses, and its involvement in Alzheimer's disease pathogenesis as a primary or secondary pathological event is widely accepted. As a member of the selenium-containing antioxidant enzyme family, glutathione peroxidase 4 reduces esterified phospholipid hydroperoxides to maintain cellular redox homeostasis. With the discovery of ferroptosis, the central role of glutathione peroxidase 4 in anti-lipid peroxidation in several diseases, including Alzheimer's disease, has received widespread attention. Increasing evidence suggests that glutathione peroxidase 4 expression is inhibited in the Alzheimer's disease brain, resulting in oxidative stress, inflammation, ferroptosis, and apoptosis, which are closely associated with pathological damage in Alzheimer's disease. Several therapeutic approaches, such as small molecule drugs, natural plant products, and non-pharmacological treatments, ameliorate pathological damage and cognitive function in Alzheimer's disease by promoting glutathione peroxidase 4 expression and enhancing glutathione peroxidase 4 activity. Therefore, glutathione peroxidase 4 upregulation may be a promising strategy for the treatment of Alzheimer's disease. This review provides an overview of the gene structure, biological functions, and regulatory mechanisms of glutathione peroxidase 4, a discussion on the important role of glutathione peroxidase 4 in pathological events closely related to Alzheimer's disease, and a summary of the advances in small-molecule drugs, natural plant products, and non-pharmacological therapies targeting glutathione peroxidase 4 for the treatment of Alzheimer's disease. Most prior studies on this subject used animal models, and relevant clinical studies are lacking. Future clinical trials are required to validate the therapeutic effects of strategies targeting glutathione peroxidase 4 in the treatment of Alzheimer's disease.展开更多
Protonic solid oxide electrolysis cells(P-SOECs)are a promising technology for water electrolysis to produce green hydrogen.However,there are still challenges related key materials and anode/electrolyte interface.P-SO...Protonic solid oxide electrolysis cells(P-SOECs)are a promising technology for water electrolysis to produce green hydrogen.However,there are still challenges related key materials and anode/electrolyte interface.P-SOECs with Zr-rich electrolyte,called Zr-rich side P-SOECs,possess high thermodynamically stability under high steam concentrations but the large reaction resistances and the current leakage,thus the inferior performances.In this study,an efficient functional interlayer Ba_(0.95)La_(0.05)Fe_(0.8)Zn_(0.2)O_(3-δ)(BLFZ)in-between the anode and the electrolyte is developed.The electrochemical performances of P-SOECs are greatly enhanced because the BLFZ can greatly increase the interface contact,boost anode reaction kinetics,and increase proton injection into electrolyte.As a result,the P-SOEC yields high current density of 0.83 A cm^(-2) at 600℃ in 1.3 Vamong all the reported Zr-rich side cells.This work not only offers an efficient functional interlayer for P-SOECs but also holds the potential to achieve P-SOECs with high performances and long-term stability.展开更多
Solid oxide cells(SOCs)are emerging devices for efficient energy storage and conversion.However,during SOC operation,gaseous chromium(Cr)species released from Fe-Cr alloy interconnect can lead to Cr deposition and poi...Solid oxide cells(SOCs)are emerging devices for efficient energy storage and conversion.However,during SOC operation,gaseous chromium(Cr)species released from Fe-Cr alloy interconnect can lead to Cr deposition and poisoning of air electrodes,causing substantial degradation in electrochemical performance and compromising the longterm stability of SOCs.This mini-review examines the mechanism of Cr deposition and poisoning in air electrodes under both fuel-cell and electrolysis modes.Furthermore,emphasis is placed on the recent advancements in strategies to mitigate Cr poisoning,offering insights into the rational design and development of active and Cr-tolerant air electrodes for SOCs.展开更多
Pitch produced by the lique-faction of coal was divided into two frac-tions:soluble in toluene(TS)and insol-uble in toluene but soluble in pyridine(TI-PS),and their differences in molecu-lar structure and oxidation ac...Pitch produced by the lique-faction of coal was divided into two frac-tions:soluble in toluene(TS)and insol-uble in toluene but soluble in pyridine(TI-PS),and their differences in molecu-lar structure and oxidation activity were studied.Several different carbon materi-als were produced from them by oxida-tion in air(350℃,300 mL/min)fol-lowed by carbonization(1000℃ in Ar),and the effect of the cross-linked structure on their structure and sodium storage properties was investigated.The results showed that the two pitch fractions were obviously different after the air oxidation.The TS fraction with a low degree of condensation and abundant side chains had a stronger oxidation activity and thus introduced more cross-linked oxygen-containing functional groups C(O)―O which prevented carbon layer rearrangement during the carbonization.As a result,a disordered hard carbon with more defects was formed,which improved the electrochemical performance.Therefore,the carbon materials derived from TS(O-TS-1000)had an obvious disordered structure and a larger layer spacing,giving them better sodium storage perform-ance than those derived from the TI-PS fraction(O-TI-PS-1000).The specific capacity of O-TS-1000 was about 250 mAh/g at 20 mA/g,which was 1.67 times higher than that of O-TI-PS-1000(150 mAh/g).展开更多
Up-and-coming high-temperature materials,refractory high entropy alloys,are suffering from lower oxidation resistance,restricting their applications in the aerospace field.In this study,two novel treatments of Al-depo...Up-and-coming high-temperature materials,refractory high entropy alloys,are suffering from lower oxidation resistance,restricting their applications in the aerospace field.In this study,two novel treatments of Al-deposited and remelted were developed to refine the microstructure and enhance the oxidation resistance of refractory high entropy alloy using electron beam freeform fabrication(EBF3).Finer and short-range ordering structures were observed in the remelted sample,whereas the Al-deposited sample showcased the formation of silicide and intermetallic phases.High-temperature cyclic and isothermal oxidation tests at 1000℃ were carried out.The total weight gain after 60 h of cyclic oxidation decreased by 17.49%and 30.46%for the remelted and deposited samples,respectively,compared to the as-cast state.Oxidation kinetics reveal an evident lower mass gain and oxidation rate in the treated samples.A multilayer oxide consisting of TiO_(2)+Al_(2)O_(3)+SiO_(2)+AlNbO_(4) was studied for its excellent oxidation resistance.The oxidation behavior of rutile,corundum and other oxides was analyzed using first principles calculations and chemical defect analysis.Overall,this research,which introduces novel treatments,offers promising insights for enhancing the inherent oxidation resistance of refractory high entropy alloys.展开更多
Fatty acids are the main constituents of vegetable oils.To determine the fatty acid compositions of small trade vegetable oils and some less well studied beneficial vegetable oils,and investigate their relationships w...Fatty acids are the main constituents of vegetable oils.To determine the fatty acid compositions of small trade vegetable oils and some less well studied beneficial vegetable oils,and investigate their relationships with antioxidant activity and oxidative stability,gas chromatography-mass spectrometry was performed to characterize the associated fatty acid profiles.The antioxidant activity of vegetable oils,based on their DPPH-scavenging capacity(expressed as IC_(50) values),was used to assess their impact on human health,and their oxidative stability was characterized by performing lipid oxidation analysis to determine the oxidative induction time of fats and oils.In addition,correlation analyses were performed to examine associations between the fatty acid composition of the oils and DPPH-scavenging capacity and oxidative stability.The results revealed that among the assessed oils,coffee seed oil has the highest saturated fatty acid content(355.10 mg/g),whereas Garddenia jaminoides oil has the highest unsaturated fatty acid content(844.84 mg/g).Coffee seed oil was also found have the lowest DPPH IC_(50) value(2.30 mg/mL)and the longest oxidation induction time(17.09 h).Correlation analysis revealed a significant linear relationship(P<0.05)between oxidative stability and unsaturated fatty acid content,with lower contents tending to be associated with better oxidative stability.The findings of this study provide reference data for the screening of functional edible vegetable oils.展开更多
Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage p...Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC.展开更多
The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular an...The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular and cellular mechanisms by which quinolinic acid contributes to Huntington's disease pathology remain unknown. In this study, we established in vitro and in vivo models of Huntington's disease by administering quinolinic acid to the PC12 neuronal cell line and the striatum of mice, respectively. We observed a decrease in the levels of hydrogen sulfide in both PC12 cells and mouse serum, which was accompanied by down-regulation of cystathionine β-synthase, an enzyme responsible for hydrogen sulfide production. However, treatment with NaHS(a hydrogen sulfide donor) increased hydrogen sulfide levels in the neurons and in mouse serum, as well as cystathionine β-synthase expression in the neurons and the mouse striatum, while also improving oxidative imbalance and mitochondrial dysfunction in PC12 cells and the mouse striatum. These beneficial effects correlated with upregulation of nuclear factor erythroid 2-related factor 2 expression. Finally, treatment with the nuclear factor erythroid 2-related factor 2inhibitor ML385 reversed the beneficial impact of exogenous hydrogen sulfide on quinolinic acid-induced oxidative stress. Taken together, our findings show that hydrogen sulfide reduces oxidative stress in Huntington's disease by activating nuclear factor erythroid 2-related factor 2,suggesting that hydrogen sulfide is a novel neuroprotective drug candidate for treating patients with Huntington's disease.展开更多
The commercialization of solid oxide fuel cells depends on the cathode,which possesses both high catalytic activity and a thermal-expansion coefficient(TEC)that aligns with the electrolyte.Although the cobalt-based ca...The commercialization of solid oxide fuel cells depends on the cathode,which possesses both high catalytic activity and a thermal-expansion coefficient(TEC)that aligns with the electrolyte.Although the cobalt-based cathode La_(0.6)Sr_(0.4)CoO_(3)(LSC)offers excellent catalytic performance,its TEC is significantly larger than that of the electrolyte.In this study,we mechanically mix Sm_(0.2)Ce_(0.8)O_(2−δ)(SDC)with LSC to create a composite cathode.By incorporating 50wt%SDC,the TEC decreases significantly from 18.29×10^(−6) to 13.90×10^(−6) K^(−1).Under thermal-shock conditions ranging from room temperature to 800℃,the growth rate of polarization resistance is only 0.658%per cycle,i.e.,merely 49%that of pure LSC.The button cell comprising the LSC-SDC composite cathode operates stably for over 900 h without Sr segregation,with a voltage growth rate of 1.11%/kh.A commercial flat-tube cell(active area:70 cm^(2))compris-ing the LSC-SDC composite cathode delivers 54.8 W at 750℃.The distribution of relaxation-time shows that the non-electrode portion is the main rate-limiting step.This study demonstrates that the LSC-SDC mixture strategy effectively improves the compatibility with the electrolyte while maintaining a high output,thus rendering it a promising commercial cathode material.展开更多
The novel Co-based superalloys are extensively used in gas-powered and jet engine turbines due to their excellent high-temperature performance, achieved by strengthening the L12-γ′ ordered phase. This review present...The novel Co-based superalloys are extensively used in gas-powered and jet engine turbines due to their excellent high-temperature performance, achieved by strengthening the L12-γ′ ordered phase. This review presents an overview of the research progress on oxidation behavior of Co-based superalloys, including oxidation kinetics, oxides morphology, the formation and spallation of oxide layers, and importantly, the synergistic effects of alloying elements on oxidation resistance—a critical area considering the complex interactions with multiple alloying elements. Additionally, this review compares the oxidation resistance of single crystal versus polycrystalline alloys. The effect of phase interface and dislocations on oxidation behavior is also discussed. While significant progress has been achieved, areas necessitating further investigation include optimizing alloy compositions for enhanced oxidation resistance and understanding the long-term stability of oxide layers. The future prospects for Co-based superalloys are promising as ongoing research aims to address the existing challenges and unlock new applications at even higher operating temperatures.展开更多
Multicomponent Gd_(1−x)Sm_(x)Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)double perovskites are optimized for application in terms of chemical composi-tion and morphology for the use as oxygen electrodes in solid oxide cells.Structur...Multicomponent Gd_(1−x)Sm_(x)Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)double perovskites are optimized for application in terms of chemical composi-tion and morphology for the use as oxygen electrodes in solid oxide cells.Structural studies of other physicochemical properties are con-ducted on a series of materials obtained by the sol-gel method with different ratios of Gd and Sm cations.It is documented that changing the x value,and the resulting adjustment of the average ionic radius,have a significant impact on the crystal structure,stability,as well as on the total conductivity and thermomechanical properties of the materials,with the best results obtained for the Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)composition.Oxygen electrodes are prepared using the selected compound,allowing to obtain low polarization resistance values,such as 0.086Ω·cm^(2)at 800℃.Systematic studies of electrocatalytic activity are conducted using La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(_(0.2))O_(3−δ)as the electrolyte for all electrodes,and Ce_(0.8)Gd_(0.2)O_(2−δ)electrolyte for the best performing Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)electrodes.The electrochemical data are analyzed using the distribution of relaxation times method.Also,the influence of the preparation method of the electrode material is in-ve`stigated using the electrospinning technique.Finally,the performance of the Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)electrodes is tested in a Ni-YSZ(yttria-stabilized zirconia)anode-supported cell with a Ce_(0.8)Gd_(0.2)O_(2−δ)buffer layer,in the fuel cell and electrolyzer operating modes.With the electrospun electrode,a power density of 462 mW·cm^(−2)is obtained at 700℃,with a current density of ca.0.2 A·cm^(−2)at 1.3 V for the electrolysis at the same temperature,indicating better performance compared to the sol-gel-based electrode.展开更多
Arsenic-related oxidative stress and resultant diseases have attracted global concern,while longitudinal studies are scarce.To assess the relationship between arsenic exposure and systemic oxidative damage,we performe...Arsenic-related oxidative stress and resultant diseases have attracted global concern,while longitudinal studies are scarce.To assess the relationship between arsenic exposure and systemic oxidative damage,we performed two repeatedmeasures among 5236 observations(4067 participants)in theWuhan-Zhuhai cohort at the baseline and follow-up after 3 years.Urinary total arsenic,biomarkers of DNA oxidative damage(8-hydroxy-2-deoxyguanosine(8-OHdG)),lipid peroxidation(8-isoprostaglandin F2alpha(8-isoPGF2α)),and protein oxidative damage(protein carbonyls(PCO))were detected for all observations.Here we used linearmixed models to estimate the cross-sectional and longitudinal associations between arsenic exposure and oxidative damage.Exposure-response curves were constructed by utilizing the generalized additive mixed models with thin plate regressions.After adjusting for potential confounders,arsenic level was significantly and positively related to the levels of global oxidative damage and their annual increased rates in dose-response manners.In cross-sectional analyses,each 1%increase in arsenic levelwas associated with a 0.406%(95%confidence interval(CI):0.379%to 0.433%),0.360%(0.301%to 0.420%),and 0.079%(0.055%to 0.103%)increase in 8-isoPGF2α,8-OHdG,and PCO,respectively.More importantly,arsenic was further found to be associated with increased annual change rates of 8-isoPGF2α(β:0.147;95%CI:0.130 to 0.164),8-OHdG(0.155;0.118 to 0.192),and PCO(0.050;0.035 to 0.064)in the longitudinal analyses.Our study suggested that arsenic exposurewas not only positively related with global oxidative damage to lipid,DNA,and protein in cross-sectional analyses,but also associated with annual increased rates of these biomarkers in dose-dependent manners.展开更多
Objective:To investigate the protective effects of naringin on doxorubicin(DOX)-induced liver injury.Methods:A total of 50 male rats were allocated into five groups:the control group,the DOX group,the DOX groups treat...Objective:To investigate the protective effects of naringin on doxorubicin(DOX)-induced liver injury.Methods:A total of 50 male rats were allocated into five groups:the control group,the DOX group,the DOX groups treated with 50 mg/kg and 100 mg/kg of naringin by gastric lavage for 10 days,as well as the group treated with 100 mg/kg of naringin alone.Liver and serum samples were collected for biochemical,histopathological,and molecular analyses,including liver enzyme activity,oxidative stress markers,inflammation,apoptosis-related proteins,and DNA damage indicators.Results:Naringin attenuated DOX-induced elevation in liver enzyme activity and inflammation markers while enhancing antioxidant activities.Naringin also activated the Nrf2-HO-1 signaling pathway,with the most pronounced effect in the high-dose naringin group.In addition,naringin modulated apoptotic signaling by downregulating the expression of PI3K-AKT and BAX,and upregulating Bcl-2,as well as reduced the level of 8-OHdG.Histopathological evaluation showed that DOX-induced structural liver alterations,such as cellular degeneration and necrosis,were notably attenuated by naringin treatment.Conclusions:Naringin treatment exerts protective effects against DOX-induced liver injury through its antioxidative,anti-inflammatory,and anti-apoptotic effects.展开更多
Low-concentration coal mine methane(LC-CMM),which is predominantly composed of methane,serves as a clean and low-carbon energy resource with significant potential for utilization.Utilizing LC-CMM as fuel for solid oxi...Low-concentration coal mine methane(LC-CMM),which is predominantly composed of methane,serves as a clean and low-carbon energy resource with significant potential for utilization.Utilizing LC-CMM as fuel for solid oxide fuel cells(SOFCs)represents an efficient and promising strategy for its effective utilization.However,direct application in Ni-based anodes induces carbon deposition,which severely degrades cell performance.Herein,a medium-entropy oxide Sr_(2)FeNi_(0.1)Cr_(0.3)Mn_(0.3)Mo_(0.3)O_(6−δ)(SFNCMM)was developed as an anode internal reforming catalyst.Following reduction treatment,FeNi_(3) nano-alloy particles precipitate on the surface of the material,thereby significantly enhancing its catalytic activity for LC-CMM reforming process.The catalyst achieved a methane conversion rate of 53.3%,demonstrating excellent catalytic performance.Electrochemical evaluations revealed that SFNCMM-Gd_(0.1)Ce_(0.9)O_(2−δ)(GDC)with a weight ratio of 7:3 exhibited superior electrochemical performance when employed as the anodic catalytic layer.With H_(2) and LC-CMM as fuels,the single cell achieved maximum power densities of 1467.32 and 1116.97 mW·cm^(−2) at 800℃,respectively,with corresponding polarization impedances of 0.17 and 1.35Ω·cm^(2).Furthermore,the single cell maintained stable operation for over 100 h under LC-CMM fueling without significant carbon deposition,confirming its robust resistance to carbon formation.These results underscore the potential of medium-entropy oxides as highly effective catalytic layers for mitigating carbon deposition in SOFCs.展开更多
The Zn-Al spinel oxide stands out as one of the most active catalysts for high-temperature methanol synthesis from CO_(2)hydrogenation.However,the structure–activity relationship of the reaction remains poorly unders...The Zn-Al spinel oxide stands out as one of the most active catalysts for high-temperature methanol synthesis from CO_(2)hydrogenation.However,the structure–activity relationship of the reaction remains poorly understood due to challenges in atomic-level structural characterizations and analysis of reaction intermediates.In this study,we prepared two Zn-Al spinel oxide catalysts via coprecipitation(ZnAl-C)and hydrothermal(ZnAl-H)methods,and conducted a comparative investigation in the CO_(2)hydrogenation reaction.Surprisingly,under similar conditions,ZnAl-C exhibited significantly higher selectivity towards methanol and DME compared to ZnAl-H.Comprehensive characterizations using X-ray diffraction(XRD),Raman spectroscopy and electron paramagnetic resonance(EPR)unveiled that ZnAl-C catalyst had abundant ZnO species on its surface,and the interaction between the ZnO species and its ZnAl spinel oxide matrix led to the formation of oxygen vacancies,which are crucial for CO_(2)adsorption and activation.Additionally,state-of-the-art solid-state nuclear magnetic resonance(NMR)techniques,including ex-situ and in-situ NMR analyses,confirmed that the surface ZnO facilitates the formation of unique highly reactive interfacial formate species,which was readily hydrogenated to methanol and DME.These insights elucidate the promotion effects of ZnO on the ZnAl spinel oxide in regulating active sites and reactive intermediates for CO_(2)-to-methanol hydrogenation reaction,which is further evidenced by the significant enhancement in methanol and DME selectivity observed upon loading ZnO onto the ZnAl-H catalyst.These molecular-level mechanism understandings reinforce the idea of optimizing the ZnO-ZnAl interface through tailored synthesis methods to achieve activity-selectivity balance.展开更多
Minimizing the thermal expansion coefficient(TEC)mismatch between the cathode and electrolyte in solid oxide fuel cells is crucial for achieving stable,durable operation and high performance.Recently,materials with ne...Minimizing the thermal expansion coefficient(TEC)mismatch between the cathode and electrolyte in solid oxide fuel cells is crucial for achieving stable,durable operation and high performance.Recently,materials with negative thermal expansion(NTE)have at-tracted significant attention as effective additives for tailoring the thermomechanical properties of electrodes and enhancing cell durability.In this work,for the first time,single-phase NTE perovskite Sm_(0.85)Zn_(0.15)MnO_(3−δ)(SZM15)was successfully synthesized via the sol-gel method,eliminating the unwanted ZnO phase typically observed in materials obtained through the conventional solid-state reaction route.The sol-gel approach proved highly advantageous,offering low cost,robustness,excellent chemical homogeneity,precise compositional control,and high phase purity.After optimization of synthesis parameters,a negative TEC of approximately−6.5×10^(−6)K^(−1)was achieved in the 400-850℃range.SZM15 was then incorporated as an additive(10wt%-50wt%)into a SmBa0.5Sr0.5CoCuO_(5+δ)(SBSCCO)cathode to tune the thermomechanical properties with a La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(0.2)O_(3−δ)(LSGM)electrolyte,achieving a minimal TEC mismatch of only 1%.Notably,the SBSCCO+10wt%SZM15 composite cathode exhibited the lowest polarization resistance of 0.019Ω·cm^(2)at 900℃,showing approximately 70%lower than that of the pristine cathode.Excellent long-term stability after 100 h of operation was achieved.In addition,a high peak power density of 680 mW·cm^(−2)was achieved in a Ni-YSZ(yttria-stabilized zirconia)|YSZ|Ce_(0.9)Gd_(0.1)O_(2−δ)(GDC10)|SBSCCO+10wt%SZM15 anode-supported fuel cell at 850℃,highlighting the effectiveness of incorporating NTE materials as a promising strategy for regulating the thermomechanical properties and improving the long-term stability of intermediate temperature solid oxide fuel cells(IT-SOFCs).展开更多
As global energy demand increases and environmental standards tighten,the development of efficient,eco-friendly energy conversion and storage technologies becomes crucial.Solid oxide cells(SOCs)show great promise beca...As global energy demand increases and environmental standards tighten,the development of efficient,eco-friendly energy conversion and storage technologies becomes crucial.Solid oxide cells(SOCs)show great promise because of their high energy conversion efficiency and wide range of applications.Highentropy materials(HEMs),a novel class of materials comprising several principal elements,have attracted significant interest within the materials science and energy sectors.Their distinctive structural features and adaptable functional properties offer immense potential for innovation across various applications.This review systematically covers the basic concepts,crystal structures,element selection,and major synthesis strategies of HEMs,and explores in detail the specific applications of these materials in SOCs,including its potential as air electrodes,fuel electrodes,electrolytes,and interconnects(including barrier coatings).By analyzing existing studies,this review reveals the significant advantages of HEMs in enhancing the performance,anti-poisoning,and stability of SOCs;highlights the key areas and challenges for future research;and looks into possible future directions.展开更多
Lung cancer is the most frequent cause of cancer-related mortality worldwide.Nitric oxide(NO),prostaglandins(PGs),thromboxanes(TXs),and endothelins(ETs)participate in numerous physiological processes.These agents play...Lung cancer is the most frequent cause of cancer-related mortality worldwide.Nitric oxide(NO),prostaglandins(PGs),thromboxanes(TXs),and endothelins(ETs)participate in numerous physiological processes.These agents play an important role in lung carcinogenesis by regulating cancer cell proliferation,apoptosis,invasion,and angiogenesis.NO is a gaseous free radical with tumo-ricidal and tumorigenic activities in lung cancer.Arachidonic acid-derived PGs,including PGD2,PGE2,8-iso-PGF2α,and PGI2,are related to the development of lung cancer.PGD2 and PGI2 act as tumor suppressors,while PGE2 and 8-iso-PGF2αpromote tumor progression.TXA2 catalyzed by cyclooxygenase induces prolif-eration as well as angiogenesis.Elevated levels of TXB2,an inactive metabolite of TXA2,are positively correlated with lung carcinoma stages.ET-1 and ET-2 are 21 amino acid polypeptides;their silencing hinders lung cancer cell proliferation and invasion.ET-2 depletion also triggers apoptotic death.This chapter review aims to provide a comprehensive overview of the role of NO,PGs,TXs,and ETs in lung cancer.展开更多
基金supported by the National Natural Science Foundation of China(No.U1960202).
文摘The mechanisms of oxide metallurgy include inducing the formation of intragranular acicular ferrite(IAF)using micron-sized inclusions and restricting the growth of prior austenite grains(PAGs)by nanosized particles during welding.The chaotically oriented IAF and refined PAGs inhibit crack initiation and propagation in the steel,resulting in high impact toughness.This work summarizes the com-bined effect of deoxidizers and alloying elements,with the aim to provide a new perspective for the research and practice related to im-proving the impact toughness of the heat affected zone(HAZ)during the high heat input welding.Ti complex deoxidation with other strong deoxidants,such as Mg,Ca,Zr,and rare earth metals(REMs),can improve the toughness of the heat-affected zone(HAZ)by re-fining PAGs or increasing IAF contents.However,it is difficult to identify the specific phase responsible for IAF nucleation because ef-fective inclusions formed by complex deoxidation are usually multiphase.Increasing alloying elements,such as C,Si,Al,Nb,or Cr,con-tents can impair HAZ toughness.A high C content typically increases the number of coarse carbides and decreases the potency of IAF formation.Si,Cr,or Al addition leads to the formation of undesirable microstructures.Nb reduces the high-temperature stability of the precipitates.Mo,V,and B can enhance HAZ toughness.Mo-containing precipitates present good thermal stability.VN or V(C,N)is ef-fective in promoting IAF nucleation due to its good coherent crystallographic relationship with ferrite.The formation of the B-depleted zone around the inclusion promotes IAF formation.The interactions between alloying elements are complex,and the effect of adding dif-ferent alloying elements remains to be evaluated.In the future,the interactions between various alloying elements and their effects on ox-ide metallurgy,as well as the calculation of the nucleation effects of effective inclusions using first principles calculations will become the focus of oxide metallurgy.
文摘Nitric oxide(NO)is a gaseous molecule produced by 3 different NO synthase(NOS)isoforms:Neural/brain NOS(nNOS/bNOS,type 1),endothelial NOS(eNOS,type 3)and inducible NOS(type 2).Type 1 and 3 NOS are constitutively expressed.NO can serve different purposes:As a vasoactive molecule,as a neurotransmitter or as an immunomodulator.It plays a key role in cerebral ischemia/reperfusion injury(CIRI).Hypoxic episodes simulate the production of oxygen free radicals,leading to mitochondrial and phospholipid damage.Upon reperfusion,increased levels of oxygen trigger oxide synthases;whose products are associated with neuronal damage by promoting lipid peroxidation,nitrosylation and excitotoxicity.Molecular pathways in CIRI can be altered by NOS.Neuroprotective effects are observed with eNOS activity.While nNOS interplay is prone to endothelial inflammation,oxidative stress and apoptosis.Therefore,nNOS appears to be detrimental.The interaction between NO and other free radicals develops peroxynitrite;which is a cytotoxic agent.It plays a main role in the likelihood of hemorrhagic events by tissue plasminogen activator(t-PA).Peroxynitrite scavengers are currently being studied as potential targets to prevent hemorrhagic transformation in CIRI.
基金supported by the National Natural Science Foundation of China,No.82071442 (to LS)a grant from the Jilin Provincial Department of Finance,No.JLSWSRCZX2021-004 (to LS)。
文摘Alzheimer's disease is an age-related neurodegenerative disorder with a complex and incompletely understood pathogenesis. Despite extensive research, a cure for Alzheimer's disease has not yet been found. Oxidative stress mediates excessive oxidative responses, and its involvement in Alzheimer's disease pathogenesis as a primary or secondary pathological event is widely accepted. As a member of the selenium-containing antioxidant enzyme family, glutathione peroxidase 4 reduces esterified phospholipid hydroperoxides to maintain cellular redox homeostasis. With the discovery of ferroptosis, the central role of glutathione peroxidase 4 in anti-lipid peroxidation in several diseases, including Alzheimer's disease, has received widespread attention. Increasing evidence suggests that glutathione peroxidase 4 expression is inhibited in the Alzheimer's disease brain, resulting in oxidative stress, inflammation, ferroptosis, and apoptosis, which are closely associated with pathological damage in Alzheimer's disease. Several therapeutic approaches, such as small molecule drugs, natural plant products, and non-pharmacological treatments, ameliorate pathological damage and cognitive function in Alzheimer's disease by promoting glutathione peroxidase 4 expression and enhancing glutathione peroxidase 4 activity. Therefore, glutathione peroxidase 4 upregulation may be a promising strategy for the treatment of Alzheimer's disease. This review provides an overview of the gene structure, biological functions, and regulatory mechanisms of glutathione peroxidase 4, a discussion on the important role of glutathione peroxidase 4 in pathological events closely related to Alzheimer's disease, and a summary of the advances in small-molecule drugs, natural plant products, and non-pharmacological therapies targeting glutathione peroxidase 4 for the treatment of Alzheimer's disease. Most prior studies on this subject used animal models, and relevant clinical studies are lacking. Future clinical trials are required to validate the therapeutic effects of strategies targeting glutathione peroxidase 4 in the treatment of Alzheimer's disease.
基金financial support from the JSPS KAKENHI Grant-in-Aid for Scientific Research(B),No.21H02035KAKENHI Grant-in-Aid for Challenging Research(Exploratory),No.21K19017+2 种基金KAKENHI Grant-in-Aid for Transformative Research Areas(B),No.21H05100National Natural Science Foundation of China,No.22409033 and No.22409035Basic and Applied Basic Research Foundation of Guangdong Province,No.2022A1515110470.
文摘Protonic solid oxide electrolysis cells(P-SOECs)are a promising technology for water electrolysis to produce green hydrogen.However,there are still challenges related key materials and anode/electrolyte interface.P-SOECs with Zr-rich electrolyte,called Zr-rich side P-SOECs,possess high thermodynamically stability under high steam concentrations but the large reaction resistances and the current leakage,thus the inferior performances.In this study,an efficient functional interlayer Ba_(0.95)La_(0.05)Fe_(0.8)Zn_(0.2)O_(3-δ)(BLFZ)in-between the anode and the electrolyte is developed.The electrochemical performances of P-SOECs are greatly enhanced because the BLFZ can greatly increase the interface contact,boost anode reaction kinetics,and increase proton injection into electrolyte.As a result,the P-SOEC yields high current density of 0.83 A cm^(-2) at 600℃ in 1.3 Vamong all the reported Zr-rich side cells.This work not only offers an efficient functional interlayer for P-SOECs but also holds the potential to achieve P-SOECs with high performances and long-term stability.
基金supported by National Natural Science Foundation of China(22279018)National Natural Science Foundation of China(22005055)Natural Science Foundation of Fujian Province(2022J01085).
文摘Solid oxide cells(SOCs)are emerging devices for efficient energy storage and conversion.However,during SOC operation,gaseous chromium(Cr)species released from Fe-Cr alloy interconnect can lead to Cr deposition and poisoning of air electrodes,causing substantial degradation in electrochemical performance and compromising the longterm stability of SOCs.This mini-review examines the mechanism of Cr deposition and poisoning in air electrodes under both fuel-cell and electrolysis modes.Furthermore,emphasis is placed on the recent advancements in strategies to mitigate Cr poisoning,offering insights into the rational design and development of active and Cr-tolerant air electrodes for SOCs.
文摘Pitch produced by the lique-faction of coal was divided into two frac-tions:soluble in toluene(TS)and insol-uble in toluene but soluble in pyridine(TI-PS),and their differences in molecu-lar structure and oxidation activity were studied.Several different carbon materi-als were produced from them by oxida-tion in air(350℃,300 mL/min)fol-lowed by carbonization(1000℃ in Ar),and the effect of the cross-linked structure on their structure and sodium storage properties was investigated.The results showed that the two pitch fractions were obviously different after the air oxidation.The TS fraction with a low degree of condensation and abundant side chains had a stronger oxidation activity and thus introduced more cross-linked oxygen-containing functional groups C(O)―O which prevented carbon layer rearrangement during the carbonization.As a result,a disordered hard carbon with more defects was formed,which improved the electrochemical performance.Therefore,the carbon materials derived from TS(O-TS-1000)had an obvious disordered structure and a larger layer spacing,giving them better sodium storage perform-ance than those derived from the TI-PS fraction(O-TI-PS-1000).The specific capacity of O-TS-1000 was about 250 mAh/g at 20 mA/g,which was 1.67 times higher than that of O-TI-PS-1000(150 mAh/g).
基金supported by the National Key Research and Development Program of China(Grant No.2022YFF0609000)National Natural Science Foundation of China(Grant Nos.52171034 and 52101037)Postdoctoral Fellowship Program of CPSFara(No.GZB20230944).
文摘Up-and-coming high-temperature materials,refractory high entropy alloys,are suffering from lower oxidation resistance,restricting their applications in the aerospace field.In this study,two novel treatments of Al-deposited and remelted were developed to refine the microstructure and enhance the oxidation resistance of refractory high entropy alloy using electron beam freeform fabrication(EBF3).Finer and short-range ordering structures were observed in the remelted sample,whereas the Al-deposited sample showcased the formation of silicide and intermetallic phases.High-temperature cyclic and isothermal oxidation tests at 1000℃ were carried out.The total weight gain after 60 h of cyclic oxidation decreased by 17.49%and 30.46%for the remelted and deposited samples,respectively,compared to the as-cast state.Oxidation kinetics reveal an evident lower mass gain and oxidation rate in the treated samples.A multilayer oxide consisting of TiO_(2)+Al_(2)O_(3)+SiO_(2)+AlNbO_(4) was studied for its excellent oxidation resistance.The oxidation behavior of rutile,corundum and other oxides was analyzed using first principles calculations and chemical defect analysis.Overall,this research,which introduces novel treatments,offers promising insights for enhancing the inherent oxidation resistance of refractory high entropy alloys.
文摘Fatty acids are the main constituents of vegetable oils.To determine the fatty acid compositions of small trade vegetable oils and some less well studied beneficial vegetable oils,and investigate their relationships with antioxidant activity and oxidative stability,gas chromatography-mass spectrometry was performed to characterize the associated fatty acid profiles.The antioxidant activity of vegetable oils,based on their DPPH-scavenging capacity(expressed as IC_(50) values),was used to assess their impact on human health,and their oxidative stability was characterized by performing lipid oxidation analysis to determine the oxidative induction time of fats and oils.In addition,correlation analyses were performed to examine associations between the fatty acid composition of the oils and DPPH-scavenging capacity and oxidative stability.The results revealed that among the assessed oils,coffee seed oil has the highest saturated fatty acid content(355.10 mg/g),whereas Garddenia jaminoides oil has the highest unsaturated fatty acid content(844.84 mg/g).Coffee seed oil was also found have the lowest DPPH IC_(50) value(2.30 mg/mL)and the longest oxidation induction time(17.09 h).Correlation analysis revealed a significant linear relationship(P<0.05)between oxidative stability and unsaturated fatty acid content,with lower contents tending to be associated with better oxidative stability.The findings of this study provide reference data for the screening of functional edible vegetable oils.
基金supported by Fundamental Research Funds for the Central Universities(2023KYJD1008)the Science Research Projects of the Anhui Higher Education Institutions of China(2022AH051582).
文摘Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC.
基金supported by the National Natural Science Foundation of China,Nos.82271327 (to ZW),82072535 (to ZW),81873768 (to ZW),and 82001253 (to TL)。
文摘The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular and cellular mechanisms by which quinolinic acid contributes to Huntington's disease pathology remain unknown. In this study, we established in vitro and in vivo models of Huntington's disease by administering quinolinic acid to the PC12 neuronal cell line and the striatum of mice, respectively. We observed a decrease in the levels of hydrogen sulfide in both PC12 cells and mouse serum, which was accompanied by down-regulation of cystathionine β-synthase, an enzyme responsible for hydrogen sulfide production. However, treatment with NaHS(a hydrogen sulfide donor) increased hydrogen sulfide levels in the neurons and in mouse serum, as well as cystathionine β-synthase expression in the neurons and the mouse striatum, while also improving oxidative imbalance and mitochondrial dysfunction in PC12 cells and the mouse striatum. These beneficial effects correlated with upregulation of nuclear factor erythroid 2-related factor 2 expression. Finally, treatment with the nuclear factor erythroid 2-related factor 2inhibitor ML385 reversed the beneficial impact of exogenous hydrogen sulfide on quinolinic acid-induced oxidative stress. Taken together, our findings show that hydrogen sulfide reduces oxidative stress in Huntington's disease by activating nuclear factor erythroid 2-related factor 2,suggesting that hydrogen sulfide is a novel neuroprotective drug candidate for treating patients with Huntington's disease.
基金the financial support from the National Natural Science Foundation of China(No.22209191)Ningbo Key R&D Project(No.2023Z155).
文摘The commercialization of solid oxide fuel cells depends on the cathode,which possesses both high catalytic activity and a thermal-expansion coefficient(TEC)that aligns with the electrolyte.Although the cobalt-based cathode La_(0.6)Sr_(0.4)CoO_(3)(LSC)offers excellent catalytic performance,its TEC is significantly larger than that of the electrolyte.In this study,we mechanically mix Sm_(0.2)Ce_(0.8)O_(2−δ)(SDC)with LSC to create a composite cathode.By incorporating 50wt%SDC,the TEC decreases significantly from 18.29×10^(−6) to 13.90×10^(−6) K^(−1).Under thermal-shock conditions ranging from room temperature to 800℃,the growth rate of polarization resistance is only 0.658%per cycle,i.e.,merely 49%that of pure LSC.The button cell comprising the LSC-SDC composite cathode operates stably for over 900 h without Sr segregation,with a voltage growth rate of 1.11%/kh.A commercial flat-tube cell(active area:70 cm^(2))compris-ing the LSC-SDC composite cathode delivers 54.8 W at 750℃.The distribution of relaxation-time shows that the non-electrode portion is the main rate-limiting step.This study demonstrates that the LSC-SDC mixture strategy effectively improves the compatibility with the electrolyte while maintaining a high output,thus rendering it a promising commercial cathode material.
基金support from the National Natural Science Foundation of China(Nos.52171107,52201203)the Hebei Provincial Natural Science Foundation,China(No.E2021501026)the National Natural Science Foundation of China-Joint Fund of Iron and Steel Research(No.U1960204).
文摘The novel Co-based superalloys are extensively used in gas-powered and jet engine turbines due to their excellent high-temperature performance, achieved by strengthening the L12-γ′ ordered phase. This review presents an overview of the research progress on oxidation behavior of Co-based superalloys, including oxidation kinetics, oxides morphology, the formation and spallation of oxide layers, and importantly, the synergistic effects of alloying elements on oxidation resistance—a critical area considering the complex interactions with multiple alloying elements. Additionally, this review compares the oxidation resistance of single crystal versus polycrystalline alloys. The effect of phase interface and dislocations on oxidation behavior is also discussed. While significant progress has been achieved, areas necessitating further investigation include optimizing alloy compositions for enhanced oxidation resistance and understanding the long-term stability of oxide layers. The future prospects for Co-based superalloys are promising as ongoing research aims to address the existing challenges and unlock new applications at even higher operating temperatures.
基金funded by the National Science Centre,Poland,on the basis of the decision number UMO-2020/37/B/ST8/02097supported by the program“Excellence Initiative-Research University”for the AGH University of Krakow(IDUB AGH,No.501.696.7996,Action 4,ID 9880).
文摘Multicomponent Gd_(1−x)Sm_(x)Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)double perovskites are optimized for application in terms of chemical composi-tion and morphology for the use as oxygen electrodes in solid oxide cells.Structural studies of other physicochemical properties are con-ducted on a series of materials obtained by the sol-gel method with different ratios of Gd and Sm cations.It is documented that changing the x value,and the resulting adjustment of the average ionic radius,have a significant impact on the crystal structure,stability,as well as on the total conductivity and thermomechanical properties of the materials,with the best results obtained for the Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)composition.Oxygen electrodes are prepared using the selected compound,allowing to obtain low polarization resistance values,such as 0.086Ω·cm^(2)at 800℃.Systematic studies of electrocatalytic activity are conducted using La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(_(0.2))O_(3−δ)as the electrolyte for all electrodes,and Ce_(0.8)Gd_(0.2)O_(2−δ)electrolyte for the best performing Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)electrodes.The electrochemical data are analyzed using the distribution of relaxation times method.Also,the influence of the preparation method of the electrode material is in-ve`stigated using the electrospinning technique.Finally,the performance of the Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)electrodes is tested in a Ni-YSZ(yttria-stabilized zirconia)anode-supported cell with a Ce_(0.8)Gd_(0.2)O_(2−δ)buffer layer,in the fuel cell and electrolyzer operating modes.With the electrospun electrode,a power density of 462 mW·cm^(−2)is obtained at 700℃,with a current density of ca.0.2 A·cm^(−2)at 1.3 V for the electrolysis at the same temperature,indicating better performance compared to the sol-gel-based electrode.
基金supported by the National Natural Science Foundation of China(Nos.82241088 and 82203996)the China Postdoctoral Science Foundation(Nos.2022T150230 and 2021M691131).
文摘Arsenic-related oxidative stress and resultant diseases have attracted global concern,while longitudinal studies are scarce.To assess the relationship between arsenic exposure and systemic oxidative damage,we performed two repeatedmeasures among 5236 observations(4067 participants)in theWuhan-Zhuhai cohort at the baseline and follow-up after 3 years.Urinary total arsenic,biomarkers of DNA oxidative damage(8-hydroxy-2-deoxyguanosine(8-OHdG)),lipid peroxidation(8-isoprostaglandin F2alpha(8-isoPGF2α)),and protein oxidative damage(protein carbonyls(PCO))were detected for all observations.Here we used linearmixed models to estimate the cross-sectional and longitudinal associations between arsenic exposure and oxidative damage.Exposure-response curves were constructed by utilizing the generalized additive mixed models with thin plate regressions.After adjusting for potential confounders,arsenic level was significantly and positively related to the levels of global oxidative damage and their annual increased rates in dose-response manners.In cross-sectional analyses,each 1%increase in arsenic levelwas associated with a 0.406%(95%confidence interval(CI):0.379%to 0.433%),0.360%(0.301%to 0.420%),and 0.079%(0.055%to 0.103%)increase in 8-isoPGF2α,8-OHdG,and PCO,respectively.More importantly,arsenic was further found to be associated with increased annual change rates of 8-isoPGF2α(β:0.147;95%CI:0.130 to 0.164),8-OHdG(0.155;0.118 to 0.192),and PCO(0.050;0.035 to 0.064)in the longitudinal analyses.Our study suggested that arsenic exposurewas not only positively related with global oxidative damage to lipid,DNA,and protein in cross-sectional analyses,but also associated with annual increased rates of these biomarkers in dose-dependent manners.
基金supported by the Atatürk University Scientific Research Projects Coordinator(Project No:2020/8737)。
文摘Objective:To investigate the protective effects of naringin on doxorubicin(DOX)-induced liver injury.Methods:A total of 50 male rats were allocated into five groups:the control group,the DOX group,the DOX groups treated with 50 mg/kg and 100 mg/kg of naringin by gastric lavage for 10 days,as well as the group treated with 100 mg/kg of naringin alone.Liver and serum samples were collected for biochemical,histopathological,and molecular analyses,including liver enzyme activity,oxidative stress markers,inflammation,apoptosis-related proteins,and DNA damage indicators.Results:Naringin attenuated DOX-induced elevation in liver enzyme activity and inflammation markers while enhancing antioxidant activities.Naringin also activated the Nrf2-HO-1 signaling pathway,with the most pronounced effect in the high-dose naringin group.In addition,naringin modulated apoptotic signaling by downregulating the expression of PI3K-AKT and BAX,and upregulating Bcl-2,as well as reduced the level of 8-OHdG.Histopathological evaluation showed that DOX-induced structural liver alterations,such as cellular degeneration and necrosis,were notably attenuated by naringin treatment.Conclusions:Naringin treatment exerts protective effects against DOX-induced liver injury through its antioxidative,anti-inflammatory,and anti-apoptotic effects.
基金supported by the National Key R&D Program of China(No.2024YFB4007501)the Natural Science Foundation of Jiangsu Province(No.BK20240109)the project of Jiangsu Key Laboratory for Clean Utilization of Carbon Resources(No.BM2024007).
文摘Low-concentration coal mine methane(LC-CMM),which is predominantly composed of methane,serves as a clean and low-carbon energy resource with significant potential for utilization.Utilizing LC-CMM as fuel for solid oxide fuel cells(SOFCs)represents an efficient and promising strategy for its effective utilization.However,direct application in Ni-based anodes induces carbon deposition,which severely degrades cell performance.Herein,a medium-entropy oxide Sr_(2)FeNi_(0.1)Cr_(0.3)Mn_(0.3)Mo_(0.3)O_(6−δ)(SFNCMM)was developed as an anode internal reforming catalyst.Following reduction treatment,FeNi_(3) nano-alloy particles precipitate on the surface of the material,thereby significantly enhancing its catalytic activity for LC-CMM reforming process.The catalyst achieved a methane conversion rate of 53.3%,demonstrating excellent catalytic performance.Electrochemical evaluations revealed that SFNCMM-Gd_(0.1)Ce_(0.9)O_(2−δ)(GDC)with a weight ratio of 7:3 exhibited superior electrochemical performance when employed as the anodic catalytic layer.With H_(2) and LC-CMM as fuels,the single cell achieved maximum power densities of 1467.32 and 1116.97 mW·cm^(−2) at 800℃,respectively,with corresponding polarization impedances of 0.17 and 1.35Ω·cm^(2).Furthermore,the single cell maintained stable operation for over 100 h under LC-CMM fueling without significant carbon deposition,confirming its robust resistance to carbon formation.These results underscore the potential of medium-entropy oxides as highly effective catalytic layers for mitigating carbon deposition in SOFCs.
基金financially National Key R&D Program of China(No.2022YFA1504800)National Natural Science Foundation of China(Grant No.22325405,22372160,22321002)+1 种基金Liaoning Revitalization Talents Program(XLYC1807207)DICP I202104。
文摘The Zn-Al spinel oxide stands out as one of the most active catalysts for high-temperature methanol synthesis from CO_(2)hydrogenation.However,the structure–activity relationship of the reaction remains poorly understood due to challenges in atomic-level structural characterizations and analysis of reaction intermediates.In this study,we prepared two Zn-Al spinel oxide catalysts via coprecipitation(ZnAl-C)and hydrothermal(ZnAl-H)methods,and conducted a comparative investigation in the CO_(2)hydrogenation reaction.Surprisingly,under similar conditions,ZnAl-C exhibited significantly higher selectivity towards methanol and DME compared to ZnAl-H.Comprehensive characterizations using X-ray diffraction(XRD),Raman spectroscopy and electron paramagnetic resonance(EPR)unveiled that ZnAl-C catalyst had abundant ZnO species on its surface,and the interaction between the ZnO species and its ZnAl spinel oxide matrix led to the formation of oxygen vacancies,which are crucial for CO_(2)adsorption and activation.Additionally,state-of-the-art solid-state nuclear magnetic resonance(NMR)techniques,including ex-situ and in-situ NMR analyses,confirmed that the surface ZnO facilitates the formation of unique highly reactive interfacial formate species,which was readily hydrogenated to methanol and DME.These insights elucidate the promotion effects of ZnO on the ZnAl spinel oxide in regulating active sites and reactive intermediates for CO_(2)-to-methanol hydrogenation reaction,which is further evidenced by the significant enhancement in methanol and DME selectivity observed upon loading ZnO onto the ZnAl-H catalyst.These molecular-level mechanism understandings reinforce the idea of optimizing the ZnO-ZnAl interface through tailored synthesis methods to achieve activity-selectivity balance.
基金supported by the research project within the program“Excellence Initiative-Research University”for the AGH University of Krakow(IDUB AGH,Action 21)Kun Zheng acknowledges financial support from AGH University of Krakow(No.16.16.210.476).
文摘Minimizing the thermal expansion coefficient(TEC)mismatch between the cathode and electrolyte in solid oxide fuel cells is crucial for achieving stable,durable operation and high performance.Recently,materials with negative thermal expansion(NTE)have at-tracted significant attention as effective additives for tailoring the thermomechanical properties of electrodes and enhancing cell durability.In this work,for the first time,single-phase NTE perovskite Sm_(0.85)Zn_(0.15)MnO_(3−δ)(SZM15)was successfully synthesized via the sol-gel method,eliminating the unwanted ZnO phase typically observed in materials obtained through the conventional solid-state reaction route.The sol-gel approach proved highly advantageous,offering low cost,robustness,excellent chemical homogeneity,precise compositional control,and high phase purity.After optimization of synthesis parameters,a negative TEC of approximately−6.5×10^(−6)K^(−1)was achieved in the 400-850℃range.SZM15 was then incorporated as an additive(10wt%-50wt%)into a SmBa0.5Sr0.5CoCuO_(5+δ)(SBSCCO)cathode to tune the thermomechanical properties with a La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(0.2)O_(3−δ)(LSGM)electrolyte,achieving a minimal TEC mismatch of only 1%.Notably,the SBSCCO+10wt%SZM15 composite cathode exhibited the lowest polarization resistance of 0.019Ω·cm^(2)at 900℃,showing approximately 70%lower than that of the pristine cathode.Excellent long-term stability after 100 h of operation was achieved.In addition,a high peak power density of 680 mW·cm^(−2)was achieved in a Ni-YSZ(yttria-stabilized zirconia)|YSZ|Ce_(0.9)Gd_(0.1)O_(2−δ)(GDC10)|SBSCCO+10wt%SZM15 anode-supported fuel cell at 850℃,highlighting the effectiveness of incorporating NTE materials as a promising strategy for regulating the thermomechanical properties and improving the long-term stability of intermediate temperature solid oxide fuel cells(IT-SOFCs).
基金supported by the National Key R&D Program of China(2022YFB4004000)National Natural Science Foundation of China(U24A20542,52472210,22279057)+3 种基金Natural Science Foundation of Jiangsu Province(BK20221312)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_1465)Cultivation Program for the Excellent Doctoral Dissertation of Nanjing Tech University(2023-09)the grant of Hydrogen Energy Laboratory(No.FEUZ-2024-0009)。
文摘As global energy demand increases and environmental standards tighten,the development of efficient,eco-friendly energy conversion and storage technologies becomes crucial.Solid oxide cells(SOCs)show great promise because of their high energy conversion efficiency and wide range of applications.Highentropy materials(HEMs),a novel class of materials comprising several principal elements,have attracted significant interest within the materials science and energy sectors.Their distinctive structural features and adaptable functional properties offer immense potential for innovation across various applications.This review systematically covers the basic concepts,crystal structures,element selection,and major synthesis strategies of HEMs,and explores in detail the specific applications of these materials in SOCs,including its potential as air electrodes,fuel electrodes,electrolytes,and interconnects(including barrier coatings).By analyzing existing studies,this review reveals the significant advantages of HEMs in enhancing the performance,anti-poisoning,and stability of SOCs;highlights the key areas and challenges for future research;and looks into possible future directions.
文摘Lung cancer is the most frequent cause of cancer-related mortality worldwide.Nitric oxide(NO),prostaglandins(PGs),thromboxanes(TXs),and endothelins(ETs)participate in numerous physiological processes.These agents play an important role in lung carcinogenesis by regulating cancer cell proliferation,apoptosis,invasion,and angiogenesis.NO is a gaseous free radical with tumo-ricidal and tumorigenic activities in lung cancer.Arachidonic acid-derived PGs,including PGD2,PGE2,8-iso-PGF2α,and PGI2,are related to the development of lung cancer.PGD2 and PGI2 act as tumor suppressors,while PGE2 and 8-iso-PGF2αpromote tumor progression.TXA2 catalyzed by cyclooxygenase induces prolif-eration as well as angiogenesis.Elevated levels of TXB2,an inactive metabolite of TXA2,are positively correlated with lung carcinoma stages.ET-1 and ET-2 are 21 amino acid polypeptides;their silencing hinders lung cancer cell proliferation and invasion.ET-2 depletion also triggers apoptotic death.This chapter review aims to provide a comprehensive overview of the role of NO,PGs,TXs,and ETs in lung cancer.