期刊文献+
共找到215,965篇文章
< 1 2 250 >
每页显示 20 50 100
Design and fabrication of triangle-pattern superwettability hybrid surface with high-efficiency condensation heat transfer performance
1
作者 Rui Wang Yuan Tian +1 位作者 Xuefeng Gao Lei Jiang 《Chinese Chemical Letters》 2025年第3期449-453,共5页
Utilizing superwettability micro/nanostructures to enhance the condensation heat transfer(CHT)performance of engineering materials has attracted great interest due to its values in basic research and technological inn... Utilizing superwettability micro/nanostructures to enhance the condensation heat transfer(CHT)performance of engineering materials has attracted great interest due to its values in basic research and technological innovations.Currently,exploring facile micro/nanofabrication approaches to create high-efficiency CHT surfaces has been one of research hotspots.In this work,we propose and demonstrate a type of new superwettability hybrid surface for high-efficiency CHT,which consists of superhydrophobic nanoneedle arrays and triangularly-patterned superhydrophilic microdots(SMDs).Such hybrid surface can be fabricated by the facile growth of densely-packed ZnO nanoneedles on the Zn-electroplated copper surface followed by fluorosilane modification and mask-assisted photodegradation.Through regulating the diameters and interspaces of SMDs,we obtain the optimized triangularly-patterned hybrid surface,which shows 42.7%higher CHT coefficient than the squarely-patterned hybrid surface and 58.5%higher CHT coefficient than the superhydrophobic surface.The key of such hybrid surface design is to considerably increase CHT coefficient brought about by SMD-triggered drop sweeping at the cost of slightly reducing heat transfer area of superhydrophobic functional zone for drop jumping.Such new strategy helps develop advanced CHT surfaces for high-efficiency electronic cooling and energy utilization. 展开更多
关键词 Superwettability Hybrid surface SUPERHYDROPHOBIC SUPERHYDROPHILIC Patterned surfaces Condensation heat transfer
原文传递
Heat-balance control of friction rolling additive manufacturing based on combination of plasma preheating and instant water cooling 被引量:1
2
作者 Yangyang Sun Haibin Liu +2 位作者 Ruishan Xie Ying Chen Shujun Chen 《Journal of Materials Science & Technology》 2025年第2期168-181,共14页
Friction rolling additive manufacturing(FRAM)is a solid-state additive manufacturing technology that plasticizes the feed and deposits a material using frictional heat generated by the tool head.The thermal efficiency... Friction rolling additive manufacturing(FRAM)is a solid-state additive manufacturing technology that plasticizes the feed and deposits a material using frictional heat generated by the tool head.The thermal efficiency of FRAM,which depends only on friction to generate heat,is low,and the thermal-accumulation effect of the deposition process must be addressed.An FRAM heat-balance-control method that combines plasma-arc preheating and instant water cooling(PC-FRAM)is devised in this study,and a temperature field featuring rapidly increasing and decreasing temperature is constructed around the tool head.Additionally,2195-T87 Al-Li alloy is used as the feed material,and the effects of heating and cooling rates on the microstructure and mechanical properties are investigated.The results show that water cooling significantly improves heat accumulation during the deposition process.The cooling rate increases by 11.7 times,and the high-temperature residence time decreases by more than 50%.The grain size of the PC-FRAM sample is the smallest,i.e.,3.77±1.03μm,its dislocation density is the highest,and the number density of precipitates is the highest,the size of precipitates is the smallest,which shows the best precipitation-strengthening effect.The hardness test results are consistent with the precipitation distribution.The ultimate tensile strength,yield strength and elongation of the PC-FRAM samples are the highest(351±15.6 MPa,251.3±15.8 MPa and 16.25%±1.25%,respectively)among the samples investigated.The preheating and water-cooling-assisted deposition simultaneously increases the tensile strength and elongation of the deposited samples.The combination of preheating and instant cooling improves the deposition efficiency of FRAM and weakens the thermal-softening effect. 展开更多
关键词 Friction rolling additive manufacturing Al-Li alloy Plasma preheating Instant cooling heat accumulation Microstructure
原文传递
The Mechanism of Heating Rate on the Secondary Recrystallization Evolution in Grain Oriented Silicon Steel
3
作者 GAO Qian LI Jun +3 位作者 WANG Xianhui CAO Laifu GONG Jian LI Bo 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期275-282,共8页
Grain-oriented silicon steels were prepared at different heating rates during high temperature annealing,in which the evolution of magnetic properties,grain orientations and precipitates were studied.To illustrate the... Grain-oriented silicon steels were prepared at different heating rates during high temperature annealing,in which the evolution of magnetic properties,grain orientations and precipitates were studied.To illustrate the Zener factor,the diameter and number density of precipitates of interrupted testing samples were statistically calculated.The effect of precipitate ripening on the Goss texture and magnetic property was investigated.Data indicated that the trend of Zener factor was similar under different heating rates,first increasing and then decreasing,and that the precipitate maturing was greatly inhibited as the heating rate increased.Secondary recrystallization was developed at the temperature of 1010℃when a heating rate of 5℃/h was used,resulting in Goss,Brass and{110}<227>oriented grains growing abnormally and a magnetic induction intensity of 1.90T.Furthermore,increasing the heating rate to 20℃/h would inhibit the development of undesirable oriented grains and obtain a sharp Goss texture.However,when the heating rate was extremely fast,such as 40℃/h,poor secondary recrystallization was developed with many island grains,corresponding to a decrease in magnetic induction intensity to 1.87 T.At a suitable heating rate of 20℃/h,the sharpest Goss texture and the highest magnetic induction of 1.94 T with an onset secondary recrystallization temperature of 1020℃were found among the experimental variables in this study.The heating rate affected the initial temperature of secondary recrystallization by controlling the maturation of precipitates,leading to the deviation and dispersion of Goss texture,thereby reducing the magnetic properties. 展开更多
关键词 high temperature annealing heating rate secondary recrystallization grain oriented silicon steel
原文传递
Thermal Performance and Economic Efficiency Comparison of Typical Shallow and Medium-Deep Borehole Heat Exchanger Heating Systems in Xi’an,China
4
作者 Yuze Xue Li Kou +4 位作者 Guosheng Jia Liwen Jin Zhibin Zhang Jianke Hao Lip Huat Saw 《Energy Engineering》 2025年第3期1005-1024,共20页
Geothermal energy,a form of renewable energy,has been extensively utilized for building heating.However,there is a lack of detailed comparative studies on the use of shallow and medium-deep geothermal energy in buildi... Geothermal energy,a form of renewable energy,has been extensively utilized for building heating.However,there is a lack of detailed comparative studies on the use of shallow and medium-deep geothermal energy in building energy systems,which are essential for decision-making.Therefore,this paper presents a comparative study of the performance and economic analysis of shallow and medium-deep borehole heat exchanger heating systems.Based on the geological parameters of Xi’an,China and commonly used borehole heat exchanger structures,numerical simulationmethods are employed to analyze performance and economic efficiency.The results indicate that increasing the spacing between shallow borehole heat exchangers can effectively reduce thermal interference between the pipes and improve heat extraction performance.As the flow rate increases,the outlet water temperature ranges from 279.3 to 279.7 K,with heat extraction power varying between 595 and 609 W.For medium-deep borehole heat exchangers,performance predictions show that a higher flow rate results in greater heat extraction power.However,when the flow rate exceeds 30 m^(3)/h,further increases in flow rate have only a minor effect on enhancing heat extraction power.Additionally,the economic analysis reveals that the payback period for shallow geothermal heating systems ranges from 10 to 11 years,while for medium-deep geothermal heating systems,it varies more widely from 3 to 25 years.Therefore,the payback period for medium-deep geothermal heating systems is more significantly influenced by operational and installation parameters,and optimizing these parameters can considerably shorten the payback period.The results of this study are expected to provide valuable insights into the efficient and cost-effective utilization of geothermal energy for building heating. 展开更多
关键词 Geothermal heating shallow borehole heat exchanger medium-deep borehole heat exchanger heat extraction performance economic evaluation
在线阅读 下载PDF
A Review on High-Efficiency Transfer of Graphene Films Free from Defects and Contamination
5
作者 Wenhao Yin Chong Liu Jingmin Li 《Energy & Environmental Materials》 2025年第4期227-242,共16页
Graphene,owing to its exceptional electronic,optical,thermal,and mechanical properties,has emerged as a highly promising material.Currently,the synthesis of large-area graphene films on metal substrates via chemical v... Graphene,owing to its exceptional electronic,optical,thermal,and mechanical properties,has emerged as a highly promising material.Currently,the synthesis of large-area graphene films on metal substrates via chemical vapor deposition remains the predominant approach for producing high-quality graphene.To realize the potential applications of graphene,it is essential to transfer graphene films to target substrates in a manner that is non-destructive,clean,and efficient,as this significantly affects the performance of graphene devices.This review examines the current methods for graphene transfer from three perspectives:non-destructive transfer,clean transfer,and high-efficiency transfer.It analyzes and compares the advancements and limitations of various transfer techniques.Finally,the review identifies the key challenges faced by current graphene transfer methods and anticipates future developmental prospects. 展开更多
关键词 clean transfer defect-free transfer high-efficiency transfer of graphene
在线阅读 下载PDF
Research Progress on High-efficiency Cultivation Techniques of Blueberry and Its Development Potential in Under-forest Economy
6
作者 Haineng LIN Yuzhen YU +1 位作者 Hubo JIANG Ting ZHANG 《Asian Agricultural Research》 2025年第7期12-16,共5页
Through literature analysis and case study, the introduction history, variety selection (high bush, half high bush, low bush) and regional cultivation techniques of blueberry in China were summarized, and the practica... Through literature analysis and case study, the introduction history, variety selection (high bush, half high bush, low bush) and regional cultivation techniques of blueberry in China were summarized, and the practical effects of precision cultivation (water and fertilizer integration, wild planting) and under-forest economic model (forest-blueberry-fungus system, ecological tourism) were evaluated. It provided a technical reference for expanding the planting scale of blueberry and improving the fruit quality. 展开更多
关键词 BLUEBERRY high-efficiency cultivation techniques Under-forest economy Rural revitalization
在线阅读 下载PDF
Terpolymers of alkyl methacrylate-trans anethole-1,2,3,6-tetrahydrophthalic anhydride copolymers:A low dosage and high-efficiency cold flow improver for diesel fuel
7
作者 Bowen Xu Jiahao Chen +3 位作者 Lulu Cui Xinyue Li Yuan Xue Sheng Han 《Chinese Chemical Letters》 2025年第5期606-609,共4页
The addition of cold flow improvers(CFIs)is considered as the optimum strategy to improve the cold flow properties(CFPs)of diesel fuels,but this strategy is always limited by the required large dosage.To obtain low-do... The addition of cold flow improvers(CFIs)is considered as the optimum strategy to improve the cold flow properties(CFPs)of diesel fuels,but this strategy is always limited by the required large dosage.To obtain low-dosage and high-efficiency CFIs for diesel,1,2,3,6-tetrahydrophthalic anhydride(THPA)was introduced as a third and polar monomer to enhance the depressive effects of alkyl methacrylatetrans anethole copolymers(C_(14)MC-TA).The terpolymers of alkyl methacrylate-trans anethole-1,2,3,6-tetrahydrophthalic anhydride(C_(14)MC-TA-THPA)were synthesized and compared with the binary copolymers of C_(14)MC-TA and alkyl methacrylate-1,2,3,6-tetrahydrophthalic anhydride(C_(14)MC-THPA).Results showed that C_(14)MC-THPA achieved the best depressive effects on the cold filter plugging point(CFPP)and solid point(SP)by 11℃and 16℃at a dosage of 1250 mg/L and monomer ratio of 6:1,while 1500mg/L C_(14)MC-TA(1:1)reached the optimal depressive effects on the CFPP and SP by 12℃and 18℃.THPA introduction significantly improved the depressive effects of C_(14)MC-TA.Lower dosages of C_(14)MCTA-THPA in diesel exerted better improvement effects on the CFPP and SP than that of C_(14)MC-TA and C_(14)MC-THPA.When the monomer ratio and dosage were 6:0.6:0.4 and 1000 mg/L,the improvement effect of C_(14)MC-TA-THPA on diesel reached the optimum level,and the CFPP and SP were reduced by 13℃and 19℃,respectively.A 3D nonlinear surface diagram fitted by a mathematical model was also used for the first time to better understand the relationships of monomer ratios,dosages,and depressive effects of CFIs in diesel.Surface analysis results showed that C_(14)MC-TA-THPA achieved the optimum depressive effects at a monomer ratio of 6:0.66:0.34 and dosage of 1000 mg/L,and the CFPP and SP decreased by 14℃ and 19℃,respectively.The predicted results were consistent with the actual ones.Additionally,the improvement mechanism of these copolymers in diesel was also explored. 展开更多
关键词 Diesel fuel high-efficiency Cold flow properties Cold flow improvers Mathematical model
原文传递
Analysis of the Use of Geothermal Energy for Heating in Azerbaijan
8
作者 Orkhan Jafarli 《Energy Engineering》 2025年第9期3595-3608,共14页
This study investigates the feasibility and efficiency of geothermal energy for heating applications in Azerbaijan,with a specific focus on the Khachmaz region.Despite the country’s growing interest in sustainable en... This study investigates the feasibility and efficiency of geothermal energy for heating applications in Azerbaijan,with a specific focus on the Khachmaz region.Despite the country’s growing interest in sustainable energy,limited research has addressed the potential of ground-source heat pump(GSHP)systems under local climatic and soil conditions.To address this gap,the study employs GeoT*SOL simulation to evaluate systemperformance,incorporating site-specific parameters such as soil thermal conductivity,heating demand profiles,and regional weather data.The results show that the GSHP system achieves a maximum seasonal performance factor(SPF)of 5.62 and an average SPF of 4.86,indicating high operational efficiency.Additionally,the system provides an estimated annual CO_(2) emissions reduction of 1956 kg per household,highlighting its environmental benefits.Comparative analysis with conventional heating systems demonstrates considerable energy savings and emissions mitigation.The study identifies technical(e.g.,initial installation complexity)and economic(e.g.,high upfront costs)challenges to widespread implementation.Based on these insights,practical recommendations are proposed:policymakers are encouraged to support financial incentives and policy frameworks;urban planners should consider GSHP integration in regional heating plans;and engineers may adopt the simulation-based approach presented here for feasibility studies.This research contributes to the strategic advancement of renewable heating technologies in Azerbaijan. 展开更多
关键词 Geothermal energy ground-source heat pump heating system AZERBAIJAN
在线阅读 下载PDF
Study on Optimization of Two-Stage Phase Change Heat Storage Coupled Solar-Air Source Heat Pump Heating System in Severe Cold Region
9
作者 Xueli Wang Yan Jia Degong Zuo 《Energy Engineering》 2025年第4期1603-1627,共25页
The development of efficient and clean heating technologies is crucial for reducing carbon emissions in regions with severe cold regions.This research designs a novel two-stage phase change heat storage coupled solar-... The development of efficient and clean heating technologies is crucial for reducing carbon emissions in regions with severe cold regions.This research designs a novel two-stage phase change heat storage coupled solar-air source heat pump heating system structure that is specifically designed for such regions.The two-stage heat storage device in this heating system expands the storage temperature range of solar heat.The utilization of the two-stage heat storage device not onlymakes up for the instability of the solar heating system,but can also directlymeet the building heating temperature,and can reduce the influence of low-temperature outdoor environments in severe cold regions on the heating performance of the air source heat pump by using solar energy.Therefore,the two-stage phase change heat storage coupled to the solar energy-air source heat pump heating system effectively improves the utilization rate of solar energy.A numerical model of the system components and their integration was developed using TRNSYS software in this study,and various performance aspects of the system were simulated and analyzed.The simulation results demonstrated that the two-stage heat storage device can effectively store solar energy,enabling its hierarchical utilization.The low-temperature solar energy stored by the two-stage phase change heat storage device enhances the coefficient of performance of the air source heat pump by 11.1%in severe cold conditions.Using the Hooke-Jeeves optimization method,the annual cost and carbon emissions are taken as optimization objectives,with the optimized solar heat supply accounting for 52.5%.This study offers valuable insights into operational strategies and site selection for engineering applications,providing a solid theoretical foundation for the widespread implementation of this system in severe cold regions. 展开更多
关键词 Two-stage heat storage building heating Hooke-Jeeves optimization phase change heat storage device severe cold region
在线阅读 下载PDF
Influence of Microwave Power and Heating Time on the Drying Kinetics and Mechanical Properties of Eucalyptus gomphocephala Wood
10
作者 Mariam Habouria Sahbi Ouertani +2 位作者 Noura Ben Mansour Soufien Azzouz Mohamed Taher Elaieb 《Frontiers in Heat and Mass Transfer》 2025年第1期345-360,共16页
The aim of this paper was to characterize through experiment the moisture and temperature kinetic behavior of Eucalyptus gomphocephala wood samples using microwave heating(MWH)in two scenarios:intermittently and conti... The aim of this paper was to characterize through experiment the moisture and temperature kinetic behavior of Eucalyptus gomphocephala wood samples using microwave heating(MWH)in two scenarios:intermittently and continuously.The mechanical properties and surface appearance of the heated samples were also investigated.Continuous and intermittent microwave drying kinetic experiments were conducted at a frequency of 2.45 GHz using a microwave laboratory oven at 300,500,and 1000 watts.Drying rate curves indicated three distinct phases of MWH.Increasing the microwave power with a shorter drying time led to rapid increases in internal temperature and water evaporation rates of the heated samples.Mechanical results indicated that samples heated under continuous MW(Microwave)power at 300 watts had a modulus of rupture(MOR)and modulus of elasticity(MOE)in three static bending tests higher than 29%and 36%,respectively,than samples heated at 1000 watts.Intermittent microwave heating(IMWH)of samples at 300 and 1000 watts produced the highest MOR and MOE values of 31%and 51%,respectively,unlike those heated under continuous microwave heating(CMWH).External qualitative observation showed that samples heated at high microwave power had severe surface checks.These defects were missing when using IMWH.An analysis of variance(ANOVA)showed that mechanical properties were linked to both microwave power level and the heating scenario,except for MOR in axial compression under CMWH. 展开更多
关键词 Microwave heating internal heat generation drying kinetics heat and mass transfer evaporation rate moisture content TEMPERATURE mechanical properties Eucalyptus gomphocephala
在线阅读 下载PDF
Recent advances in multidimensional(1D,2D,and 3D)Joule heating devices based on cellulose:Design,structure,application,and perspective
11
作者 Chuanyin Xiong Mengjie Zhao +6 位作者 Tianxu Wang Jing Han Yongkang Zhang Zhao Zhang Xianglin Ji Qing Xiong Yonghao Ni 《Journal of Materials Science & Technology》 2025年第2期53-78,共26页
The demand for flexible electric heating devices has increased due to technology advancement and improved living standards.These devices have various applications including personal thermal management,hyperthermia,def... The demand for flexible electric heating devices has increased due to technology advancement and improved living standards.These devices have various applications including personal thermal management,hyperthermia,defrosting,agricultural heating film,and oil-water separation.Joule heat,generated by electric currents,is commonly used in electrical appliances.To incorporate Joule heating into flexible electronics,new materials with excellent mechanical properties are necessary.Traditional polymers,used as reinforcements,limit the continuity of conductive networks in composites.Therefore,there is a need to develop flexible Joule thermal composite materials with enhanced mechanical strength and conductivity.Cellulose,a widely available renewable resource,is attracting attention for its excellent mechanical properties.It can be used as a dispersant and reinforcing agent for conductive fillers in cellulose-based composites,creating highly conductive networks.Various forms of cellulose,such as wood,nanocellulose,pulp fiber,bacterial cellulose,cellulose paper,textile clothing,and aramid fiber,have been utilized to achieve high-performance Joule thermal composites.Researchers have achieved excellent mechanical properties and developed efficient electric heating devices by designing cellulose-based composites with different structures.The scalable production methods enable large-scale application of cellulose-based devices,each with unique advantages in 1D,2D,and 3D structures.This review summarizes recent advancements in cellulose-based Joule thermal composites,providing insights into different structural devices,and discussing prospects and challenges in the field. 展开更多
关键词 CELLULOSE MULTIDIMENSIONAL Joule heating DESIGN PREPARATION
原文传递
Experimental heating of CI chondrite:Empirical constraints on the evolution of micrometeorite O-isotopes during atmospheric entry
12
作者 N.G.Rudraswami M.D.Suttle +3 位作者 Yves Marrocchi M.Pandey Laurent Tissandier Johan Villeneuve 《Geoscience Frontiers》 2025年第3期409-423,共15页
Extraterrestrial dust exhibits a wide range of textural,chemical and oxygen isotopic compositions due to the heterogeneity of their precursors and modification during atmospheric entry.Experimental heating provides an... Extraterrestrial dust exhibits a wide range of textural,chemical and oxygen isotopic compositions due to the heterogeneity of their precursors and modification during atmospheric entry.Experimental heating provides an opportunity to investigate the relationship between thermal processing and micrometeorite composition for a known precursor material.We conducted experiments to simulate the atmospheric entry of micrometeorites(MMs)using controlled,short-duration(10-50 s)flash heating(400-1600℃)of CI chondrite chips(<1500µm)in atmospheric air(1 bar,21%O2)combined with microanalysis(textures,chemical and isotopic compositions)of the experimental products.The heated chips closely resemble natural samples,with materials similar to unmelted MMs,partially melted(scoriaceous)MMs and fully melted cosmic spherules produced.We reproduced several key features such as dehydration cracks,magnetite rims,volatile gas release,vesicle formation and coalescence,melting and quench cooling.Our parameter space allows for discriminating peak temperature and heating duration effects.Peak temperature is the first-order control on MM mineralogy,while heating duration controls vesicle coalescence and homogenization.When compared against previous heating experiments,our data demonstrates that CI chondrite dust is more thermally resistant,relative to CM chondrite dust,by approximately+200℃.The 207 measurement of O-isotopes allows,for the first time,petrographic effects(such as volatile degassing and melting)to be correlated against bulk O-isotope evolution.Our results demonstrate findings applicable to CI chondrites and potentially to all fine-grained hydrated carbonaceous chondrite dust grains:(1)O-isotope variations arising during sub-solidus heating are dominated by the release of water from phyllosilicates,forcing the residual MM composition towards its anhydrous precursor composition.(2)Oxygen isotope compositions undergo the most significant changes at supra-solidus temperatures.As previously demonstrated and now empirically confirmed,most of these changes are driven by a mass-dependent fractionation effect caused by evaporation,which shifts residual rock compositions toward heavier values.Mixing with atmospheric air alters compositions toward the terrestrial fractionation line.Notably,these two processes do not begin simultaneously.Our data indicate that at 1200℃,isotopic evolution is dominated by evaporative mass loss.However,at higher temperatures(1400-1600℃),both pronounced evaporation and mixing with atmospheric oxygen become active,resulting in a more complex isotopic signature.(3)The total change in Δ17O during heating up to 1600℃is<3‰and in most scenarios<2‰. 展开更多
关键词 Micrometeorite heating Oxygen isotope CI chondrite
在线阅读 下载PDF
Measurement of aerodynamic heating of micro-scale rotational shearing flow and its heat flux identification
13
作者 Yuan LIU Yuanwei LYU +3 位作者 Jingyang ZHANG Chunyang LI Jingzhou ZHANG Zhongwen HUANG 《Chinese Journal of Aeronautics》 2025年第4期70-90,共21页
This study conducted the experimental investigation of aerodynamic heating of Micro-scale Rotational Shearing Flow with Axial Limited-Length(MRSFALL).The temperature riseof the stator is captured by the high response ... This study conducted the experimental investigation of aerodynamic heating of Micro-scale Rotational Shearing Flow with Axial Limited-Length(MRSFALL).The temperature riseof the stator is captured by the high response thermocouples.The eccentricity ratio and clearanceheight are guaranteed by means of instantaneous trajectory and torsion monitoring of the rotator.The result shows that the maximum temperature rise takes place upstream of the minimum clear-ance height along circumferential direction.The distribution of temperature rise presents asymmet-ric curve along axial direction,and peak value occurs near the dimensionless axial position of-0.18.The effect of aerodynamic heating becomes notable as the rotational speed is larger than3×10^(4)r/min.The effect of end leakage and the viscous dissipation have great impact on temper-ature rise of MRSFALL.More specially,the peak value of temperature rise at dimensionless clear-ance height of 0.0080 is larger than the case at dimensionless clearance height of 0.0044.Furthermore,when the eccentricity ratio is too large,the viscous dissipation is induced,and theadditional temperature rise is achieved.The heat flux identification of shear flow has been realizedby Sequential Function Specification Method(SFSM)and its estimation of thermal load has been given.The heat flux induced by the aerodynamic heating in this study varies from 950 W/m^(2)to1330 W/m^(2). 展开更多
关键词 Micro-scale Rotational Shearing Flow with Axial Limited-Length(MRSFALL) Hyper-rotate-speed End leakage Aerodynamic heating experimental measurement heat flux identification
原文传递
Numerical Simulation of Air-Assisted Heating for Cold-Start in Cathode-Open Proton Exchange Membrane Fuel Cells
14
作者 Wei Shi Shusheng Xiong +2 位作者 Wei Li Kai Meng Qingsheng Liu 《Energy Engineering》 2025年第9期3507-3523,共17页
In the realm of all-electric aircraft research,the integration of cathode-open proton exchange membrane fuel cells(PEMFC)with lithiumbatteries as a hybrid power source for small to medium-sized unmanned aerial vehicle... In the realm of all-electric aircraft research,the integration of cathode-open proton exchange membrane fuel cells(PEMFC)with lithiumbatteries as a hybrid power source for small to medium-sized unmanned aerial vehicles(UAVs)has garnered significant attention.The PEMFC,serving as the primary energy supply,markedly extends the UAV’s operational endurance.However,due to payload limitations and spatial constraints in the airframe layout of UAVs,the stack requires customized adaptation.Moreover,the implementation of auxiliary systems to facilitate cold starts of the PEMFC under low-temperature conditions is not feasible.Relying solely on thermal insulation measures also proves inadequate to address the challenges posed by complex low-temperature startup scenarios.To overcomethis,our study leverages the UAV’s lithium battery to heat the cathode inlet airflow,aiding the cathode-open PEMFC cold start process.To validate the feasibility of the proposed air-assisted heating strategy during the conceptual design phase,this study develops a transient,non-isothermal 3Dcathode-open PEMF Cunitmodel incorporating cathode air-assisted heating and gas-ice phase change.The model’s accuracy was verified against experimental cold-start data from a stack composed of identical single cells.This computational framework enables quantitative analysis of temperature fields and ice fraction distributions across domains under varying air-assisted heating powers during cold starts.Building upon this model,the study further investigates the improvement in cold start performance by heating the cathode intake air with varying power levels.The results demonstrate that the fuel cell achieves self-startup at temperatures as low as−13℃ under a constant current density of 100mA/cm^(2) without air-assisted heating.At an ambient temperature of−20℃,a successful start-up can be achieved with a heating power of 0.45 W/cm^(2).The temperature variation overtime during the cold start process can be represented by a sum of two exponential functions.The air-assisted heating scheme proposed in this study has significantly improved the cold start performance of fuel cells in low-temperature environments.Additionally,it provides critical reference data and validation support for component selection and feasibility assessment of hybrid power systems. 展开更多
关键词 PEMFC cold start numerical modeling air heating
在线阅读 下载PDF
Toward Joule heating recycling of spent lithium-ion batteries:A rising direct regeneration method
15
作者 Haoxuan Yu Meiting Huang +4 位作者 Yifeng Li Liang Chen Hui Lv Liming Yang Xubiao Luo 《Journal of Energy Chemistry》 2025年第6期501-513,I0012,共14页
Lithium-ion batteries(LIBs)are critical for the rapid growth of electric vehicles(EVs),but their inherent lifespan leads to numerous retirements and resource challenges.The efficacy of conventional recycling technique... Lithium-ion batteries(LIBs)are critical for the rapid growth of electric vehicles(EVs),but their inherent lifespan leads to numerous retirements and resource challenges.The efficacy of conventional recycling techniques is increasingly compromised by their high energy consumption and secondary pollution,rendering them less responsive to greener and more sustainable requirement of rapid development.Thus,the direct recycling process emerged and was considered as a more expedient and convenient method of recycling compared to the conventional recycling modes that are currently in study.However,due to the reliance on the indispensable sintering process,direct recycling still faces considerable challenges,motivating researchers to explore faster,greener,and more cost-effective strategies for LIBs recycling,Inspiringly,Joule heating recycling(JHR),an emerging technique,offers rapid,efficient impurity removal and material regeneration with minimal environmental impact,addressing limitations of existing methods.This method reduces the time for direct recycling of spent LIBs by a factor of at least three orders of magnitude and exhibits significant potential for future industrial production.Unfortunately,due to the lack of systematic organization and reporting,this next generation approach to direct recycling of spent LIBs has not yet gained much interest.To facilitate a more profound comprehension of rising flash recycling strategy,in this study,JHR is distinguished into two distinctive implementation pathways(including flash Joule heating and carbon thermal shock),designed to accommodate varying pretreatment stages and diverse spent LIBs materials.Subsequently,the advantages of the recently developed JHR of spent LIBs in terms of material performance,environmental friendliness,and economic viability are discussed in detail.Ultimately,with the goal of achieving more attractive society effects,the future direction of JHR of spent LIBs and its potential for practical application are proposed and envisaged. 展开更多
关键词 Joule heating Spent lithium-ionbatteries Flash recycling REGENERATION Upcycling
在线阅读 下载PDF
Stress-Strain Behavior of Confined Concrete during Cooling after Heating to High Temperature
16
作者 Mahesh Gaikwad Aparna Chaturvedi Suvir Singh 《Journal of Civil Engineering and Architecture》 2025年第3期130-136,共7页
The stress-strain behavior of confined concrete under heating and residual conditions has been preliminarily addressed in previous research;however,its behavior at subsequent cooling temperatures after being heated to... The stress-strain behavior of confined concrete under heating and residual conditions has been preliminarily addressed in previous research;however,its behavior at subsequent cooling temperatures after being heated to peak temperature has yet to be thoroughly investigated.It is crucial for determining confined concrete structures’post-fire performance and burnout resistance.The paper presents the fundamental behavior of the confined concrete constitutive parameters and stress-strain curve at subsequent cooling temperatures after being heated to peak temperature.The study includes the stress-stress relationship of a 200 mm diameter cylinder with two distinct confinement spacings of 60 mm and 120 mm.The constitutive parameters for confined concrete were initially determined for a peak heating temperature of 750℃ and then modified to establish the stress-strain relationship for successive cooling temperatures of 500℃,250℃,and ambient temperature.The study results show that confinement has a considerable impact on compressive strength,stiffness,and ductility at ambient and fire conditions.After being heated to peak temperature,the confined concrete compressive strength recovers during successive cooling temperatures,with the recovery dependent on confinement spacing.The established stress-strain relationship can assist in better comprehending structural performance and capacity degradation for different tie spacings,and is useful for the analysis and design of confined RC(reinforced concrete)elements during and after a fire. 展开更多
关键词 Confined concrete stress-strain relationship elevated temperature heating and cooling FIRE
在线阅读 下载PDF
Modulated waveforms for harmonic minimization of far-field signals in amplitude-modulated heating of the ionosphere
17
作者 ZhiJian Lu Yong Li +6 位作者 Hui Li Jian Wu JingFeng Yao XingBao Lyu ChengXun Yuan ZhongXiang Zhou Ying Wang 《Earth and Planetary Physics》 2025年第2期387-399,共13页
This paper establishes an amplitude modulation heating model, simulating the far-field radiation of ELF/VLF signals generated by modulation heating, as well as the specific location and longitudinal extent of the radi... This paper establishes an amplitude modulation heating model, simulating the far-field radiation of ELF/VLF signals generated by modulation heating, as well as the specific location and longitudinal extent of the radiation source. We consider various modulation waveforms and find that square-wave modulation has the highest excitation efficiency for ELF/VLF signals, and that square-wave modulation with a smaller duty cycle(<50%) exhibits higher excitation efficiency for ELF/VLF signals, while the sin^(2)t waveform modulation yields the lowest proportion of harmonic energy in the generated signals. The amplitude of the second harmonic generated by the sin^(2)t waveform is less than one-tenth that of the fundamental frequency, and the energy of higher-frequency harmonics can be negligibly small compared with those of the fundamental wave. It is a challenging task to achieve a balance between enhancing the excitation efficiency of ELF/VLF signals and also suppressing harmonics generated by the modulated heating process. This is because the harmonics are correspondingly enhanced as the excitation efficiency of the signals is increased. However, we find that under conditions of varying effective radiant power and modulation frequency, as long as the modulation waveform is unchanged, the energy ratio between the fundamental frequency signal generated by modulated heating and each harmonic is relatively fixed, with changes only in signal intensity and the location of the radiation source zone. This implies that one can first select modulation waveforms that make the signal less prone to distortion, then increase the effective radiated power to enhance the signal strength, without concern for harmonic interference of the fundamental signal. 展开更多
关键词 ELF/VLF HARMONIC amplitude-modulated heating modulated waveforms
在线阅读 下载PDF
Physics design of current drive and strategy of heating system for EHL-2 spherical torus
18
作者 Xinchen JIANG Yuejiang SHI +29 位作者 Shaodong SONG Wenjun LIU Guang YANG Xianming SONG Xueyun WANG Xiang GU Gang YIN Danke YANG Hanyue ZHAO Yumin WANG Huasheng XIE Pengmin LI Hanqing WANG Keqing ZHANG Lei HAN Xiaohe WU Chengyue LIU Bin WU Chengyi SONG Chunyan LI Jiakang CHEN Pingwei ZHENG Debabrata BANERJEE Qingwei YANG Jiaqi DONG Yunfeng LIANG Baoshan YUAN Yueng-Kay Martin PENG Xianmei ZHANG the EHL-2 Team 《Plasma Science and Technology》 2025年第2期129-142,共14页
ENN He Long-2(EHL-2)is the next-generation large mega-Ampere(MA)spherical torus(ST)proposed and funded by the ENN company.The design parameters are:Ti0>30 keV,n_(e0)~1×10^(20)m^(-3),Ip~3 MA,Bt~3 T.One of the b... ENN He Long-2(EHL-2)is the next-generation large mega-Ampere(MA)spherical torus(ST)proposed and funded by the ENN company.The design parameters are:Ti0>30 keV,n_(e0)~1×10^(20)m^(-3),Ip~3 MA,Bt~3 T.One of the biggest challenges of EHL-2 is how to achieve several MA current flat-tops with limited voltage-seconds(Vs)of the center solenoid(CS)coils.In order to minimize the consumption of Vs,a fully non-inductive start-up by electron cyclotron resonance heating(ECRH)will be applied in EHL-2.The ramp-up phase will be accomplished with the synergetic mode between the CS and non-inductive methods.The strategy of non-inductive start-up and ramp-up with synergetic mode has been verified on EXL-50U’s experiments.Based on this strategy,numerical simulations indicate the feasibility of EHL-2 achieving 3 MA plasma current.A high-performance steady-state scenario with Ip~1.5 MA is also designed.In this scenario,the bootstrap current fraction fBS>70%,the safety factor q at the magnetic axis q0>2,the minimum safety factor qmin>1,the poloidal betaβp>3 and normalized betaβN>2.3.Each design iteration integrates the validation of physical models with the constraints of engineering implementation,gradually optimizing the performance of the heating and current drive(H&CD)systems.Numerical simulation results for general auxiliary H&CD systems such as neutral beam injection(NBI),electron cyclotron(EC)wave,ion cyclotron wave(ICW),and lower hybrid wave(LHW)are presented.These simulation results ensure that the 31 MW H&CD systems comprehensively cover all scenarios while maintaining engineering feasibility. 展开更多
关键词 spherical torus EHL-2 SCENARIO heating and current drive
在线阅读 下载PDF
Analytical Investigation of MFD Viscosity and Ohmic Heating in MHD Boundary Layers of Jeffrey Fluid
19
作者 K.Sinivasan N.Vishnu Ganesh +1 位作者 G.Hirankumar M.Al-Mdallal Qasem 《Fluid Dynamics & Materials Processing》 2025年第5期1029-1049,共21页
In this study,an analytical investigation is carried out to assess the impact of magnetic field-dependent(MFD)viscosity on the momentum and heat transfers inside the boundary layer of a Jeffrey fluid flowing over a ho... In this study,an analytical investigation is carried out to assess the impact of magnetic field-dependent(MFD)viscosity on the momentum and heat transfers inside the boundary layer of a Jeffrey fluid flowing over a horizontally elongating sheet,while taking into account the effects of ohmic dissipation.By applying similarity transformations,the original nonlinear governing equations with partial derivatives are transformed into ordinary differential equations.Analytical expressions for the momentum and energy equations are derived,incorporating the influence of MFD viscosity on the Jeffrey fluid.Then the impact of different parameters is assessed,including magnetic viscosity,magnetic interaction,retardation time,Deborah number,and Eckert number,on the velocity and temperature profiles in the boundary layer.The findings reveal that an increase in magnetic viscosity leads to a decrease in the local Nusselt number,thereby impairing heat transfer.Moreover,a higher retardation time enhances the local Nusselt number by thinning the momentum and thermal boundary layers,while a higher Deborah number decreases the local Nusselt number due to the reduction in fluid viscosity. 展开更多
关键词 Analytical solution heat transfer Jeffrey fluid magnetic field-dependent viscosity MAGNETOHYDRODYNAMICS
在线阅读 下载PDF
Step-heating thermography NDT for new composite high-speed rail carbodies
20
作者 Alkiviadis Tromaras Vassilios Kappatos Evangelos DSpyrou 《High-Speed Railway》 2025年第2期145-154,共10页
The motivation of this paper is to explore the application of Step-Heating Thermography(SHT)as a technique capable of inspecting new composite rail carbodies using demanding requirements set by the rail manufacturing ... The motivation of this paper is to explore the application of Step-Heating Thermography(SHT)as a technique capable of inspecting new composite rail carbodies using demanding requirements set by the rail manufacturing industry.A large composite sample,with Polytetrafluoroethylene(PTFE)artificial defects,replicating a side-wall section of a new rail carbody,was manufactured and inspected for surface and subsurface defects in this research.The sample,characterized by its large thickness,consists of a monolithic Carbon Fibre Reinforced Polymers(CFRP)component(20mm thickness)and a CFRP-PET foam-CFRP sandwich(40mm total thickness)component fused together.The main challenge of the inspection procedure was to apply reflection mode thermography and detect defects in the entire thickness of the sample that exhibits both low emissivity and thermal insulating properties,especially at the sandwich sections of the sample.The paper explored thermography procedures that would be able to detect large numbers of defects under one single acquisition and would be applied under an automated inspection process leading to the detection of defects only up to 5mm in the CFRP sections of the sample while no defects were able to be detected at the back skin of the sample. 展开更多
关键词 Step heating thermography Infrared thermography Composite rail carbodies CF-PET-CF sandwich NDT
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部