Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when ta...Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when tackling high-dimensional optimization challenges.To effectively address these challenges,this study introduces cooperative metaheuristics integrating dynamic dimension reduction(DR).Building upon particle swarm optimization(PSO)and differential evolution(DE),the proposed cooperative methods C-PSO and C-DE are developed.In the proposed methods,the modified principal components analysis(PCA)is utilized to reduce the dimension of design variables,thereby decreasing computational costs.The dynamic DR strategy implements periodic execution of modified PCA after a fixed number of iterations,resulting in the important dimensions being dynamically identified.Compared with the static one,the dynamic DR strategy can achieve precise identification of important dimensions,thereby enabling accelerated convergence toward optimal solutions.Furthermore,the influence of cumulative contribution rate thresholds on optimization problems with different dimensions is investigated.Metaheuristic algorithms(PSO,DE)and cooperative metaheuristics(C-PSO,C-DE)are examined by 15 benchmark functions and two engineering design problems(speed reducer and composite pressure vessel).Comparative results demonstrate that the cooperative methods achieve significantly superior performance compared to standard methods in both solution accuracy and computational efficiency.Compared to standard metaheuristic algorithms,cooperative metaheuristics achieve a reduction in computational cost of at least 40%.The cooperative metaheuristics can be effectively used to tackle both high-dimensional unconstrained and constrained optimization problems.展开更多
This paper deals with the representation of the solutions of a polynomial system, and concentrates on the high-dimensional case. Based on the rational univari- ate representation of zero-dimensional polynomial systems...This paper deals with the representation of the solutions of a polynomial system, and concentrates on the high-dimensional case. Based on the rational univari- ate representation of zero-dimensional polynomial systems, we give a new description called rational representation for the solutions of a high-dimensional polynomial sys- tem and propose an algorithm for computing it. By this way all the solutions of any high-dimensional polynomial system can be represented by a set of so-called rational- representation sets.展开更多
High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurat...High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurately represent them is of great significance.A latent factor(LF)model is one of the most popular and successful ways to address this issue.Current LF models mostly adopt L2-norm-oriented Loss to represent an HiDS matrix,i.e.,they sum the errors between observed data and predicted ones with L2-norm.Yet L2-norm is sensitive to outlier data.Unfortunately,outlier data usually exist in such matrices.For example,an HiDS matrix from RSs commonly contains many outlier ratings due to some heedless/malicious users.To address this issue,this work proposes a smooth L1-norm-oriented latent factor(SL-LF)model.Its main idea is to adopt smooth L1-norm rather than L2-norm to form its Loss,making it have both strong robustness and high accuracy in predicting the missing data of an HiDS matrix.Experimental results on eight HiDS matrices generated by industrial applications verify that the proposed SL-LF model not only is robust to the outlier data but also has significantly higher prediction accuracy than state-of-the-art models when they are used to predict the missing data of HiDS matrices.展开更多
The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the effi...The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the efficiency of RBDO algorithm,which hinders their application to high-dimensional engineering problems.To address these issues,this paper proposes an efficient decoupled RBDO method combining high dimensional model representation(HDMR)and the weight-point estimation method(WPEM).First,we decouple the RBDO model using HDMR and WPEM.Second,Lagrange interpolation is used to approximate a univariate function.Finally,based on the results of the first two steps,the original nested loop reliability optimization model is completely transformed into a deterministic design optimization model that can be solved by a series of mature constrained optimization methods without any additional calculations.Two numerical examples of a planar 10-bar structure and an aviation hydraulic piping system with 28 design variables are analyzed to illustrate the performance and practicability of the proposed method.展开更多
In global navigation satellite system denial environment,cross-view geo-localization based on image retrieval presents an exceedingly critical visual localization solution for Unmanned Aerial Vehicle(UAV)systems.The e...In global navigation satellite system denial environment,cross-view geo-localization based on image retrieval presents an exceedingly critical visual localization solution for Unmanned Aerial Vehicle(UAV)systems.The essence of cross-view geo-localization resides in matching images containing the same geographical targets from disparate platforms,such as UAV-view and satellite-view images.However,images of the same geographical targets may suffer from occlusions and geometric distortions due to variations in the capturing platform,view,and timing.The existing methods predominantly extract features by segmenting feature maps,which overlook the holistic semantic distribution and structural information of objects,resulting in loss of image information.To address these challenges,dilated neighborhood attention Transformer is employed as the feature extraction backbone,and Multi-feature representations based on Multi-scale Hierarchical Contextual Aggregation(MMHCA)is proposed.In the proposed MMHCA method,the multiscale hierarchical contextual aggregation method is utilized to extract contextual information from local to global across various granularity levels,establishing feature associations of contextual information with global and local information in the image.Subsequently,the multi-feature representations method is utilized to obtain rich discriminative feature information,bolstering the robustness of model in scenarios characterized by positional shifts,varying distances,and scale ambiguities.Comprehensive experiments conducted on the extensively utilized University-1652 and SUES-200 benchmarks indicate that the MMHCA method surpasses the existing techniques.showing outstanding results in UAV localization and navigation.展开更多
Let F_(1)be the virtual field consisting of one element and(Q,I)a string pair.In this paper,we study the representations of string pairs over the virtual field F_(1).It is proved that an indecomposable F_(1)-represent...Let F_(1)be the virtual field consisting of one element and(Q,I)a string pair.In this paper,we study the representations of string pairs over the virtual field F_(1).It is proved that an indecomposable F_(1)-representation is either a string representation or a band representation by using the coefficient quivers.It is worth noting that for a given band and a positive integer,there exists a unique band representation up to isomorphism.展开更多
Artificial intelligence(AI)researchers and cheminformatics specialists strive to identify effective drug precursors while optimizing costs and accelerating development processes.Digital molecular representation plays ...Artificial intelligence(AI)researchers and cheminformatics specialists strive to identify effective drug precursors while optimizing costs and accelerating development processes.Digital molecular representation plays a crucial role in achieving this objective by making molecules machine-readable,thereby enhancing the accuracy of molecular prediction tasks and facilitating evidence-based decision making.This study presents a comprehensive review of small molecular representations and AI-driven drug discovery downstream tasks utilizing these representations.The research methodology begins with the compilation of small molecule databases,followed by an analysis of fundamental molecular representations and the models that learn these representations from initial forms,capturing patterns and salient features across extensive chemical spaces.The study then examines various drug discovery downstream tasks,including drug-target interaction(DTI)prediction,drug-target affinity(DTA)prediction,drug property(DP)prediction,and drug generation,all based on learned representations.The analysis concludes by highlighting challenges and opportunities associated with machine learning(ML)methods for molecular representation and improving downstream task performance.Additionally,the representation of small molecules and AI-based downstream tasks demonstrates significant potential in identifying traditional Chinese medicine(TCM)medicinal substances and facilitating TCM target discovery.展开更多
The decoherence of high-dimensional orbital angular momentum(OAM)entanglement in the weak scintillation regime has been investigated.In this study,we simulate atmospheric turbulence by utilizing a multiple-phase scree...The decoherence of high-dimensional orbital angular momentum(OAM)entanglement in the weak scintillation regime has been investigated.In this study,we simulate atmospheric turbulence by utilizing a multiple-phase screen imprinted with anisotropic non-Kolmogorov turbulence.The entanglement negativity and fidelity are introduced to quantify the entanglement of a high-dimensional OAM state.The numerical evaluation results indicate that entanglement negativity and fidelity last longer for a high-dimensional OAM state when the azimuthal mode has a lower value.Additionally,the evolution of higher-dimensional OAM entanglement is significantly influenced by OAM beam parameters and turbulence parameters.Compared to isotropic atmospheric turbulence,anisotropic turbulence has a lesser influence on highdimensional OAM entanglement.展开更多
It is known that monotone recurrence relations can induce a class of twist homeomorphisms on the high-dimensional cylinder,which is an extension of the class of monotone twist maps on the annulus or two-dimensional cy...It is known that monotone recurrence relations can induce a class of twist homeomorphisms on the high-dimensional cylinder,which is an extension of the class of monotone twist maps on the annulus or two-dimensional cylinder.By constructing a bounded solution of the monotone recurrence relation,the main conclusion in this paper is acquired:The induced homeomorphism has Birkhoff orbits provided there is a compact forward-invariant set.Therefore,it generalizes Angenent's results in low-dimensional cases.展开更多
Objective Humans are exposed to complex mixtures of environmental chemicals and other factors that can affect their health.Analysis of these mixture exposures presents several key challenges for environmental epidemio...Objective Humans are exposed to complex mixtures of environmental chemicals and other factors that can affect their health.Analysis of these mixture exposures presents several key challenges for environmental epidemiology and risk assessment,including high dimensionality,correlated exposure,and subtle individual effects.Methods We proposed a novel statistical approach,the generalized functional linear model(GFLM),to analyze the health effects of exposure mixtures.GFLM treats the effect of mixture exposures as a smooth function by reordering exposures based on specific mechanisms and capturing internal correlations to provide a meaningful estimation and interpretation.The robustness and efficiency was evaluated under various scenarios through extensive simulation studies.Results We applied the GFLM to two datasets from the National Health and Nutrition Examination Survey(NHANES).In the first application,we examined the effects of 37 nutrients on BMI(2011–2016 cycles).The GFLM identified a significant mixture effect,with fiber and fat emerging as the nutrients with the greatest negative and positive effects on BMI,respectively.For the second application,we investigated the association between four pre-and perfluoroalkyl substances(PFAS)and gout risk(2007–2018 cycles).Unlike traditional methods,the GFLM indicated no significant association,demonstrating its robustness to multicollinearity.Conclusion GFLM framework is a powerful tool for mixture exposure analysis,offering improved handling of correlated exposures and interpretable results.It demonstrates robust performance across various scenarios and real-world applications,advancing our understanding of complex environmental exposures and their health impacts on environmental epidemiology and toxicology.展开更多
The purpose of this article is to depart from the conventional belief that John Donne,a vibrant 17th-century writer,is a full-blown metaphysical poet as widely claimed while also acknowledging the poetic ingenuity of ...The purpose of this article is to depart from the conventional belief that John Donne,a vibrant 17th-century writer,is a full-blown metaphysical poet as widely claimed while also acknowledging the poetic ingenuity of John Donne.While Donne’s poetry is rich in matter and manner,and his poems are caked in wit,intellectual superiority,and apt exploration of telling themes,dressing him fully in borrowed robes seems a stretch.Some of Donne’s poems,without a shred of doubt,contain flavors of metaphysical poetry,but the term“metaphysical”seems to be unsuitable for poems such as“A Valediction:Forbidding Mourning”.展开更多
Establishing and maintaining protected areas is a pivotal strategy for attaining the post-2020 biodiversity target. The conservation objectives of protected areas have shifted from a narrow emphasis on biodiversity to...Establishing and maintaining protected areas is a pivotal strategy for attaining the post-2020 biodiversity target. The conservation objectives of protected areas have shifted from a narrow emphasis on biodiversity to encompass broader considerations such as ecosystem stability, community resilience to climate change, and enhancement of human well-being. Given these multifaceted objectives, it is imperative to judiciously allocate resources to effectively conserve biodiversity by identifying strategically significant areas for conservation, particularly for mountainous areas. In this study, we evaluated the representativeness of the protected area network in the Qin ling Mountains concerning species diversity, ecosystem services, climate stability and ecological stability. The results indicate that some of the ecological indicators are spatially correlated with topographic gradient effects. The conservation priority areas predominantly lie in the northern foothills, the southeastern, and southwestern parts of the Qinling Mountain with areas concentrated at altitudes between 1,500-2,000 m and slopes between 40°-50° as hotspots. The conservation priority areas identified through the framework of inclusive conservation optimization account for 22.9 % of the Qinling Mountain. Existing protected areas comprise only 6.1 % of the Qinling Mountain and 13.18 % of the conservation priority areas. This will play an important role in achiev ing sustainable development in the region and in meeting the post-2020 biodiversity target. The framework can advance the different objectives of achieving a quadruple win and can also be extended to other regions.展开更多
Physics-informed neural networks(PINNs)are promising to replace conventional mesh-based partial tial differen-equation(PDE)solvers by offering more accurate and flexible PDE solutions.However,PINNs are hampered by the...Physics-informed neural networks(PINNs)are promising to replace conventional mesh-based partial tial differen-equation(PDE)solvers by offering more accurate and flexible PDE solutions.However,PINNs are hampered by the relatively slow convergence and the need to perform additional,potentially expensive training for new PDE parameters.To solve this limitation,we introduce LatentPINN,a framework that utilizes latent representations of the PDE parameters as additional(to the coordinates)inputs into PINNs and allows for training over the distribution of these parameters.Motivated by the recent progress on generative models,we promote using latent diffusion models to learn compressed latent representations of the distribution of PDE parameters as they act as input parameters for NN functional solutions.We use a two-stage training scheme in which,in the first stage,we learn the latent representations for the distribution of PDE parameters.In the second stage,we train a physics-informed neural network over inputs given by randomly drawn samples from the coordinate space within the solution domain and samples from the learned latent representation of the PDE parameters.Considering their importance in capturing evolving interfaces and fronts in various fields,we test the approach on a class of level set equations given,for example,by the nonlinear Eikonal equation.We share results corresponding to three Eikonal parameters(velocity models)sets.The proposed method performs well on new phase velocity models without the need for any additional training.展开更多
Considering that the algorithm accuracy of the traditional sparse representation models is not high under the influence of multiple complex environmental factors,this study focuses on the improvement of feature extrac...Considering that the algorithm accuracy of the traditional sparse representation models is not high under the influence of multiple complex environmental factors,this study focuses on the improvement of feature extraction and model construction.Firstly,the convolutional neural network(CNN)features of the face are extracted by the trained deep learning network.Next,the steady-state and dynamic classifiers for face recognition are constructed based on the CNN features and Haar features respectively,with two-stage sparse representation introduced in the process of constructing the steady-state classifier and the feature templates with high reliability are dynamically selected as alternative templates from the sparse representation template dictionary constructed using the CNN features.Finally,the results of face recognition are given based on the classification results of the steady-state classifier and the dynamic classifier together.Based on this,the feature weights of the steady-state classifier template are adjusted in real time and the dictionary set is dynamically updated to reduce the probability of irrelevant features entering the dictionary set.The average recognition accuracy of this method is 94.45%on the CMU PIE face database and 96.58%on the AR face database,which is significantly improved compared with that of the traditional face recognition methods.展开更多
In recent years,the transformer model has demonstrated excellent performance in computer vision(CV)applications.The key lies in its guided representation attention mechanism,which uses dot-product to depict complex fe...In recent years,the transformer model has demonstrated excellent performance in computer vision(CV)applications.The key lies in its guided representation attention mechanism,which uses dot-product to depict complex feature relationships,and comprehensively understands the context semantics to obtain feature weights.Then feature enhancement is implemented by guiding the target matrix through feature weights.However,the uncertainty and inconsistency of features are widespread that prone to confusion in the description of relationships within dot-product attention mechanisms.To solve this problem,this paper proposed a novel approximate-guided representation learning methodology for vision transformer.The kernelised matroids fuzzy rough set is defined,wherein the closed sets inside kernelised fuzzy information granules of matroids structures can constitute the subspace of lower approximation in rough sets.Thus,the kernel relation is employed to characterise image feature granules that will be reconstructed according to the independent set in matroids theory.Then,according to the characteristics of the closed set within matroids,the feature attention weight is formed by using the lower approximation to realise the approximate guidance of features.The approximate-guided representation mechanism can be flexibly deployed as a plug-and-play component in a wide range of CV tasks.Extensive empirical results demonstrate that the proposed method outperforms the majority of advanced prevalent models,especially in terms of robustness.展开更多
Data collected in fields such as cybersecurity and biomedicine often encounter high dimensionality and class imbalance.To address the problem of low classification accuracy for minority class samples arising from nume...Data collected in fields such as cybersecurity and biomedicine often encounter high dimensionality and class imbalance.To address the problem of low classification accuracy for minority class samples arising from numerous irrelevant and redundant features in high-dimensional imbalanced data,we proposed a novel feature selection method named AMF-SGSK based on adaptive multi-filter and subspace-based gaining sharing knowledge.Firstly,the balanced dataset was obtained by random under-sampling.Secondly,combining the feature importance score with the AUC score for each filter method,we proposed a concept called feature hardness to judge the importance of feature,which could adaptively select the essential features.Finally,the optimal feature subset was obtained by gaining sharing knowledge in multiple subspaces.This approach effectively achieved dimensionality reduction for high-dimensional imbalanced data.The experiment results on 30 benchmark imbalanced datasets showed that AMF-SGSK performed better than other eight commonly used algorithms including BGWO and IG-SSO in terms of F1-score,AUC,and G-mean.The mean values of F1-score,AUC,and Gmean for AMF-SGSK are 0.950,0.967,and 0.965,respectively,achieving the highest among all algorithms.And the mean value of Gmean is higher than those of IG-PSO,ReliefF-GWO,and BGOA by 3.72%,11.12%,and 20.06%,respectively.Furthermore,the selected feature ratio is below 0.01 across the selected ten datasets,further demonstrating the proposed method’s overall superiority over competing approaches.AMF-SGSK could adaptively remove irrelevant and redundant features and effectively improve the classification accuracy of high-dimensional imbalanced data,providing scientific and technological references for practical applications.展开更多
Clustering is a pivotal data analysis method for deciphering the charge transport properties of single molecules in break junction experiments.However,given the high dimensionality and variability of the data,feature ...Clustering is a pivotal data analysis method for deciphering the charge transport properties of single molecules in break junction experiments.However,given the high dimensionality and variability of the data,feature extraction remains a bottleneck in the development of efficient clustering methods.In this regard,extensive research over the past two decades has focused on feature engineering and dimensionality reduction in break junction conductance.However,extracting highly relevant features without expert knowledge remains an unresolved challenge.To address this issue,we propose a deep clustering method driven by task-oriented representation learning(CTRL)in which the clustering module serves as a guide for the representation learning(RepL)module.First,we determine an optimal autoencoder(AE)structure through a neural architecture search(NAS)to ensure efficient RepL;second,the RepL process is guided by a joint training strategy that combines AE reconstruction loss with the clustering objective.The results demonstrate that CTRL achieves excellent performance on both the generated and experimental data.Further inspection of the RepL step reveals that joint training robustly learns more compact features than the unconstrained AE or traditional dimensionality reduction methods,significantly reducing misclustering possibilities.Our method provides a general end-to-end automatic clustering solution for analyzing single-molecule break junction data.展开更多
Background Three-dimensional(3D)shape representation using mesh data is essential in various applications,such as virtual reality and simulation technologies.Current methods for extracting features from mesh edges or ...Background Three-dimensional(3D)shape representation using mesh data is essential in various applications,such as virtual reality and simulation technologies.Current methods for extracting features from mesh edges or faces struggle with complex 3D models because edge-based approaches miss global contexts and face-based methods overlook variations in adjacent areas,which affects the overall precision.To address these issues,we propose the Feature Discrimination and Context Propagation Network(FDCPNet),which is a novel approach that synergistically integrates local and global features in mesh datasets.Methods FDCPNet is composed of two modules:(1)the Feature Discrimination Module,which employs an attention mechanism to enhance the identification of key local features,and(2)the Context Propagation Module,which enriches key local features by integrating global contextual information,thereby facilitating a more detailed and comprehensive representation of crucial areas within the mesh model.Results Experiments on popular datasets validated the effectiveness of FDCPNet,showing an improvement in the classification accuracy over the baseline MeshNet.Furthermore,even with reduced mesh face numbers and limited training data,FDCPNet achieved promising results,demonstrating its robustness in scenarios of variable complexity.展开更多
Deep forgery detection technologies are crucial for image and video recognition tasks,with their performance heavily reliant on the features extracted from both real and fake images.However,most existing methods prima...Deep forgery detection technologies are crucial for image and video recognition tasks,with their performance heavily reliant on the features extracted from both real and fake images.However,most existing methods primarily focus on spatial domain features,which limits their accuracy.To address this limitation,we propose an adaptive dual-domain feature representation method for enhanced deep forgery detection.Specifically,an adaptive region dynamic convolution module is established to efficiently extract facial features from the spatial domain.Then,we introduce an adaptive frequency dynamic filter to capture effective frequency domain features.By fusing both spatial and frequency domain features,our approach significantly improves the accuracy of classifying real and fake facial images.Finally,experimental results on three real-world datasets validate the effectiveness of our dual-domain feature representation method,which substantially improves classification precision.展开更多
基金funded by National Natural Science Foundation of China(Nos.12402142,11832013 and 11572134)Natural Science Foundation of Hubei Province(No.2024AFB235)+1 种基金Hubei Provincial Department of Education Science and Technology Research Project(No.Q20221714)the Opening Foundation of Hubei Key Laboratory of Digital Textile Equipment(Nos.DTL2023019 and DTL2022012).
文摘Owing to their global search capabilities and gradient-free operation,metaheuristic algorithms are widely applied to a wide range of optimization problems.However,their computational demands become prohibitive when tackling high-dimensional optimization challenges.To effectively address these challenges,this study introduces cooperative metaheuristics integrating dynamic dimension reduction(DR).Building upon particle swarm optimization(PSO)and differential evolution(DE),the proposed cooperative methods C-PSO and C-DE are developed.In the proposed methods,the modified principal components analysis(PCA)is utilized to reduce the dimension of design variables,thereby decreasing computational costs.The dynamic DR strategy implements periodic execution of modified PCA after a fixed number of iterations,resulting in the important dimensions being dynamically identified.Compared with the static one,the dynamic DR strategy can achieve precise identification of important dimensions,thereby enabling accelerated convergence toward optimal solutions.Furthermore,the influence of cumulative contribution rate thresholds on optimization problems with different dimensions is investigated.Metaheuristic algorithms(PSO,DE)and cooperative metaheuristics(C-PSO,C-DE)are examined by 15 benchmark functions and two engineering design problems(speed reducer and composite pressure vessel).Comparative results demonstrate that the cooperative methods achieve significantly superior performance compared to standard methods in both solution accuracy and computational efficiency.Compared to standard metaheuristic algorithms,cooperative metaheuristics achieve a reduction in computational cost of at least 40%.The cooperative metaheuristics can be effectively used to tackle both high-dimensional unconstrained and constrained optimization problems.
基金The National Grand Fundamental Research 973 Program (2004CB318000) of China
文摘This paper deals with the representation of the solutions of a polynomial system, and concentrates on the high-dimensional case. Based on the rational univari- ate representation of zero-dimensional polynomial systems, we give a new description called rational representation for the solutions of a high-dimensional polynomial sys- tem and propose an algorithm for computing it. By this way all the solutions of any high-dimensional polynomial system can be represented by a set of so-called rational- representation sets.
基金supported in part by the National Natural Science Foundation of China(61702475,61772493,61902370,62002337)in part by the Natural Science Foundation of Chongqing,China(cstc2019jcyj-msxmX0578,cstc2019jcyjjqX0013)+1 种基金in part by the Chinese Academy of Sciences“Light of West China”Program,in part by the Pioneer Hundred Talents Program of Chinese Academy of Sciencesby Technology Innovation and Application Development Project of Chongqing,China(cstc2019jscx-fxydX0027)。
文摘High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurately represent them is of great significance.A latent factor(LF)model is one of the most popular and successful ways to address this issue.Current LF models mostly adopt L2-norm-oriented Loss to represent an HiDS matrix,i.e.,they sum the errors between observed data and predicted ones with L2-norm.Yet L2-norm is sensitive to outlier data.Unfortunately,outlier data usually exist in such matrices.For example,an HiDS matrix from RSs commonly contains many outlier ratings due to some heedless/malicious users.To address this issue,this work proposes a smooth L1-norm-oriented latent factor(SL-LF)model.Its main idea is to adopt smooth L1-norm rather than L2-norm to form its Loss,making it have both strong robustness and high accuracy in predicting the missing data of an HiDS matrix.Experimental results on eight HiDS matrices generated by industrial applications verify that the proposed SL-LF model not only is robust to the outlier data but also has significantly higher prediction accuracy than state-of-the-art models when they are used to predict the missing data of HiDS matrices.
基金supported by the Innovation Fund Project of the Gansu Education Department(Grant No.2021B-099).
文摘The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the efficiency of RBDO algorithm,which hinders their application to high-dimensional engineering problems.To address these issues,this paper proposes an efficient decoupled RBDO method combining high dimensional model representation(HDMR)and the weight-point estimation method(WPEM).First,we decouple the RBDO model using HDMR and WPEM.Second,Lagrange interpolation is used to approximate a univariate function.Finally,based on the results of the first two steps,the original nested loop reliability optimization model is completely transformed into a deterministic design optimization model that can be solved by a series of mature constrained optimization methods without any additional calculations.Two numerical examples of a planar 10-bar structure and an aviation hydraulic piping system with 28 design variables are analyzed to illustrate the performance and practicability of the proposed method.
基金supported by the National Natural Science Foundation of China(Nos.12072027,62103052,61603346 and 62103379)the Henan Key Laboratory of General Aviation Technology,China(No.ZHKF-230201)+3 种基金the Funding for the Open Research Project of the Rotor Aerodynamics Key Laboratory,China(No.RAL20200101)the Key Research and Development Program of Henan Province,China(Nos.241111222000 and 241111222900)the Key Science and Technology Program of Henan Province,China(No.232102220067)the Scholarship Funding from the China Scholarship Council(No.202206030079).
文摘In global navigation satellite system denial environment,cross-view geo-localization based on image retrieval presents an exceedingly critical visual localization solution for Unmanned Aerial Vehicle(UAV)systems.The essence of cross-view geo-localization resides in matching images containing the same geographical targets from disparate platforms,such as UAV-view and satellite-view images.However,images of the same geographical targets may suffer from occlusions and geometric distortions due to variations in the capturing platform,view,and timing.The existing methods predominantly extract features by segmenting feature maps,which overlook the holistic semantic distribution and structural information of objects,resulting in loss of image information.To address these challenges,dilated neighborhood attention Transformer is employed as the feature extraction backbone,and Multi-feature representations based on Multi-scale Hierarchical Contextual Aggregation(MMHCA)is proposed.In the proposed MMHCA method,the multiscale hierarchical contextual aggregation method is utilized to extract contextual information from local to global across various granularity levels,establishing feature associations of contextual information with global and local information in the image.Subsequently,the multi-feature representations method is utilized to obtain rich discriminative feature information,bolstering the robustness of model in scenarios characterized by positional shifts,varying distances,and scale ambiguities.Comprehensive experiments conducted on the extensively utilized University-1652 and SUES-200 benchmarks indicate that the MMHCA method surpasses the existing techniques.showing outstanding results in UAV localization and navigation.
文摘Let F_(1)be the virtual field consisting of one element and(Q,I)a string pair.In this paper,we study the representations of string pairs over the virtual field F_(1).It is proved that an indecomposable F_(1)-representation is either a string representation or a band representation by using the coefficient quivers.It is worth noting that for a given band and a positive integer,there exists a unique band representation up to isomorphism.
基金supported by the Shenzhen Key Laboratory of Intelligent Bioinformatics(No.ZDSYS20220422103800001)the Shenzhen Science and Technology Program(No.JCYJ20230807140709020)+2 种基金National Natural Science Foundation of China(Nos.62402489,U22A2041,and 62373172)the China Postdoctoral Science Foundation(No.2023M743688)Guangdong Basic and Applied Basic Research Foundation(Nos.2024A1515011960 and 2023A1515110570)。
文摘Artificial intelligence(AI)researchers and cheminformatics specialists strive to identify effective drug precursors while optimizing costs and accelerating development processes.Digital molecular representation plays a crucial role in achieving this objective by making molecules machine-readable,thereby enhancing the accuracy of molecular prediction tasks and facilitating evidence-based decision making.This study presents a comprehensive review of small molecular representations and AI-driven drug discovery downstream tasks utilizing these representations.The research methodology begins with the compilation of small molecule databases,followed by an analysis of fundamental molecular representations and the models that learn these representations from initial forms,capturing patterns and salient features across extensive chemical spaces.The study then examines various drug discovery downstream tasks,including drug-target interaction(DTI)prediction,drug-target affinity(DTA)prediction,drug property(DP)prediction,and drug generation,all based on learned representations.The analysis concludes by highlighting challenges and opportunities associated with machine learning(ML)methods for molecular representation and improving downstream task performance.Additionally,the representation of small molecules and AI-based downstream tasks demonstrates significant potential in identifying traditional Chinese medicine(TCM)medicinal substances and facilitating TCM target discovery.
基金supported by the Project of the Hubei Provincial Department of Science and Technology(Grant Nos.2022CFB957,2022CFB475)the National Natural Science Foundation of China(Grant No.11847118)。
文摘The decoherence of high-dimensional orbital angular momentum(OAM)entanglement in the weak scintillation regime has been investigated.In this study,we simulate atmospheric turbulence by utilizing a multiple-phase screen imprinted with anisotropic non-Kolmogorov turbulence.The entanglement negativity and fidelity are introduced to quantify the entanglement of a high-dimensional OAM state.The numerical evaluation results indicate that entanglement negativity and fidelity last longer for a high-dimensional OAM state when the azimuthal mode has a lower value.Additionally,the evolution of higher-dimensional OAM entanglement is significantly influenced by OAM beam parameters and turbulence parameters.Compared to isotropic atmospheric turbulence,anisotropic turbulence has a lesser influence on highdimensional OAM entanglement.
基金Supported by the National Natural Science Foundation of China(12201446)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(22KJB110005)the Shuangchuang Program of Jiangsu Province(JSSCBS20220898)。
文摘It is known that monotone recurrence relations can induce a class of twist homeomorphisms on the high-dimensional cylinder,which is an extension of the class of monotone twist maps on the annulus or two-dimensional cylinder.By constructing a bounded solution of the monotone recurrence relation,the main conclusion in this paper is acquired:The induced homeomorphism has Birkhoff orbits provided there is a compact forward-invariant set.Therefore,it generalizes Angenent's results in low-dimensional cases.
基金supported in part by the Young Scientists Fund of the National Natural Science Foundation of China(Grant Nos.82304253)(and 82273709)the Foundation for Young Talents in Higher Education of Guangdong Province(Grant No.2022KQNCX021)the PhD Starting Project of Guangdong Medical University(Grant No.GDMUB2022054).
文摘Objective Humans are exposed to complex mixtures of environmental chemicals and other factors that can affect their health.Analysis of these mixture exposures presents several key challenges for environmental epidemiology and risk assessment,including high dimensionality,correlated exposure,and subtle individual effects.Methods We proposed a novel statistical approach,the generalized functional linear model(GFLM),to analyze the health effects of exposure mixtures.GFLM treats the effect of mixture exposures as a smooth function by reordering exposures based on specific mechanisms and capturing internal correlations to provide a meaningful estimation and interpretation.The robustness and efficiency was evaluated under various scenarios through extensive simulation studies.Results We applied the GFLM to two datasets from the National Health and Nutrition Examination Survey(NHANES).In the first application,we examined the effects of 37 nutrients on BMI(2011–2016 cycles).The GFLM identified a significant mixture effect,with fiber and fat emerging as the nutrients with the greatest negative and positive effects on BMI,respectively.For the second application,we investigated the association between four pre-and perfluoroalkyl substances(PFAS)and gout risk(2007–2018 cycles).Unlike traditional methods,the GFLM indicated no significant association,demonstrating its robustness to multicollinearity.Conclusion GFLM framework is a powerful tool for mixture exposure analysis,offering improved handling of correlated exposures and interpretable results.It demonstrates robust performance across various scenarios and real-world applications,advancing our understanding of complex environmental exposures and their health impacts on environmental epidemiology and toxicology.
文摘The purpose of this article is to depart from the conventional belief that John Donne,a vibrant 17th-century writer,is a full-blown metaphysical poet as widely claimed while also acknowledging the poetic ingenuity of John Donne.While Donne’s poetry is rich in matter and manner,and his poems are caked in wit,intellectual superiority,and apt exploration of telling themes,dressing him fully in borrowed robes seems a stretch.Some of Donne’s poems,without a shred of doubt,contain flavors of metaphysical poetry,but the term“metaphysical”seems to be unsuitable for poems such as“A Valediction:Forbidding Mourning”.
基金supported by the National Natural Science Foun-dation of China(Grant No.72349002).
文摘Establishing and maintaining protected areas is a pivotal strategy for attaining the post-2020 biodiversity target. The conservation objectives of protected areas have shifted from a narrow emphasis on biodiversity to encompass broader considerations such as ecosystem stability, community resilience to climate change, and enhancement of human well-being. Given these multifaceted objectives, it is imperative to judiciously allocate resources to effectively conserve biodiversity by identifying strategically significant areas for conservation, particularly for mountainous areas. In this study, we evaluated the representativeness of the protected area network in the Qin ling Mountains concerning species diversity, ecosystem services, climate stability and ecological stability. The results indicate that some of the ecological indicators are spatially correlated with topographic gradient effects. The conservation priority areas predominantly lie in the northern foothills, the southeastern, and southwestern parts of the Qinling Mountain with areas concentrated at altitudes between 1,500-2,000 m and slopes between 40°-50° as hotspots. The conservation priority areas identified through the framework of inclusive conservation optimization account for 22.9 % of the Qinling Mountain. Existing protected areas comprise only 6.1 % of the Qinling Mountain and 13.18 % of the conservation priority areas. This will play an important role in achiev ing sustainable development in the region and in meeting the post-2020 biodiversity target. The framework can advance the different objectives of achieving a quadruple win and can also be extended to other regions.
基金King Abdullah University of Science and Technol-ogy(KAUST)for supporting this research and the Seismic Wave Anal-ysis group for the supportive and encouraging environment.
文摘Physics-informed neural networks(PINNs)are promising to replace conventional mesh-based partial tial differen-equation(PDE)solvers by offering more accurate and flexible PDE solutions.However,PINNs are hampered by the relatively slow convergence and the need to perform additional,potentially expensive training for new PDE parameters.To solve this limitation,we introduce LatentPINN,a framework that utilizes latent representations of the PDE parameters as additional(to the coordinates)inputs into PINNs and allows for training over the distribution of these parameters.Motivated by the recent progress on generative models,we promote using latent diffusion models to learn compressed latent representations of the distribution of PDE parameters as they act as input parameters for NN functional solutions.We use a two-stage training scheme in which,in the first stage,we learn the latent representations for the distribution of PDE parameters.In the second stage,we train a physics-informed neural network over inputs given by randomly drawn samples from the coordinate space within the solution domain and samples from the learned latent representation of the PDE parameters.Considering their importance in capturing evolving interfaces and fronts in various fields,we test the approach on a class of level set equations given,for example,by the nonlinear Eikonal equation.We share results corresponding to three Eikonal parameters(velocity models)sets.The proposed method performs well on new phase velocity models without the need for any additional training.
基金the financial support from Natural Science Foundation of Gansu Province(Nos.22JR5RA217,22JR5RA216)Lanzhou Science and Technology Program(No.2022-2-111)+1 种基金Lanzhou University of Arts and Sciences School Innovation Fund Project(No.XJ2022000103)Lanzhou College of Arts and Sciences 2023 Talent Cultivation Quality Improvement Project(No.2023-ZL-jxzz-03)。
文摘Considering that the algorithm accuracy of the traditional sparse representation models is not high under the influence of multiple complex environmental factors,this study focuses on the improvement of feature extraction and model construction.Firstly,the convolutional neural network(CNN)features of the face are extracted by the trained deep learning network.Next,the steady-state and dynamic classifiers for face recognition are constructed based on the CNN features and Haar features respectively,with two-stage sparse representation introduced in the process of constructing the steady-state classifier and the feature templates with high reliability are dynamically selected as alternative templates from the sparse representation template dictionary constructed using the CNN features.Finally,the results of face recognition are given based on the classification results of the steady-state classifier and the dynamic classifier together.Based on this,the feature weights of the steady-state classifier template are adjusted in real time and the dictionary set is dynamically updated to reduce the probability of irrelevant features entering the dictionary set.The average recognition accuracy of this method is 94.45%on the CMU PIE face database and 96.58%on the AR face database,which is significantly improved compared with that of the traditional face recognition methods.
基金supported in part by the National Natural Science Foundation of China(62471205,62462040)Yunnan Fundamental Research Projects(202301AV070003)+1 种基金Major Science and Technology Projects in Yunnan Province(202302AG050009,202202AD080013)Sichuan Provincial Key Laboratory of Philosophy and Social Science for Language Intelligence in Special Education Major Project(YYZN-2024-1).
文摘In recent years,the transformer model has demonstrated excellent performance in computer vision(CV)applications.The key lies in its guided representation attention mechanism,which uses dot-product to depict complex feature relationships,and comprehensively understands the context semantics to obtain feature weights.Then feature enhancement is implemented by guiding the target matrix through feature weights.However,the uncertainty and inconsistency of features are widespread that prone to confusion in the description of relationships within dot-product attention mechanisms.To solve this problem,this paper proposed a novel approximate-guided representation learning methodology for vision transformer.The kernelised matroids fuzzy rough set is defined,wherein the closed sets inside kernelised fuzzy information granules of matroids structures can constitute the subspace of lower approximation in rough sets.Thus,the kernel relation is employed to characterise image feature granules that will be reconstructed according to the independent set in matroids theory.Then,according to the characteristics of the closed set within matroids,the feature attention weight is formed by using the lower approximation to realise the approximate guidance of features.The approximate-guided representation mechanism can be flexibly deployed as a plug-and-play component in a wide range of CV tasks.Extensive empirical results demonstrate that the proposed method outperforms the majority of advanced prevalent models,especially in terms of robustness.
基金supported by Fundamental Research Program of Shanxi Province(Nos.202203021211088,202403021212254,202403021221109)Graduate Research Innovation Project in Shanxi Province(No.2024KY616).
文摘Data collected in fields such as cybersecurity and biomedicine often encounter high dimensionality and class imbalance.To address the problem of low classification accuracy for minority class samples arising from numerous irrelevant and redundant features in high-dimensional imbalanced data,we proposed a novel feature selection method named AMF-SGSK based on adaptive multi-filter and subspace-based gaining sharing knowledge.Firstly,the balanced dataset was obtained by random under-sampling.Secondly,combining the feature importance score with the AUC score for each filter method,we proposed a concept called feature hardness to judge the importance of feature,which could adaptively select the essential features.Finally,the optimal feature subset was obtained by gaining sharing knowledge in multiple subspaces.This approach effectively achieved dimensionality reduction for high-dimensional imbalanced data.The experiment results on 30 benchmark imbalanced datasets showed that AMF-SGSK performed better than other eight commonly used algorithms including BGWO and IG-SSO in terms of F1-score,AUC,and G-mean.The mean values of F1-score,AUC,and Gmean for AMF-SGSK are 0.950,0.967,and 0.965,respectively,achieving the highest among all algorithms.And the mean value of Gmean is higher than those of IG-PSO,ReliefF-GWO,and BGOA by 3.72%,11.12%,and 20.06%,respectively.Furthermore,the selected feature ratio is below 0.01 across the selected ten datasets,further demonstrating the proposed method’s overall superiority over competing approaches.AMF-SGSK could adaptively remove irrelevant and redundant features and effectively improve the classification accuracy of high-dimensional imbalanced data,providing scientific and technological references for practical applications.
基金supported by Guangxi Science and Technology Program(No.GuiKeAD23026291)Guangxi Science and Technology Major Project(No.AA22068057).
文摘Clustering is a pivotal data analysis method for deciphering the charge transport properties of single molecules in break junction experiments.However,given the high dimensionality and variability of the data,feature extraction remains a bottleneck in the development of efficient clustering methods.In this regard,extensive research over the past two decades has focused on feature engineering and dimensionality reduction in break junction conductance.However,extracting highly relevant features without expert knowledge remains an unresolved challenge.To address this issue,we propose a deep clustering method driven by task-oriented representation learning(CTRL)in which the clustering module serves as a guide for the representation learning(RepL)module.First,we determine an optimal autoencoder(AE)structure through a neural architecture search(NAS)to ensure efficient RepL;second,the RepL process is guided by a joint training strategy that combines AE reconstruction loss with the clustering objective.The results demonstrate that CTRL achieves excellent performance on both the generated and experimental data.Further inspection of the RepL step reveals that joint training robustly learns more compact features than the unconstrained AE or traditional dimensionality reduction methods,significantly reducing misclustering possibilities.Our method provides a general end-to-end automatic clustering solution for analyzing single-molecule break junction data.
基金Supported by the National Key R&D Program of China(2022YFC3803600).
文摘Background Three-dimensional(3D)shape representation using mesh data is essential in various applications,such as virtual reality and simulation technologies.Current methods for extracting features from mesh edges or faces struggle with complex 3D models because edge-based approaches miss global contexts and face-based methods overlook variations in adjacent areas,which affects the overall precision.To address these issues,we propose the Feature Discrimination and Context Propagation Network(FDCPNet),which is a novel approach that synergistically integrates local and global features in mesh datasets.Methods FDCPNet is composed of two modules:(1)the Feature Discrimination Module,which employs an attention mechanism to enhance the identification of key local features,and(2)the Context Propagation Module,which enriches key local features by integrating global contextual information,thereby facilitating a more detailed and comprehensive representation of crucial areas within the mesh model.Results Experiments on popular datasets validated the effectiveness of FDCPNet,showing an improvement in the classification accuracy over the baseline MeshNet.Furthermore,even with reduced mesh face numbers and limited training data,FDCPNet achieved promising results,demonstrating its robustness in scenarios of variable complexity.
基金supported in part by the National Natural Science Foundation of China under No.12401679the Nature Science Foundation of the Jiangsu Higher Education Institutions of China under No.23KJB520006the Haizhou Bay Talent Innovation Program of Jiangsu Ocean University under No.PD2024026。
文摘Deep forgery detection technologies are crucial for image and video recognition tasks,with their performance heavily reliant on the features extracted from both real and fake images.However,most existing methods primarily focus on spatial domain features,which limits their accuracy.To address this limitation,we propose an adaptive dual-domain feature representation method for enhanced deep forgery detection.Specifically,an adaptive region dynamic convolution module is established to efficiently extract facial features from the spatial domain.Then,we introduce an adaptive frequency dynamic filter to capture effective frequency domain features.By fusing both spatial and frequency domain features,our approach significantly improves the accuracy of classifying real and fake facial images.Finally,experimental results on three real-world datasets validate the effectiveness of our dual-domain feature representation method,which substantially improves classification precision.