期刊文献+
共找到315篇文章
< 1 2 16 >
每页显示 20 50 100
Kernel matrix learning with a general regularized risk functional criterion 被引量:3
1
作者 Chengqun Wang Jiming Chen +1 位作者 Chonghai Hu Youxian Sun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第1期72-80,共9页
Kernel-based methods work by embedding the data into a feature space and then searching linear hypothesis among the embedding data points. The performance is mostly affected by which kernel is used. A promising way is... Kernel-based methods work by embedding the data into a feature space and then searching linear hypothesis among the embedding data points. The performance is mostly affected by which kernel is used. A promising way is to learn the kernel from the data automatically. A general regularized risk functional (RRF) criterion for kernel matrix learning is proposed. Compared with the RRF criterion, general RRF criterion takes into account the geometric distributions of the embedding data points. It is proven that the distance between different geometric distdbutions can be estimated by their centroid distance in the reproducing kernel Hilbert space. Using this criterion for kernel matrix learning leads to a convex quadratically constrained quadratic programming (QCQP) problem. For several commonly used loss functions, their mathematical formulations are given. Experiment results on a collection of benchmark data sets demonstrate the effectiveness of the proposed method. 展开更多
关键词 kernel method support vector machine kernel matrix learning HKRS geometric distribution regularized risk functional criterion.
在线阅读 下载PDF
Randomized Latent Factor Model for High-dimensional and Sparse Matrices from Industrial Applications 被引量:14
2
作者 Mingsheng Shang Xin Luo +3 位作者 Zhigang Liu Jia Chen Ye Yuan MengChu Zhou 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第1期131-141,共11页
Latent factor(LF)models are highly effective in extracting useful knowledge from High-Dimensional and Sparse(HiDS)matrices which are commonly seen in various industrial applications.An LF model usually adopts iterativ... Latent factor(LF)models are highly effective in extracting useful knowledge from High-Dimensional and Sparse(HiDS)matrices which are commonly seen in various industrial applications.An LF model usually adopts iterative optimizers,which may consume many iterations to achieve a local optima,resulting in considerable time cost.Hence,determining how to accelerate the training process for LF models has become a significant issue.To address this,this work proposes a randomized latent factor(RLF)model.It incorporates the principle of randomized learning techniques from neural networks into the LF analysis of HiDS matrices,thereby greatly alleviating computational burden.It also extends a standard learning process for randomized neural networks in context of LF analysis to make the resulting model represent an HiDS matrix correctly.Experimental results on three HiDS matrices from industrial applications demonstrate that compared with state-of-the-art LF models,RLF is able to achieve significantly higher computational efficiency and comparable prediction accuracy for missing data.I provides an important alternative approach to LF analysis of HiDS matrices,which is especially desired for industrial applications demanding highly efficient models. 展开更多
关键词 Big data high-dimensional and sparse matrix latent factor analysis latent factor model randomized learning
在线阅读 下载PDF
Robust Latent Factor Analysis for Precise Representation of High-Dimensional and Sparse Data 被引量:5
3
作者 Di Wu Xin Luo 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第4期796-805,共10页
High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurat... High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurately represent them is of great significance.A latent factor(LF)model is one of the most popular and successful ways to address this issue.Current LF models mostly adopt L2-norm-oriented Loss to represent an HiDS matrix,i.e.,they sum the errors between observed data and predicted ones with L2-norm.Yet L2-norm is sensitive to outlier data.Unfortunately,outlier data usually exist in such matrices.For example,an HiDS matrix from RSs commonly contains many outlier ratings due to some heedless/malicious users.To address this issue,this work proposes a smooth L1-norm-oriented latent factor(SL-LF)model.Its main idea is to adopt smooth L1-norm rather than L2-norm to form its Loss,making it have both strong robustness and high accuracy in predicting the missing data of an HiDS matrix.Experimental results on eight HiDS matrices generated by industrial applications verify that the proposed SL-LF model not only is robust to the outlier data but also has significantly higher prediction accuracy than state-of-the-art models when they are used to predict the missing data of HiDS matrices. 展开更多
关键词 high-dimensional and sparse matrix L1-norm L2 norm latent factor model recommender system smooth L1-norm
在线阅读 下载PDF
Kohn-Sham Density Matrix and the Kernel Energy Method 被引量:1
4
作者 POLKOSNIK Walter MASSA Lou 《物理化学学报》 SCIE CAS CSCD 北大核心 2018年第6期656-661,共6页
The kernel energy method(KEM) has been shown to provide fast and accurate molecular energy calculations for molecules at their equilibrium geometries.KEM breaks a molecule into smaller subsets,called kernels,for the p... The kernel energy method(KEM) has been shown to provide fast and accurate molecular energy calculations for molecules at their equilibrium geometries.KEM breaks a molecule into smaller subsets,called kernels,for the purposes of calculation.The results from the kernels are summed according to an expression characteristic of KEM to obtain the full molecule energy.A generalization of the kernel expansion to density matrices provides the full molecule density matrix and orbitals.In this study,the kernel expansion for the density matrix is examined in the context of density functional theory(DFT) Kohn-Sham(KS) calculations.A kernel expansion for the one-body density matrix analogous to the kernel expansion for energy is defined,and is then converted into a normalizedprojector by using the Clinton algorithm.Such normalized projectors are factorizable into linear combination of atomic orbitals(LCAO) matrices that deliver full-molecule Kohn-Sham molecular orbitals in the atomic orbital basis.Both straightforward KEM energies and energies from a normalized,idempotent density matrix obtained from a density matrix kernel expansion to which the Clinton algorithm has been applied are compared to reference energies obtained from calculations on the full system without any kernel expansion.Calculations were performed both for a simple proof-of-concept system consisting of three atoms in a linear configuration and for a water cluster consisting of twelve water molecules.In the case of the proof-of-concept system,calculations were performed using the STO-3 G and6-31 G(d,p) bases over a range of atomic separations,some very far from equilibrium.The water cluster was calculated in the 6-31 G(d,p) basis at an equilibrium geometry.The normalized projector density energies are more accurate than the straightforward KEM energy results in nearly all cases.In the case of the water cluster,the energy of the normalized projector is approximately four times more accurate than the straightforward KEM energy result.The KS density matrices of this study are applicable to quantum crystallography. 展开更多
关键词 Kohn SHAM density matrix kernel energy method N-REPRESENTABILITY QUANTUM CRYSTALLOGRAPHY Watercluster
在线阅读 下载PDF
On the Construction of the Kernel Matrix by Primitive BCH Codes for Polar Codes
5
作者 Liping Lin 《Communications and Network》 2022年第1期23-35,共13页
The polar codes defined by the kernel matrix are a class of codes with low coding-decoding complexity and can achieve the Shannon limit. In this paper, a novel method to construct the 2<sup>n</sup>-dimensi... The polar codes defined by the kernel matrix are a class of codes with low coding-decoding complexity and can achieve the Shannon limit. In this paper, a novel method to construct the 2<sup>n</sup>-dimensional kernel matrix is proposed, that is based on primitive BCH codes that make use of the interception, the direct sum and adding a row and a column. For ensuring polarization of the kernel matrix, a solution is also put forward when the partial distances of the constructed kernel matrix exceed their upper bound. And the lower bound of exponent of the 2<sup>n</sup>-dimensional kernel matrix is obtained. The lower bound of exponent of our constructed kernel matrix is tighter than Gilbert-Varshamov (G-V) type, and the scaling exponent is better in the case of 16-dimensional. 展开更多
关键词 Polar Code kernel matrix matrix Interception Partial Distance EXPONENT Scaling Exponent
在线阅读 下载PDF
Optimal Estimation of High-Dimensional Covariance Matrices with Missing and Noisy Data
6
作者 Meiyin Wang Wanzhou Ye 《Advances in Pure Mathematics》 2024年第4期214-227,共14页
The estimation of covariance matrices is very important in many fields, such as statistics. In real applications, data are frequently influenced by high dimensions and noise. However, most relevant studies are based o... The estimation of covariance matrices is very important in many fields, such as statistics. In real applications, data are frequently influenced by high dimensions and noise. However, most relevant studies are based on complete data. This paper studies the optimal estimation of high-dimensional covariance matrices based on missing and noisy sample under the norm. First, the model with sub-Gaussian additive noise is presented. The generalized sample covariance is then modified to define a hard thresholding estimator , and the minimax upper bound is derived. After that, the minimax lower bound is derived, and it is concluded that the estimator presented in this article is rate-optimal. Finally, numerical simulation analysis is performed. The result shows that for missing samples with sub-Gaussian noise, if the true covariance matrix is sparse, the hard thresholding estimator outperforms the traditional estimate method. 展开更多
关键词 high-dimensional Covariance matrix Missing Data Sub-Gaussian Noise Optimal Estimation
在线阅读 下载PDF
基于Kernel K-means的负荷曲线聚类 被引量:34
7
作者 赵文清 龚亚强 《电力自动化设备》 EI CSCD 北大核心 2016年第6期203-207,共5页
电力负荷曲线聚类是配用电系统的基础,对负荷管理具有重大意义。采用基于核方法的聚类算法提高负荷曲线聚类的准确性,通过点积的方式构造核矩阵,再将数据映射到高维空间中进行聚类,进而加大数据的可分性。同时,针对核矩阵的规模大、计... 电力负荷曲线聚类是配用电系统的基础,对负荷管理具有重大意义。采用基于核方法的聚类算法提高负荷曲线聚类的准确性,通过点积的方式构造核矩阵,再将数据映射到高维空间中进行聚类,进而加大数据的可分性。同时,针对核矩阵的规模大、计算复杂的问题,提出使用核主成分与缩减矩阵规模对该方法进行优化。实验过程中采用美国能源部开发能源信息网站提供的负荷数据进行聚类,并以Davies-Bouldin聚类有效性指标评估效果。结果表明该方法具有较好的划分能力,可以提高负荷曲线聚类的准确性。 展开更多
关键词 负荷曲线 聚类算法 核矩阵 核主成分分析 削减矩阵
在线阅读 下载PDF
APPLICATIONS OF THE BERNSTEIN-DURRMEYER OPERATORS IN ESTIMATING THE NORM OF MERCER KERNEL MATRICES 被引量:2
8
作者 Chunping Zhang Baohuai Sheng Zhixiang Chen 《Analysis in Theory and Applications》 2008年第1期74-86,共13页
The paper is related to the norm estimate of Mercer kernel matrices. The lower and upper bound estimates of Rayleigh entropy numbers for some Mercer kernel matrices on [0, 1] × [0, 1] based on the Bernstein-Durrm... The paper is related to the norm estimate of Mercer kernel matrices. The lower and upper bound estimates of Rayleigh entropy numbers for some Mercer kernel matrices on [0, 1] × [0, 1] based on the Bernstein-Durrmeyer operator kernel are obtained, with which and the approximation property of the Bernstein-Durrmeyer operator the lower and upper bounds of the Rayleigh entropy number and the l2 -norm for general Mercer kernel matrices on [0, 1] x [0, 1] are provided. 展开更多
关键词 Mercer kernel matrix Rayleigh entropy number Bernstein-Durrmeyer operator
在线阅读 下载PDF
Precision Matrix Estimation by Inverse Principal Orthogonal Decomposition
9
作者 Cheng Yong Tang Yingying Fan Yinfei Kong 《Communications in Mathematical Research》 CSCD 2020年第1期68-92,共25页
We investigate the structure of a large precision matrix in Gaussian graphical models by decomposing it into a low rank component and a remainder part with sparse precision matrix.Based on the decomposition,we propose... We investigate the structure of a large precision matrix in Gaussian graphical models by decomposing it into a low rank component and a remainder part with sparse precision matrix.Based on the decomposition,we propose to estimate the large precision matrix by inverting a principal orthogonal decomposition(IPOD).The IPOD approach has appealing practical interpretations in conditional graphical models given the low rank component,and it connects to Gaussian graphical models with latent variables.Specifically,we show that the low rank component in the decomposition of the large precision matrix can be viewed as the contribution from the latent variables in a Gaussian graphical model.Compared with existing approaches for latent variable graphical models,the IPOD is conveniently feasible in practice where only inverting a low-dimensional matrix is required.To identify the number of latent variables,which is an objective of its own interest,we investigate and justify an approach by examining the ratios of adjacent eigenvalues of the sample covariance matrix?Theoretical properties,numerical examples,and a real data application demonstrate the merits of the IPOD approach in its convenience,performance,and interpretability. 展开更多
关键词 high-dimensional data analysis LATENT GAUSSIAN GRAPHICAL model PRECISION matrix
在线阅读 下载PDF
Robust estimation of time-dependent precision matrix with application to the cryptocurrency market
10
作者 Paola Stolfi Mauro Bernardi Davide Vergni 《Financial Innovation》 2022年第1期1313-1337,共25页
Most financial signals show time dependency that,combined with noisy and extreme events,poses serious problems in the parameter estimations of statistical models.Moreover,when addressing asset pricing,portfolio select... Most financial signals show time dependency that,combined with noisy and extreme events,poses serious problems in the parameter estimations of statistical models.Moreover,when addressing asset pricing,portfolio selection,and investment strategies,accurate estimates of the relationship among assets are as necessary as are delicate in a time-dependent context.In this regard,fundamental tools that increasingly attract research interests are precision matrix and graphical models,which are able to obtain insights into the joint evolution of financial quantities.In this paper,we present a robust divergence estimator for a time-varying precision matrix that can manage both the extreme events and time-dependency that affect financial time series.Furthermore,we provide an algorithm to handle parameter estimations that uses the“maximization–minimization”approach.We apply the methodology to synthetic data to test its performances.Then,we consider the cryptocurrency market as a real data application,given its remarkable suitability for the proposed method because of its volatile and unregulated nature. 展开更多
关键词 Time-varying models Robust methods kernel estimation Precision matrix DIVERGENCE
在线阅读 下载PDF
Laguerre reproducing kernel method in Hilbert spaces for unsteady stagnation point ow over a stretching/shrinking sheet
11
作者 M.R.Foroutan A.S.Gholizadeh +1 位作者 Sh.Najafzadeh R.H.Haghi 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2021年第3期354-369,共16页
This paper investigates the nonlinear boundary value problem resulting from the exact reduction of the Navier-Stokes equations for unsteady magnetohydrodynamic boundary layer flow over the stretching/shrinking permeab... This paper investigates the nonlinear boundary value problem resulting from the exact reduction of the Navier-Stokes equations for unsteady magnetohydrodynamic boundary layer flow over the stretching/shrinking permeable sheet submerged in a moving fluid.To solve this equation,a numerical method is proposed based on a Laguerre functions with reproducing kernel Hilbert space method.Using the operational matrices of derivative,we reduced the problem to a set of algebraic equations.We also compare this work with some other numerical results and present a solution that proves to be highly accurate. 展开更多
关键词 nonlinear boundary value problem Laguerre reproducing kernel method operational matrix of derivative existence and nonexistence of solutions approximate solution
在线阅读 下载PDF
A Matrix Inequality for the Inversions of the Restrictions of a Positive Definite Hermitian Matrix
12
作者 Weixiong Mai Mo Yan +2 位作者 Tao Qian Matteo Dalla Riva Saburou Saitoh 《Advances in Linear Algebra & Matrix Theory》 2013年第4期55-58,共4页
We exploit the theory of reproducing kernels to deduce a matrix inequality for the inverse of the restriction of a positive definite Hermitian matrix.
关键词 Reproducing kernel POSITIVE Definite HERMITIAN matrix Quadratic Inequality Inversion of POSITIVE Definite HERMITIAN matrix Restriction of POSITIVE Definite HERMITIAN matrix SCHUR Complement Block matrix
在线阅读 下载PDF
On Eigen-Matrix Translation Method for Classification of Biological Data
13
作者 JIANG Hao QIU Yushan +1 位作者 CHENG Xiaoqing CHING Waiki 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第5期1212-1230,共19页
Driven by the challenge of integrating large amount of experimental data, classification technique emerges as one of the major and popular tools in computational biology and bioinformatics research. Machine learning m... Driven by the challenge of integrating large amount of experimental data, classification technique emerges as one of the major and popular tools in computational biology and bioinformatics research. Machine learning methods, especially kernel methods with Support Vector Machines (SVMs) are very popular and effective tools. In the perspective of kernel matrix, a technique namely Eigen- matrix translation has been introduced for protein data classification. The Eigen-matrix translation strategy has a lot of nice properties which deserve more exploration. This paper investigates the major role of Eigen-matrix translation in classification. The authors propose that its importance lies in the dimension reduction of predictor attributes within the data set. This is very important when the dimension of features is huge. The authors show by numerical experiments on real biological data sets that the proposed framework is crucial and effective in improving classification accuracy. This can therefore serve as a novel perspective for future research in dimension reduction problems. 展开更多
关键词 CLASSIFICATION dimension reduction eigen-matrix translation glycan data kernel method(KM) support vector machine (SVM)
在线阅读 下载PDF
基于缓存数据重用的稀疏矩阵向量乘序列优化
14
作者 徐传福 邱昊中 车永刚 《计算机研究与发展》 北大核心 2025年第6期1434-1442,共9页
稀疏线性方程组求解等高性能计算应用常常涉及稀疏矩阵向量乘(SpMV)序列Ax,A2x,…,Asx的计算.上述SpMV序列操作又称为稀疏矩阵幂函数(matrix power kernel,MPK).由于MPK执行多次SpMV且稀疏矩阵保持不变,在缓存(cache)中重用稀疏矩阵,可... 稀疏线性方程组求解等高性能计算应用常常涉及稀疏矩阵向量乘(SpMV)序列Ax,A2x,…,Asx的计算.上述SpMV序列操作又称为稀疏矩阵幂函数(matrix power kernel,MPK).由于MPK执行多次SpMV且稀疏矩阵保持不变,在缓存(cache)中重用稀疏矩阵,可避免每次执行SpMV均从主存加载A,从而缓解SpMV访存受限问题,提升MPK性能.但缓存数据重用会导致相邻SpMV操作之间的数据依赖,现有MPK优化多针对单次SpMV调用,或在实现数据重用时引入过多额外开销.提出了缓存感知的MPK(cache-awareMPK,Ca-MPK),基于稀疏矩阵的依赖图,设计了体系结构感知的递归划分方法,将依赖图划分为适合缓存大小的子图/子矩阵,通过构建分割子图解耦数据依赖,根据特定顺序在子矩阵上调度执行SpMV,实现缓存数据重用.测试结果表明,Ca-MPK相对于Intel OneMKL库和最新MPK实现,平均性能提升分别多达约1.57倍和1.40倍. 展开更多
关键词 稀疏矩阵向量乘 矩阵幂函数 缓存数据重用 数据依赖 稀疏线性方程组求解
在线阅读 下载PDF
多尺度动态视觉网络的手术机器人场景分割
15
作者 刘敏 秦敦璇 +2 位作者 韩雨斌 陈祥 王耀南 《中国图象图形学报》 北大核心 2025年第7期2542-2557,共16页
目的机器人辅助腹腔镜手术指的是临床医生借助腔镜手术机器人完成外科手术。然而,腔镜手术在密闭的人体腔道完成,且分割目标的特征复杂多变,对医生的手术技能有较高要求。为辅助医生完成腔镜手术,提出一种高精度的腔镜手术场景分割方法... 目的机器人辅助腹腔镜手术指的是临床医生借助腔镜手术机器人完成外科手术。然而,腔镜手术在密闭的人体腔道完成,且分割目标的特征复杂多变,对医生的手术技能有较高要求。为辅助医生完成腔镜手术,提出一种高精度的腔镜手术场景分割方法,并搭建分体式腔镜手术机器人对所提出的方法进行了验证。方法首先,提出了多尺度动态视觉网络(multi-scale dynamic visual network,MDVNet)。该网络采用编码器—解码器结构。在编码器部分,动态大核卷积注意力模块(dynamic large kernel attention module,DLKA)可以通过多尺度大核注意力提取不同分割目标的多尺度特征,并动态选择机制进行自适应的特征融合。在解码器部分,低秩矩阵分解模块(lowrank matrix decomposition module,LMD)引导不同分辨率的特征图进行融合,可以有效滤除特征图中的噪声;边界引导模块(boundary guided module,BGM)可以引导模型学习手术场景的边界特征。最后,展示了基于Lap Game腹腔镜模拟器搭建的分体式腔镜手术机器人,网络模型的分割结果可以映射在手术机器人的视野中,辅助医生进行腔镜手术。结果MDVNet在3个手术场景数据集上取得了最先进的结果,平均交并比分别为51.19%、71.28%和52.47%。结论本文提出了适用于腔镜手术场景分割的多尺度动态视觉网络MDVNet,并在搭建的分体式腔镜手术机器人上对所提出方法进行了验证。代码开源地址为:https://github.com/YubinHan73/MDVNet。 展开更多
关键词 腔镜手术机器人 语义分割 大核卷积 低秩矩阵分解(LMD) 边界分割
原文传递
基于WPG-KNMF的非线性动态过程监控研究
16
作者 张成 邓成龙 李元 《控制理论与应用》 北大核心 2025年第3期569-578,共10页
针对非线性动态过程故障检测问题,本文提出一种基于Wasserstein距离投影梯度核非负矩阵分解(WPGKN-MF)的故障检测方法.首先,采用投影梯度方法对KNMF的基矩阵和系数矩阵进行更新.其次,在高维特征空间中,使用Wasserstein距离结合滑动窗口... 针对非线性动态过程故障检测问题,本文提出一种基于Wasserstein距离投影梯度核非负矩阵分解(WPGKN-MF)的故障检测方法.首先,采用投影梯度方法对KNMF的基矩阵和系数矩阵进行更新.其次,在高维特征空间中,使用Wasserstein距离结合滑动窗口方法,构造新的统计量进行故障检测.本文方法将KNMF中迭代方法改进为投影梯度方法,通过KNMF将数据的非线性结构捕获,并结合Wasserstein距离消除样本间自相关性影响.通过一个数值例子和基于工业控制系统执行器诊断方法的开发与应用(DAMADICS)过程的实验数据进行仿真实验,与传统核主成分分析(KPCA)、核非负矩阵分解等方法进行对比,仿真结果验证了本文所提方法的有效性. 展开更多
关键词 核非负矩阵分解 非线性过程 动态过程 投影梯度 Wasserstein距离 故障检测
在线阅读 下载PDF
三相变频器回路串联故障电弧检测方法研究
17
作者 高洪鑫 王坤远 +1 位作者 王智勇 蔡佳成 《电子测量与仪器学报》 北大核心 2025年第1期203-215,共13页
串联故障电弧是引发电气火灾的主要因素之一,针对未知工况条件下串联故障电弧难以准确检测的问题,提出了一种基于实时训练更新核极限学习机(KELM)预测模型的串联故障电弧检测方法。首先,利用三相电动机和变频器负载开展了不同电源谐波... 串联故障电弧是引发电气火灾的主要因素之一,针对未知工况条件下串联故障电弧难以准确检测的问题,提出了一种基于实时训练更新核极限学习机(KELM)预测模型的串联故障电弧检测方法。首先,利用三相电动机和变频器负载开展了不同电源谐波、变频器载波频率、变频器运行频率和电流等级条件下的串联故障电弧实验;其次,利用奇异值分解滤波、改进一次指数平滑滤波依次对电流信号进行降噪处理;再次,利用前两个周波电流信号训练更新KELM预测模型,并计算预测模型对下一个周波电流信号的预测残差,然后利用预测残差绝对值构建矩阵,结合非负矩阵分解将残差矩阵降维成一维向量,并利用一维向量的最大值作为故障特征,结合固定阈值实现串联故障电弧检测;最后,测试了提出方法在未知工况条件下的串联故障电弧检测性能和抗噪性能。结果表明:提出方法可以有效检测出未知电源谐波、变频器载波频率、变频器运行频率和电流等级4类未知工况条件下的串联故障电弧,且具有较强的抗噪能力。 展开更多
关键词 串联故障电弧 核极限学习机 奇异值分解滤波 改进一次指数平滑滤波 预测残差 非负矩阵分解
原文传递
基于核相关滤波的多尺度目标跟踪方法
18
作者 李珣 魏忠民 +1 位作者 白波 牛睿博 《西安工程大学学报》 2025年第6期85-92,共8页
针对传统核相关滤波(kernelized correlation filter,KCF)跟踪算法缺乏尺度自适应机制,使其在目标遮挡、运动模糊及尺度变化等场景中跟踪性能显著下降的问题,提出一种改进的KCF多尺度目标(简称KCFC)跟踪算法。通过整合梯度方向直方图的... 针对传统核相关滤波(kernelized correlation filter,KCF)跟踪算法缺乏尺度自适应机制,使其在目标遮挡、运动模糊及尺度变化等场景中跟踪性能显著下降的问题,提出一种改进的KCF多尺度目标(简称KCFC)跟踪算法。通过整合梯度方向直方图的轮廓敏感性与颜色特征的光照不变性,形成互补特征描述用于增强表观表征的判别力。采用高斯核滤波器进行位置预测定位,引入循环矩阵与核技巧来增加样本与降低数据集冗余。构建尺度池捕捉目标在不同尺度下的外观特征,设计独立尺度滤波器建立尺度变化响应模型,实现对跟踪目标的位置跟踪与尺度估计。仿真跟踪实验结果表明:KCFC跟踪算法在OTB-100数据集上的平均精确率与成功率分别为77.5%与59.2%,相较于KCF跟踪算法提高了4百分点与11.5百分点,实时平均帧率稳定在137帧/s。真实场景跟踪实验结果表明:KCFC跟踪算法在低照度、部分遮挡和尺度变化等复杂环境下表现出优异的跟踪性能,能够在目标短暂丢失后实现重新定位,提升了复杂场景下的跟踪鲁棒性,为智能监控,自动驾驶等实时视觉系统提供了借鉴。 展开更多
关键词 目标跟踪 核相关滤波(KCF) 特征提取 循环矩阵 多尺度目标
在线阅读 下载PDF
一种用于Mecanum底盘的自适应路径规划算法 被引量:1
19
作者 黄晓宇 孙勇智 +2 位作者 李津蓉 刘薇 李恒通 《机械科学与技术》 北大核心 2025年第3期530-537,共8页
为解决狭小且复杂工作环境下,麦克纳姆轮自动导引车(Automated guided vehicle,AGV)最优路径规划问题,提出了一种基于麦克纳姆轮底盘运动学模型改进的A^(*)算法。首先,将麦克纳姆轮AGV等效为二维最小外接矩形,利用其全向移动特性设计路... 为解决狭小且复杂工作环境下,麦克纳姆轮自动导引车(Automated guided vehicle,AGV)最优路径规划问题,提出了一种基于麦克纳姆轮底盘运动学模型改进的A^(*)算法。首先,将麦克纳姆轮AGV等效为二维最小外接矩形,利用其全向移动特性设计路径搜索策略;其次为提高规划路径的安全性,依据模型特征构建了拓展模型避障矩阵;最后引入二维高斯核函数自适应调整算法实际代价函数和启发估计代价函数的权重系数,平衡搜索的全局性和快速性。仿真试验结果表明:改进的算法在搜索时间和安全性能均高于普通算法,提高了麦克纳姆轮AGV通过狭窄空间或转弯死角的能力,增强了路径搜索效率。 展开更多
关键词 麦克纳姆轮 A^(*)算法 外接矩形 拓展模型避障矩阵 二维高斯核函数
在线阅读 下载PDF
面向肿瘤早期诊断的延迟PET图像重建:多模态PET/CT核矩阵约束延迟成像算法
20
作者 宋志超 张建平 +4 位作者 张其阳 方玺 谢良 宋少莉 胡战利 《计算机科学》 北大核心 2025年第9期119-127,共9页
正电子发射断层扫描(PET)延迟成像在肿瘤异质性分析和治疗评估中具有重要意义,但其临床应用受限于分辨率低、噪声高和定量不准确等问题。计算机断层扫描(CT)能够提供高分辨率的解剖信息,但在肿瘤评估中缺乏功能信息,难以区分良恶性病变... 正电子发射断层扫描(PET)延迟成像在肿瘤异质性分析和治疗评估中具有重要意义,但其临床应用受限于分辨率低、噪声高和定量不准确等问题。计算机断层扫描(CT)能够提供高分辨率的解剖信息,但在肿瘤评估中缺乏功能信息,难以区分良恶性病变和评估代谢活动。虽然动态PET/CT融合能提升图像质量,但多次CT扫描会增加患者累积辐射暴露,不利于长期随访。针对上述问题,提出了一种超分增强PET/CT多模态核矩阵约束算法(SR-PET/CT-KMC)。该算法基于Stable Diffusion对初始扫描PET图像进行超分增强,并将其与初始扫描CT图像的解剖先验信息相结合,建立了多模态PET/CT核矩阵约束的期望最大化(EM)迭代框架。Stable Diffusion用于提升初始扫描PET的分辨率,而多模态PET/CT先验信息则用于抑制噪声和伪影。通过利用初始扫描CT的结构信息,降低了延迟成像中CT扫描的需求,从而减少了患者累积辐射暴露。实验结果表明,SR-PET/CT-KMC与PET-KEM相比,PSNR提高了6.23%,SSIM提高了9.64%,NRMSE降低了33.3%,MSE降低了13.92%;与CT-KEM相比,PSNR提高了4.05%,SSIM提高了1.11%,NRMSE降低了33.3%,MSE降低了8.11%。这些结果表明,SR-PET/CT-KMC在提升延迟扫描PET图像分辨率和定量准确性方面具有优势,为肿瘤代谢追踪提供了一种新的成像范式,提高了延迟PET成像的临床可行性。 展开更多
关键词 延迟成像 超分辨率PET 多模态核矩阵 生物医学 核方法
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部