期刊文献+
共找到359,018篇文章
< 1 2 250 >
每页显示 20 50 100
Adaptive feature selection method for high-dimensional imbalanced data classification
1
作者 WU Jianzhen XUE Zhen +1 位作者 ZHANG Liangliang YANG Xu 《Journal of Measurement Science and Instrumentation》 2025年第4期612-624,共13页
Data collected in fields such as cybersecurity and biomedicine often encounter high dimensionality and class imbalance.To address the problem of low classification accuracy for minority class samples arising from nume... Data collected in fields such as cybersecurity and biomedicine often encounter high dimensionality and class imbalance.To address the problem of low classification accuracy for minority class samples arising from numerous irrelevant and redundant features in high-dimensional imbalanced data,we proposed a novel feature selection method named AMF-SGSK based on adaptive multi-filter and subspace-based gaining sharing knowledge.Firstly,the balanced dataset was obtained by random under-sampling.Secondly,combining the feature importance score with the AUC score for each filter method,we proposed a concept called feature hardness to judge the importance of feature,which could adaptively select the essential features.Finally,the optimal feature subset was obtained by gaining sharing knowledge in multiple subspaces.This approach effectively achieved dimensionality reduction for high-dimensional imbalanced data.The experiment results on 30 benchmark imbalanced datasets showed that AMF-SGSK performed better than other eight commonly used algorithms including BGWO and IG-SSO in terms of F1-score,AUC,and G-mean.The mean values of F1-score,AUC,and Gmean for AMF-SGSK are 0.950,0.967,and 0.965,respectively,achieving the highest among all algorithms.And the mean value of Gmean is higher than those of IG-PSO,ReliefF-GWO,and BGOA by 3.72%,11.12%,and 20.06%,respectively.Furthermore,the selected feature ratio is below 0.01 across the selected ten datasets,further demonstrating the proposed method’s overall superiority over competing approaches.AMF-SGSK could adaptively remove irrelevant and redundant features and effectively improve the classification accuracy of high-dimensional imbalanced data,providing scientific and technological references for practical applications. 展开更多
关键词 high-dimensional imbalanced data adaptive feature selection adaptive multi-filter feature hardness gaining sharing knowledge based algorithm metaheuristic algorithm
在线阅读 下载PDF
Similarity measurement method of high-dimensional data based on normalized net lattice subspace 被引量:4
2
作者 李文法 Wang Gongming +1 位作者 Li Ke Huang Su 《High Technology Letters》 EI CAS 2017年第2期179-184,共6页
The performance of conventional similarity measurement methods is affected seriously by the curse of dimensionality of high-dimensional data.The reason is that data difference between sparse and noisy dimensionalities... The performance of conventional similarity measurement methods is affected seriously by the curse of dimensionality of high-dimensional data.The reason is that data difference between sparse and noisy dimensionalities occupies a large proportion of the similarity,leading to the dissimilarities between any results.A similarity measurement method of high-dimensional data based on normalized net lattice subspace is proposed.The data range of each dimension is divided into several intervals,and the components in different dimensions are mapped onto the corresponding interval.Only the component in the same or adjacent interval is used to calculate the similarity.To validate this method,three data types are used,and seven common similarity measurement methods are compared.The experimental result indicates that the relative difference of the method is increasing with the dimensionality and is approximately two or three orders of magnitude higher than the conventional method.In addition,the similarity range of this method in different dimensions is [0,1],which is fit for similarity analysis after dimensionality reduction. 展开更多
关键词 high-dimensional data the curse of dimensionality SIMILARITY NORMALIZATION SUBSPACE NPsim
在线阅读 下载PDF
Generalized Functional Linear Models:Efficient Modeling for High-dimensional Correlated Mixture Exposures
3
作者 Bingsong Zhang Haibin Yu +11 位作者 Xin Peng Haiyi Yan Siran Li Shutong Luo Renhuizi Wei Zhujiang Zhou Yalin Kuang Yihuan Zheng Chulan Ou Linhua Liu Yuehua Hu Jindong Ni 《Biomedical and Environmental Sciences》 2025年第8期961-976,共16页
Objective Humans are exposed to complex mixtures of environmental chemicals and other factors that can affect their health.Analysis of these mixture exposures presents several key challenges for environmental epidemio... Objective Humans are exposed to complex mixtures of environmental chemicals and other factors that can affect their health.Analysis of these mixture exposures presents several key challenges for environmental epidemiology and risk assessment,including high dimensionality,correlated exposure,and subtle individual effects.Methods We proposed a novel statistical approach,the generalized functional linear model(GFLM),to analyze the health effects of exposure mixtures.GFLM treats the effect of mixture exposures as a smooth function by reordering exposures based on specific mechanisms and capturing internal correlations to provide a meaningful estimation and interpretation.The robustness and efficiency was evaluated under various scenarios through extensive simulation studies.Results We applied the GFLM to two datasets from the National Health and Nutrition Examination Survey(NHANES).In the first application,we examined the effects of 37 nutrients on BMI(2011–2016 cycles).The GFLM identified a significant mixture effect,with fiber and fat emerging as the nutrients with the greatest negative and positive effects on BMI,respectively.For the second application,we investigated the association between four pre-and perfluoroalkyl substances(PFAS)and gout risk(2007–2018 cycles).Unlike traditional methods,the GFLM indicated no significant association,demonstrating its robustness to multicollinearity.Conclusion GFLM framework is a powerful tool for mixture exposure analysis,offering improved handling of correlated exposures and interpretable results.It demonstrates robust performance across various scenarios and real-world applications,advancing our understanding of complex environmental exposures and their health impacts on environmental epidemiology and toxicology. 展开更多
关键词 Mixture exposure modeling Functional data analysis high-dimensional data Correlated exposures Environmental epidemiology
暂未订购
A nearest neighbor search algorithm of high-dimensional data based on sequential NPsim matrix
4
作者 李文法 Wang Gongming +1 位作者 Ma Nan Liu Hongzhe 《High Technology Letters》 EI CAS 2016年第3期241-247,共7页
Problems existin similarity measurement and index tree construction which affect the performance of nearest neighbor search of high-dimensional data. The equidistance problem is solved using NPsim function to calculat... Problems existin similarity measurement and index tree construction which affect the performance of nearest neighbor search of high-dimensional data. The equidistance problem is solved using NPsim function to calculate similarity. And a sequential NPsim matrix is built to improve indexing performance. To sum up the above innovations,a nearest neighbor search algorithm of high-dimensional data based on sequential NPsim matrix is proposed in comparison with the nearest neighbor search algorithms based on KD-tree or SR-tree on Munsell spectral data set. Experimental results show that the proposed algorithm similarity is better than that of other algorithms and searching speed is more than thousands times of others. In addition,the slow construction speed of sequential NPsim matrix can be increased by using parallel computing. 展开更多
关键词 nearest neighbor search high-dimensional data SIMILARITY indexing tree NPsim KD-TREE SR-tree Munsell
在线阅读 下载PDF
An Optimal Big Data Analytics with Concept Drift Detection on High-Dimensional Streaming Data 被引量:1
5
作者 Romany F.Mansour Shaha Al-Otaibi +3 位作者 Amal Al-Rasheed Hanan Aljuaid Irina V.Pustokhina Denis A.Pustokhin 《Computers, Materials & Continua》 SCIE EI 2021年第9期2843-2858,共16页
Big data streams started becoming ubiquitous in recent years,thanks to rapid generation of massive volumes of data by different applications.It is challenging to apply existing data mining tools and techniques directl... Big data streams started becoming ubiquitous in recent years,thanks to rapid generation of massive volumes of data by different applications.It is challenging to apply existing data mining tools and techniques directly in these big data streams.At the same time,streaming data from several applications results in two major problems such as class imbalance and concept drift.The current research paper presents a new Multi-Objective Metaheuristic Optimization-based Big Data Analytics with Concept Drift Detection(MOMBD-CDD)method on High-Dimensional Streaming Data.The presented MOMBD-CDD model has different operational stages such as pre-processing,CDD,and classification.MOMBD-CDD model overcomes class imbalance problem by Synthetic Minority Over-sampling Technique(SMOTE).In order to determine the oversampling rates and neighboring point values of SMOTE,Glowworm Swarm Optimization(GSO)algorithm is employed.Besides,Statistical Test of Equal Proportions(STEPD),a CDD technique is also utilized.Finally,Bidirectional Long Short-Term Memory(Bi-LSTM)model is applied for classification.In order to improve classification performance and to compute the optimum parameters for Bi-LSTM model,GSO-based hyperparameter tuning process is carried out.The performance of the presented model was evaluated using high dimensional benchmark streaming datasets namely intrusion detection(NSL KDDCup)dataset and ECUE spam dataset.An extensive experimental validation process confirmed the effective outcome of MOMBD-CDD model.The proposed model attained high accuracy of 97.45%and 94.23%on the applied KDDCup99 Dataset and ECUE Spam datasets respectively. 展开更多
关键词 Streaming data concept drift classification model deep learning class imbalance data
在线阅读 下载PDF
Frequent item sets mining from high-dimensional dataset based on a novel binary particle swarm optimization 被引量:2
6
作者 张中杰 黄健 卫莹 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第7期1700-1708,共9页
A novel binary particle swarm optimization for frequent item sets mining from high-dimensional dataset(BPSO-HD) was proposed, where two improvements were joined. Firstly, the dimensionality reduction of initial partic... A novel binary particle swarm optimization for frequent item sets mining from high-dimensional dataset(BPSO-HD) was proposed, where two improvements were joined. Firstly, the dimensionality reduction of initial particles was designed to ensure the reasonable initial fitness, and then, the dynamically dimensionality cutting of dataset was built to decrease the search space. Based on four high-dimensional datasets, BPSO-HD was compared with Apriori to test its reliability, and was compared with the ordinary BPSO and quantum swarm evolutionary(QSE) to prove its advantages. The experiments show that the results given by BPSO-HD is reliable and better than the results generated by BPSO and QSE. 展开更多
关键词 data mining frequent item sets particle swarm optimization
在线阅读 下载PDF
Censored Composite Conditional Quantile Screening for High-Dimensional Survival Data
7
作者 LIU Wei LI Yingqiu 《应用概率统计》 CSCD 北大核心 2024年第5期783-799,共17页
In this paper,we introduce the censored composite conditional quantile coefficient(cC-CQC)to rank the relative importance of each predictor in high-dimensional censored regression.The cCCQC takes advantage of all usef... In this paper,we introduce the censored composite conditional quantile coefficient(cC-CQC)to rank the relative importance of each predictor in high-dimensional censored regression.The cCCQC takes advantage of all useful information across quantiles and can detect nonlinear effects including interactions and heterogeneity,effectively.Furthermore,the proposed screening method based on cCCQC is robust to the existence of outliers and enjoys the sure screening property.Simulation results demonstrate that the proposed method performs competitively on survival datasets of high-dimensional predictors,particularly when the variables are highly correlated. 展开更多
关键词 high-dimensional survival data censored composite conditional quantile coefficient sure screening property rank consistency property
在线阅读 下载PDF
Automatic Variable Selection for High-Dimensional Linear Models with Longitudinal Data 被引量:1
8
作者 Ruiqin Tian Liugen Xue 《Open Journal of Statistics》 2014年第1期38-48,共11页
High-dimensional longitudinal data arise frequently in biomedical and genomic research. It is important to select relevant covariates when the dimension of the parameters diverges as the sample size increases. We cons... High-dimensional longitudinal data arise frequently in biomedical and genomic research. It is important to select relevant covariates when the dimension of the parameters diverges as the sample size increases. We consider the problem of variable selection in high-dimensional linear models with longitudinal data. A new variable selection procedure is proposed using the smooth-threshold generalized estimating equation and quadratic inference functions (SGEE-QIF) to incorporate correlation information. The proposed procedure automatically eliminates inactive predictors by setting the corresponding parameters to be zero, and simultaneously estimates the nonzero regression coefficients by solving the SGEE-QIF. The proposed procedure avoids the convex optimization problem and is flexible and easy to implement. We establish the asymptotic properties in a high-dimensional framework where the number of covariates increases as the number of cluster increases. Extensive Monte Carlo simulation studies are conducted to examine the finite sample performance of the proposed variable selection procedure. 展开更多
关键词 Variable Selection Diverging Number of Parameters Longitudinal data QUADRATIC INFERENCE FUNCTIONS Generalized ESTIMATING EQUATION
暂未订购
Dimensionality Reduction of High-Dimensional Highly Correlated Multivariate Grapevine Dataset
9
作者 Uday Kant Jha Peter Bajorski +3 位作者 Ernest Fokoue Justine Vanden Heuvel Jan van Aardt Grant Anderson 《Open Journal of Statistics》 2017年第4期702-717,共16页
Viticulturists traditionally have a keen interest in studying the relationship between the biochemistry of grapevines’ leaves/petioles and their associated spectral reflectance in order to understand the fruit ripeni... Viticulturists traditionally have a keen interest in studying the relationship between the biochemistry of grapevines’ leaves/petioles and their associated spectral reflectance in order to understand the fruit ripening rate, water status, nutrient levels, and disease risk. In this paper, we implement imaging spectroscopy (hyperspectral) reflectance data, for the reflective 330 - 2510 nm wavelength region (986 total spectral bands), to assess vineyard nutrient status;this constitutes a high dimensional dataset with a covariance matrix that is ill-conditioned. The identification of the variables (wavelength bands) that contribute useful information for nutrient assessment and prediction, plays a pivotal role in multivariate statistical modeling. In recent years, researchers have successfully developed many continuous, nearly unbiased, sparse and accurate variable selection methods to overcome this problem. This paper compares four regularized and one functional regression methods: Elastic Net, Multi-Step Adaptive Elastic Net, Minimax Concave Penalty, iterative Sure Independence Screening, and Functional Data Analysis for wavelength variable selection. Thereafter, the predictive performance of these regularized sparse models is enhanced using the stepwise regression. This comparative study of regression methods using a high-dimensional and highly correlated grapevine hyperspectral dataset revealed that the performance of Elastic Net for variable selection yields the best predictive ability. 展开更多
关键词 high-dimensionAL data MULTI-STEP Adaptive Elastic Net MINIMAX CONCAVE Penalty Sure Independence Screening Functional data Analysis
暂未订购
A State-Migration Particle Swarm Optimizer for Adaptive Latent Factor Analysis of High-Dimensional and Incomplete Data
10
作者 Jiufang Chen Kechen Liu +4 位作者 Xin Luo Ye Yuan Khaled Sedraoui Yusuf Al-Turki MengChu Zhou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第11期2220-2235,共16页
High-dimensional and incomplete(HDI) matrices are primarily generated in all kinds of big-data-related practical applications. A latent factor analysis(LFA) model is capable of conducting efficient representation lear... High-dimensional and incomplete(HDI) matrices are primarily generated in all kinds of big-data-related practical applications. A latent factor analysis(LFA) model is capable of conducting efficient representation learning to an HDI matrix,whose hyper-parameter adaptation can be implemented through a particle swarm optimizer(PSO) to meet scalable requirements.However, conventional PSO is limited by its premature issues,which leads to the accuracy loss of a resultant LFA model. To address this thorny issue, this study merges the information of each particle's state migration into its evolution process following the principle of a generalized momentum method for improving its search ability, thereby building a state-migration particle swarm optimizer(SPSO), whose theoretical convergence is rigorously proved in this study. It is then incorporated into an LFA model for implementing efficient hyper-parameter adaptation without accuracy loss. Experiments on six HDI matrices indicate that an SPSO-incorporated LFA model outperforms state-of-the-art LFA models in terms of prediction accuracy for missing data of an HDI matrix with competitive computational efficiency.Hence, SPSO's use ensures efficient and reliable hyper-parameter adaptation in an LFA model, thus ensuring practicality and accurate representation learning for HDI matrices. 展开更多
关键词 data science generalized momentum high-dimensional and incomplete(HDI)data hyper-parameter adaptation latent factor analysis(LFA) particle swarm optimization(PSO)
在线阅读 下载PDF
New data assimilation system DNDAS for high-dimensional models
11
作者 皇群博 曹小群 +2 位作者 朱孟斌 张卫民 刘柏年 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第5期73-82,共10页
The tangent linear(TL) models and adjoint(AD) models have brought great difficulties for the development of variational data assimilation system. It might be impossible to develop them perfectly without great effo... The tangent linear(TL) models and adjoint(AD) models have brought great difficulties for the development of variational data assimilation system. It might be impossible to develop them perfectly without great efforts, either by hand, or by automatic differentiation tools. In order to break these limitations, a new data assimilation system, dual-number data assimilation system(DNDAS), is designed based on the dual-number automatic differentiation principles. We investigate the performance of DNDAS with two different optimization schemes and subsequently give a discussion on whether DNDAS is appropriate for high-dimensional forecast models. The new data assimilation system can avoid the complicated reverse integration of the adjoint model, and it only needs the forward integration in the dual-number space to obtain the cost function and its gradient vector concurrently. To verify the correctness and effectiveness of DNDAS, we implemented DNDAS on a simple ordinary differential model and the Lorenz-63 model with different optimization methods. We then concentrate on the adaptability of DNDAS to the Lorenz-96 model with high-dimensional state variables. The results indicate that whether the system is simple or nonlinear, DNDAS can accurately reconstruct the initial condition for the forecast model and has a strong anti-noise characteristic. Given adequate computing resource, the quasi-Newton optimization method performs better than the conjugate gradient method in DNDAS. 展开更多
关键词 data assimilation dual-number OPTIMIZATION dual-number data assimilation system
原文传递
Agent-Based Data Mining Framework for the High-Dimensional Environment
12
作者 李侃 刘玉树 《Journal of Beijing Institute of Technology》 EI CAS 2005年第2期113-116,共4页
An agent-based data mining framework for the high-dimensional environment is built instead of the style of classical structural programming or the object-oriented programming. The framework supports the whole process ... An agent-based data mining framework for the high-dimensional environment is built instead of the style of classical structural programming or the object-oriented programming. The framework supports the whole process of data mining of the high-dimensional environment. Belief-desire-joint intention agents are designed to fit the characteristic of the high-dimensional environment. At the same time, the syntax, semantics and reasoning rules of the agents are given. In the data mining system of the high-dimensional environment, agents need exchange messages. The cooperation behavior mechanism is adopted to complete the communication through the three-level pattern among agents that have their own fixed roles. 展开更多
关键词 AGENT belief-desire-joint intention communication PLANNING data mining
在线阅读 下载PDF
Optimal Estimation of High-Dimensional Covariance Matrices with Missing and Noisy Data
13
作者 Meiyin Wang Wanzhou Ye 《Advances in Pure Mathematics》 2024年第4期214-227,共14页
The estimation of covariance matrices is very important in many fields, such as statistics. In real applications, data are frequently influenced by high dimensions and noise. However, most relevant studies are based o... The estimation of covariance matrices is very important in many fields, such as statistics. In real applications, data are frequently influenced by high dimensions and noise. However, most relevant studies are based on complete data. This paper studies the optimal estimation of high-dimensional covariance matrices based on missing and noisy sample under the norm. First, the model with sub-Gaussian additive noise is presented. The generalized sample covariance is then modified to define a hard thresholding estimator , and the minimax upper bound is derived. After that, the minimax lower bound is derived, and it is concluded that the estimator presented in this article is rate-optimal. Finally, numerical simulation analysis is performed. The result shows that for missing samples with sub-Gaussian noise, if the true covariance matrix is sparse, the hard thresholding estimator outperforms the traditional estimate method. 展开更多
关键词 high-dimensional Covariance Matrix Missing data Sub-Gaussian Noise Optimal Estimation
在线阅读 下载PDF
Subspace Clustering in High-Dimensional Data Streams:A Systematic Literature Review
14
作者 Nur Laila Ab Ghani Izzatdin Abdul Aziz Said Jadid AbdulKadir 《Computers, Materials & Continua》 SCIE EI 2023年第5期4649-4668,共20页
Clustering high dimensional data is challenging as data dimensionality increases the distance between data points,resulting in sparse regions that degrade clustering performance.Subspace clustering is a common approac... Clustering high dimensional data is challenging as data dimensionality increases the distance between data points,resulting in sparse regions that degrade clustering performance.Subspace clustering is a common approach for processing high-dimensional data by finding relevant features for each cluster in the data space.Subspace clustering methods extend traditional clustering to account for the constraints imposed by data streams.Data streams are not only high-dimensional,but also unbounded and evolving.This necessitates the development of subspace clustering algorithms that can handle high dimensionality and adapt to the unique characteristics of data streams.Although many articles have contributed to the literature review on data stream clustering,there is currently no specific review on subspace clustering algorithms in high-dimensional data streams.Therefore,this article aims to systematically review the existing literature on subspace clustering of data streams in high-dimensional streaming environments.The review follows a systematic methodological approach and includes 18 articles for the final analysis.The analysis focused on two research questions related to the general clustering process and dealing with the unbounded and evolving characteristics of data streams.The main findings relate to six elements:clustering process,cluster search,subspace search,synopsis structure,cluster maintenance,and evaluation measures.Most algorithms use a two-phase clustering approach consisting of an initialization stage,a refinement stage,a cluster maintenance stage,and a final clustering stage.The density-based top-down subspace clustering approach is more widely used than the others because it is able to distinguish true clusters and outliers using projected microclusters.Most algorithms implicitly adapt to the evolving nature of the data stream by using a time fading function that is sensitive to outliers.Future work can focus on the clustering framework,parameter optimization,subspace search techniques,memory-efficient synopsis structures,explicit cluster change detection,and intrinsic performance metrics.This article can serve as a guide for researchers interested in high-dimensional subspace clustering methods for data streams. 展开更多
关键词 CLUSTERING subspace clustering projected clustering data stream stream clustering high dimensionality evolving data stream concept drift
在线阅读 下载PDF
A Composite Loss-Based Autoencoder for Accurate and Scalable Missing Data Imputation
15
作者 Thierry Mugenzi Cahit Perkgoz 《Computers, Materials & Continua》 2026年第1期1985-2005,共21页
Missing data presents a crucial challenge in data analysis,especially in high-dimensional datasets,where missing data often leads to biased conclusions and degraded model performance.In this study,we present a novel a... Missing data presents a crucial challenge in data analysis,especially in high-dimensional datasets,where missing data often leads to biased conclusions and degraded model performance.In this study,we present a novel autoencoder-based imputation framework that integrates a composite loss function to enhance robustness and precision.The proposed loss combines(i)a guided,masked mean squared error focusing on missing entries;(ii)a noise-aware regularization term to improve resilience against data corruption;and(iii)a variance penalty to encourage expressive yet stable reconstructions.We evaluate the proposed model across four missingness mechanisms,such as Missing Completely at Random,Missing at Random,Missing Not at Random,and Missing Not at Random with quantile censorship,under systematically varied feature counts,sample sizes,and missingness ratios ranging from 5%to 60%.Four publicly available real-world datasets(Stroke Prediction,Pima Indians Diabetes,Cardiovascular Disease,and Framingham Heart Study)were used,and the obtained results show that our proposed model consistently outperforms baseline methods,including traditional and deep learning-based techniques.An ablation study reveals the additive value of each component in the loss function.Additionally,we assessed the downstream utility of imputed data through classification tasks,where datasets imputed by the proposed method yielded the highest receiver operating characteristic area under the curve scores across all scenarios.The model demonstrates strong scalability and robustness,improving performance with larger datasets and higher feature counts.These results underscore the capacity of the proposed method to produce not only numerically accurate but also semantically useful imputations,making it a promising solution for robust data recovery in clinical applications. 展开更多
关键词 Missing data imputation autoencoder deep learning missing mechanisms
在线阅读 下载PDF
Advances in Machine Learning for Explainable Intrusion Detection Using Imbalance Datasets in Cybersecurity with Harris Hawks Optimization
16
作者 Amjad Rehman Tanzila Saba +2 位作者 Mona M.Jamjoom Shaha Al-Otaibi Muhammad I.Khan 《Computers, Materials & Continua》 2026年第1期1804-1818,共15页
Modern intrusion detection systems(MIDS)face persistent challenges in coping with the rapid evolution of cyber threats,high-volume network traffic,and imbalanced datasets.Traditional models often lack the robustness a... Modern intrusion detection systems(MIDS)face persistent challenges in coping with the rapid evolution of cyber threats,high-volume network traffic,and imbalanced datasets.Traditional models often lack the robustness and explainability required to detect novel and sophisticated attacks effectively.This study introduces an advanced,explainable machine learning framework for multi-class IDS using the KDD99 and IDS datasets,which reflects real-world network behavior through a blend of normal and diverse attack classes.The methodology begins with sophisticated data preprocessing,incorporating both RobustScaler and QuantileTransformer to address outliers and skewed feature distributions,ensuring standardized and model-ready inputs.Critical dimensionality reduction is achieved via the Harris Hawks Optimization(HHO)algorithm—a nature-inspired metaheuristic modeled on hawks’hunting strategies.HHO efficiently identifies the most informative features by optimizing a fitness function based on classification performance.Following feature selection,the SMOTE is applied to the training data to resolve class imbalance by synthetically augmenting underrepresented attack types.The stacked architecture is then employed,combining the strengths of XGBoost,SVM,and RF as base learners.This layered approach improves prediction robustness and generalization by balancing bias and variance across diverse classifiers.The model was evaluated using standard classification metrics:precision,recall,F1-score,and overall accuracy.The best overall performance was recorded with an accuracy of 99.44%for UNSW-NB15,demonstrating the model’s effectiveness.After balancing,the model demonstrated a clear improvement in detecting the attacks.We tested the model on four datasets to show the effectiveness of the proposed approach and performed the ablation study to check the effect of each parameter.Also,the proposed model is computationaly efficient.To support transparency and trust in decision-making,explainable AI(XAI)techniques are incorporated that provides both global and local insight into feature contributions,and offers intuitive visualizations for individual predictions.This makes it suitable for practical deployment in cybersecurity environments that demand both precision and accountability. 展开更多
关键词 Intrusion detection XAI machine learning ensemble method CYBERSECURITY imbalance data
在线阅读 下载PDF
Enhanced Capacity Reversible Data Hiding Based on Pixel Value Ordering in Triple Stego Images
17
作者 Kim Sao Nguyen Ngoc Dung Bui 《Computers, Materials & Continua》 2026年第1期1571-1586,共16页
Reversible data hiding(RDH)enables secret data embedding while preserving complete cover image recovery,making it crucial for applications requiring image integrity.The pixel value ordering(PVO)technique used in multi... Reversible data hiding(RDH)enables secret data embedding while preserving complete cover image recovery,making it crucial for applications requiring image integrity.The pixel value ordering(PVO)technique used in multi-stego images provides good image quality but often results in low embedding capability.To address these challenges,this paper proposes a high-capacity RDH scheme based on PVO that generates three stego images from a single cover image.The cover image is partitioned into non-overlapping blocks with pixels sorted in ascending order.Four secret bits are embedded into each block’s maximum pixel value,while three additional bits are embedded into the second-largest value when the pixel difference exceeds a predefined threshold.A similar embedding strategy is also applied to the minimum side of the block,including the second-smallest pixel value.This design enables each block to embed up to 14 bits of secret data.Experimental results demonstrate that the proposed method achieves significantly higher embedding capacity and improved visual quality compared to existing triple-stego RDH approaches,advancing the field of reversible steganography. 展开更多
关键词 RDH reversible data hiding PVO RDH base three stego images
在线阅读 下载PDF
Graph-Based Unified Settlement Framework for Complex Electricity Markets:Data Integration and Automated Refund Clearing
18
作者 Xiaozhe Guo Suyan Long +4 位作者 Ziyu Yue Yifan Wang Guanting Yin Yuyang Wang Zhaoyuan Wu 《Energy Engineering》 2026年第1期56-90,共35页
The increasing complexity of China’s electricity market creates substantial challenges for settlement automation,data consistency,and operational scalability.Existing provincial settlement systems are fragmented,lack... The increasing complexity of China’s electricity market creates substantial challenges for settlement automation,data consistency,and operational scalability.Existing provincial settlement systems are fragmented,lack a unified data structure,and depend heavily on manual intervention to process high-frequency and retroactive transactions.To address these limitations,a graph-based unified settlement framework is proposed to enhance automation,flexibility,and adaptability in electricity market settlements.A flexible attribute-graph model is employed to represent heterogeneousmulti-market data,enabling standardized integration,rapid querying,and seamless adaptation to evolving business requirements.An extensible operator library is designed to support configurable settlement rules,and a suite of modular tools—including dataset generation,formula configuration,billing templates,and task scheduling—facilitates end-to-end automated settlement processing.A robust refund-clearing mechanism is further incorporated,utilizing sandbox execution,data-version snapshots,dynamic lineage tracing,and real-time changecapture technologies to enable rapid and accurate recalculations under dynamic policy and data revisions.Case studies based on real-world data from regional Chinese markets validate the effectiveness of the proposed approach,demonstrating marked improvements in computational efficiency,system robustness,and automation.Moreover,enhanced settlement accuracy and high temporal granularity improve price-signal fidelity,promote cost-reflective tariffs,and incentivize energy-efficient and demand-responsive behavior among market participants.The method not only supports equitable and transparent market operations but also provides a generalizable,scalable foundation for modern electricity settlement platforms in increasingly complex and dynamic market environments. 展开更多
关键词 Electricity market market settlement data model graph database market refund clearing
在线阅读 下载PDF
Impact of Data Processing Techniques on AI Models for Attack-Based Imbalanced and Encrypted Traffic within IoT Environments
19
作者 Yeasul Kim Chaeeun Won Hwankuk Kim 《Computers, Materials & Continua》 2026年第1期247-274,共28页
With the increasing emphasis on personal information protection,encryption through security protocols has emerged as a critical requirement in data transmission and reception processes.Nevertheless,IoT ecosystems comp... With the increasing emphasis on personal information protection,encryption through security protocols has emerged as a critical requirement in data transmission and reception processes.Nevertheless,IoT ecosystems comprise heterogeneous networks where outdated systems coexist with the latest devices,spanning a range of devices from non-encrypted ones to fully encrypted ones.Given the limited visibility into payloads in this context,this study investigates AI-based attack detection methods that leverage encrypted traffic metadata,eliminating the need for decryption and minimizing system performance degradation—especially in light of these heterogeneous devices.Using the UNSW-NB15 and CICIoT-2023 dataset,encrypted and unencrypted traffic were categorized according to security protocol,and AI-based intrusion detection experiments were conducted for each traffic type based on metadata.To mitigate the problem of class imbalance,eight different data sampling techniques were applied.The effectiveness of these sampling techniques was then comparatively analyzed using two ensemble models and three Deep Learning(DL)models from various perspectives.The experimental results confirmed that metadata-based attack detection is feasible using only encrypted traffic.In the UNSW-NB15 dataset,the f1-score of encrypted traffic was approximately 0.98,which is 4.3%higher than that of unencrypted traffic(approximately 0.94).In addition,analysis of the encrypted traffic in the CICIoT-2023 dataset using the same method showed a significantly lower f1-score of roughly 0.43,indicating that the quality of the dataset and the preprocessing approach have a substantial impact on detection performance.Furthermore,when data sampling techniques were applied to encrypted traffic,the recall in the UNSWNB15(Encrypted)dataset improved by up to 23.0%,and in the CICIoT-2023(Encrypted)dataset by 20.26%,showing a similar level of improvement.Notably,in CICIoT-2023,f1-score and Receiver Operation Characteristic-Area Under the Curve(ROC-AUC)increased by 59.0%and 55.94%,respectively.These results suggest that data sampling can have a positive effect even in encrypted environments.However,the extent of the improvement may vary depending on data quality,model architecture,and sampling strategy. 展开更多
关键词 Encrypted traffic attack detection data sampling technique AI-based detection IoT environment
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部