Metal-support interactions and hydrogen spillover effects in heterogeneous catalysts play a crucial role in aromatic hydrogenation reactions;however,these effects are limited by the metal dispersion on the catalyst an...Metal-support interactions and hydrogen spillover effects in heterogeneous catalysts play a crucial role in aromatic hydrogenation reactions;however,these effects are limited by the metal dispersion on the catalyst and the number of acceptable H*receptors.This study prepares highly dispersed Ni nanoparticles(NPs)catalysts on a Beta substrate via precursor structure topology transformation.In contrast to traditional support materials,the coordination and electronic structure changes between the Ni NPs and the support were achieved,further optimizing the active interface sites and enhancing hydrogen activation and hydrogenation performance.Additionally,the-OH groups at the strong acid sites in zeolite effectively intensified the hydrogen spillover effect as receptors for H^(*)migration and anchoring,accelerating the hydrogenation rate of aromatic rings.Under solvent-free conditions,this catalyst was used for the hydrogenation reaction of aromatic-rich oils,directly producing a C_(8)-C_(14)branched cycloalkanes mixture with an aromatic conversion rate of>99%.The cycloalkanes mixture produced by this method features high density(0.92 g/mL)and a low freezing point(<-60℃),making it suitable for use as high-density aviation fuel or as an additive to enhance the volumetric heat value of conventional aviation fuels in practical applications.展开更多
In rotationally extruded fittings,high-density polyethylene(HDPE)pipes prepared using conventional processing methods often suffer from poor pressure resistance and low toughness.This study introduces an innovative ro...In rotationally extruded fittings,high-density polyethylene(HDPE)pipes prepared using conventional processing methods often suffer from poor pressure resistance and low toughness.This study introduces an innovative rotary shear system(RSS)to address these deficiencies through controlled mandrel rotation and cooling rates.We successfully prepared self-reinforced HDPE pipes with a three-layer structure combining spherical and shish-kebab crystals.Rotational processing aligned the molecular chains in the ring direction and formed shish-kebab crystals.As a result,the annular tensile strength of the rotationally processed three-layer shish-kebab structure(TSK)pipe increased from 26.7 MPa to 76.3 MPa,an enhancement of 185.8%.Notably,while maintaining excellent tensile strength(73.4 MPa),the elongation at break of the spherulite shishkebab spherulite(SKS)tubes was improved to 50.1%,as compared to 33.8%in the case of shish-kebab spherulite shish-kebab(KSK)tubes.This improvement can be attributed to the changes in the micro-morphology and polymer structure within the SKS tubes,specifically due to the formation of small-sized shish-kebab crystals and the low degrees of interlocking.In addition,2D-SAXS analysis revealed that KSK tubes have higher tensile strength due to smaller crystal sizes and larger shish dimensions,forming dense interlocking structures.In contrast,the SKS and TSK tubes had thicker amorphous regions and smaller shish sizes,resulting in reduced interlocking and mechanical performance.展开更多
Evaluation of backfilling effectiveness plays a crucial role in the geological environment management and restoration of abandoned open-pit quarries,providing a scientific basis for subsequent greening efforts.Backfil...Evaluation of backfilling effectiveness plays a crucial role in the geological environment management and restoration of abandoned open-pit quarries,providing a scientific basis for subsequent greening efforts.Backfill soil,predominantly composed of silty clay,demonstrates high water retention capacity and elevated moisture content,leading to a pronounced resistivity contrast with the bedrock exposed by quarrying activities.To investigate the distribution of backfill soil subsurface and assess backfilling effectiveness in the study area,this study conducted a comprehensive geophysical investigation utilizing the high-density electrical resistivity tomography(ERT).A total of 19 ERT survey lines were deployed across three distinct areas in Liuyao Village,Huaibei City,Anhui Province,China.The inversion results,derived from both two-dimensional(2D)and three-dimensional(3D),reveal distinct electrical properties of the subsurface materials:the backfill soil layer shows low resistivity features,the fill stone layer exhibits medium to high resistivity,and the bedrock shows the highest resistivity.The 2D inversion results,from the data measured using the Wenner array effectively capture the spatial distribution and structural features of the backfill soil layer.The findings indicate a gradual east-west thinning of the clay layer within the quarry.Furthermore,the northern pit area exhibits a uniform distribution of backfill soil layer,indicative of effective backfilling operations.In contrast,the southern pit area lacks a well-defined clay layer,suggesting suboptimal backfilling effectiveness.展开更多
High-density interconnect(HDI)soft electronics that can integrate multiple individual functions into one miniaturized monolithic system is promising for applications related to smart healthcare,soft robotics,and human...High-density interconnect(HDI)soft electronics that can integrate multiple individual functions into one miniaturized monolithic system is promising for applications related to smart healthcare,soft robotics,and human-machine interactions.However,despite the recent advances,the development of three-dimensional(3D)soft electronics with both high resolution and high integration is still challenging because of the lack of efficient manufacturing methods to guarantee interlayer alignment of the high-density vias and reliable interlayer electrical conductivity.Here,an advanced 3D laser printing pathway,based on femtosecond laser direct writing(FLDW),is demonstrated for preparing liquid metal(LM)-based any layer HDI soft electronics.FLDW technology,with the characteristics of high spatial resolution and high precision,allows the maskless fabrication of high-resolution embedded LM microchannels and high-density vertical interconnect accesses for 3D integrated circuits.High-aspect-ratio blind/through LM microstructures are formed inside the elastomer due to the supermetalphobicity induced during laser ablation.The LM-based HDI circuit featuring high resolution(~1.5μm)and high integration(10-layer electrical interconnection)is achieved for customized soft electronics,including various customized multilayer passive electric components,soft multilayer circuit,and cross-scale multimode sensors.The 3D laser printing method provides a versatile approach for developing chip-level soft electronics.展开更多
Dislocation strengthening,as one of the methods to simultaneously enhance the room temperature strength and ductility of alloys,does not achieve the desired strengthening and plasticity effect during elevated-temperat...Dislocation strengthening,as one of the methods to simultaneously enhance the room temperature strength and ductility of alloys,does not achieve the desired strengthening and plasticity effect during elevated-temperature deformation.Here,we report a novel strategy to boost the dislocation multiplication and accumulation during deformation at elevated temperatures through dynamic strain aging(DSA).With the introduction of the rare-earth element Ho in Mg-Y-Zn alloy,Ho atoms diffuse toward dislocations during deformation at elevated temperatures,provoking the DSA effect,which increases the dislocation density significantly via the interactions of mobile dislocations and Ho atoms.The resulting alloy achieves a great enhancement of dislocation hardening and obtains the dual benefits of high strength and good ductility simultaneously at high homologous temperatures.The present work provides an effective strategy to enhancing the strength and ductility for elevated-temperature materials.展开更多
BACKGROUND The association between the uric acid-to-high-density lipoprotein cholesterol ratio(UHR)and mental health among individuals with type 2 diabetes mellitus(T2DM)has not been thoroughly investigated.AIM To exa...BACKGROUND The association between the uric acid-to-high-density lipoprotein cholesterol ratio(UHR)and mental health among individuals with type 2 diabetes mellitus(T2DM)has not been thoroughly investigated.AIM To examine the link between UHR and symptoms of depression and anxiety in patients with T2DM.METHODS A cross-sectional analysis was carried out from March 2023 to April 2024,involving participants diagnosed with T2DM.Data on sociodemographic characteristics,clinical parameters,and UHR values were systematically gathered.The Self-Rating Depression Scale(SDS)and Self-Rating Anxiety Scale(SAS)were utilized to evaluate depressive and anxiety symptoms,respectively.To assess the relationships between UHR and SDS/SAS scores,linear regression models were employed,incorporating adjustments for potential confounding variables.Additionally,smooth curve fitting and threshold effect analyses were conducted to explore potential nonlinear relationships.RESULTS A total of 285 patients with T2DM were included.Initial univariate analysis demonstrated a significant positive correlation between elevated UHR levels and higher SDS and SAS scores.Multivariate regression analysis revealed that a one-unit rise in UHR was associated with a 1.13-point increase in SDS scores(95%CI:0.69-1.58)and a 0.57-point increase in SAS scores(95%CI:0.20-0.93).After controlling for confounders,UHR remained positively correlated with SDS(β=1.55,95%CI:0.57-2.53)and SAS(β=0.72,95%CI:0.35-1.09).Nonlinear analysis identified critical thresholds at UHR values of 5.02 for SDS and 4.00 for SAS,beyond which the relationships between UHR and psychological symptom scores became markedly stronger(P<0.05).CONCLUSION Higher UHR levels are significantly linked to exacerbated depressive and anxiety symptoms in patients with T2DM.These results indicate that UHR may function as a promising biomarker to identify individuals at greater risk of mental health complications within this population.展开更多
Rapeseed mustard(Brassica juncea L.) is the third most important oilseed crop in the world, but the geneticmechanism underlying its massive phenotypic variation remains largely unexplored. In this study, specific leng...Rapeseed mustard(Brassica juncea L.) is the third most important oilseed crop in the world, but the geneticmechanism underlying its massive phenotypic variation remains largely unexplored. In this study, specific length amplified fragment sequencing(SLAF-Seq) was used to resequence a population comprising 197 F8recombinantinbred lines(RILs) derived from a cross between vegetable-type Qichi881 and oilseed-type YufengZC of B. juncea. In total, 438,895 high-quality SLAFs were discovered, 47,644 of which were polymorphic, and 3,887 of the polymorphic markers met the requirements for genetic map construction. The final map included 3,887 markers on 18 linkage groups and was 1,830.23 centiMorgan(cM) in length, with an average distance of 0.47 cM between adjacent markers. Using the newly constructed high-density genetic map, a total of 53 QTLs for erucicacid(EA), oleic acid(OA), and linolenic acid(LNA) were detected and integrated into eight consensus QTLswith two for each of these traits. For each of these three traits, two candidate genes were cloned and sequence analysis indicated colocalization with their respective consensus QTLs. The co-dominant allele-specific markers for Bju.FAD3.A03 and Bju.FAD3.B07 were developed and showed co-localization with their consensus QTLs andco-segregation with LNA content, further supporting the results of QTL mapping and bioinformatic analysis. Theexpression levels of the cloned homologous genes were also determined, and the genes were tightly correlatedwith the EA, OA and LNA contents of different lines. The results of this study will facilitate the improvement offatty acid traits and molecular breeding of B. juncea. Further uses of the high-density genetic map created in this study are also discussed.展开更多
Stroke survivors often face significant challenges when performing daily self-care activities due to upper limb motor impairments.Traditional surface electromyography(sEMG)analysis typically focuses on isolated hand p...Stroke survivors often face significant challenges when performing daily self-care activities due to upper limb motor impairments.Traditional surface electromyography(sEMG)analysis typically focuses on isolated hand postures,overlooking the complexity of object-interactive behaviors that are crucial for promoting patient independence.This study introduces a novel framework that combines high-density sEMG(HD-sEMG)signals with an improved Whale Optimization Algorithm(IWOA)-optimized Long Short-Term Memory(LSTM)network to address this limitation.The key contributions of this work include:(1)the creation of a specialized HD-sEMG dataset that captures nine continuous self-care behaviors,along with time and posture markers,to better reflect real-world patient interactions;(2)the development of a multi-channel feature fusion module based on Pascal’s theorem,which enables efficient signal segmentation and spatial–temporal feature extraction;and(3)the enhancement of the IWOA algorithm,which integrates optimal point set initialization,a diversity-driven pooling mechanism,and cosine-based differential evolution to optimize LSTM hyperparameters,thereby improving convergence and global search capabilities.Experimental results demonstrate superior performance,achieving 99.58%accuracy in self-care behavior recognition and 86.19%accuracy for 17 continuous gestures on the Ninapro db2 benchmark.The framework operates with low latency,meeting the real-time requirements for assistive devices.By enabling precise,context-aware recognition of daily activities,this work advances personalized rehabilitation technologies,empowering stroke patients to regain autonomy in self-care tasks.The proposed methodology offers a robust,scalable solution for clinical applications,bridging the gap between laboratory-based gesture recognition and practical,patient-centered care.展开更多
The 2D data processing adopted by the high-density resistivity method regards the geological structures as two degrees, which makes the results of the 2D data inversion only an approximate interpretation;the accuracy ...The 2D data processing adopted by the high-density resistivity method regards the geological structures as two degrees, which makes the results of the 2D data inversion only an approximate interpretation;the accuracy and effect can not meet the precise requirement of the inversion. Two typical models of the geological bodies were designed, and forward calculation was carried out using finite element method. The forward-modeled profiles were obtained. 1% Gaussian random error was added in the forward models and then 2D and 3D inversions using a high-density resistivity method were undertaken to realistically simulate field data and analyze the sensitivity of the 2D and 3D inversion algorithms to noise. Contrast between the 2D and 3D inversion results of least squares inversion shows that two inversion results of high-density resistivity method all can basically reflect the spatial position of an anomalous body. However, the 3D inversion can more effectively eliminate the influence of interference from Gaussian random error and better reflect the distribution of resistivity in the anomalous bodies. Overall, the 3D inversion was better than 2D inversion in terms of embodying anomalous body positions, morphology and resistivity properties.展开更多
Various previous studies have found a negative cor-relation between the risk of cardiovascular events and serum high-density lipoprotein(HDL) cholesterol levels. The reverse cholesterol transport, a pathway of choles-...Various previous studies have found a negative cor-relation between the risk of cardiovascular events and serum high-density lipoprotein(HDL) cholesterol levels. The reverse cholesterol transport, a pathway of choles-terol from peripheral tissue to liver which has several potent antiatherogenic properties. For instance, the particles of HDL mediate to transport cholesterol from cells in arterial tissues, particularly from atherosclerotic plaques, to the liver. Both ATP-binding cassette trans-porters(ABC) A1 and ABCG1 are membrane cholesterol transporters and have been implicated in mediating cholesterol effluxes from cells in the presence of HDL and apolipoprotein A-I, a major protein constituent of HDL. Previous studies demonstrated that ABCA1 and ABCG1 or the interaction between ABCA1 and ABCG1 exerted antiatherosclerotic effects. As a therapeutic approach for increasing HDL cholesterol levels, much focus has been placed on increasing HDL cholesterol levels as well as enhancing HDL biochemical functions. HDL therapies that use injections of reconstituted HDL, apoA-I mimetics, or full-length apoA-I have shown dramatic effectiveness. In particular, a novel apoA-I mi-metic peptide, Fukuoka University ApoA-I Mimetic Pep-tide, effectively removes cholesterol via specific ABCA1 and other transporters, such as ABCG1, and has an an-tiatherosclerotic effect by enhancing the biological func-tions of HDL without changing circulating HDL choles-terol levels. Thus, HDL-targeting therapy has significant atheroprotective potential, as it uses lipid transporter-targeting agents, and may prove to be a therapeutic tool for atherosclerotic cardiovascular diseases.展开更多
A profile of shallow crustal velocity structure(1–2 km) may greatly enhance interpretation of the sedimentary environment and shallow tectonic deformation.Recent advances in surface wave tomography, using ambient noi...A profile of shallow crustal velocity structure(1–2 km) may greatly enhance interpretation of the sedimentary environment and shallow tectonic deformation.Recent advances in surface wave tomography, using ambient noise data recorded with high-density seismic arrays, have improved the understanding of regional crustal structure. As the interest in detailed shallow crustal structure imaging has increased, dense seismic array methods have become increasingly efficient. This study used a high-density seismic array deployed in the Xinjiang basin in southeastern China, to record seismic data, which was then processed with the ambient noise tomography method. The high-density seismic array contained 203 short-period seismometers, spaced at short intervals(~ 400 m). The array collected continuous records of ambient noise for 32 days. Data preprocessing,cross correlation calculation, and Rayleigh surface wave phase-velocity dispersion curve extraction, yielded more than 16,000 Rayleigh surface wave phase-velocity dispersion curves, which were then analyzed using the direct-inversion method. Checkerboard tests indicate that the shear wave velocity is recovered in the study area, at depths of 0–1.4 km,with a lateral image resolution of ~ 400 m. Model test results show that the seismic array effectively images a 50 m thick slab at a depth of 0–300 m, a 150 m thick anomalous body at a depth of 300–600 m, and a 400 m thick anomalous body at a depth of 0.6–1.4 km. The shear wave velocity profile reveals features very similar to those detected by a deep seismic reflection profile across the study area. This demonstrates that analysis of shallow crustal velocity structure provides high-resolution imaging of crustal features.Thus, ambient noise tomography with a high-density seismic array may play an important role in imaging shallow crustal structure.展开更多
Synthesizing high-density fuel from lignocellulose can not only achieve green and low-carbon development,but also expand the feedstock source of hydrocarbon fuel.Here,we reported a route of producing high-density fuel...Synthesizing high-density fuel from lignocellulose can not only achieve green and low-carbon development,but also expand the feedstock source of hydrocarbon fuel.Here,we reported a route of producing high-density fuel from lignin oil and hemicellulose derivative cyclopentanol through alkylation and hydrodeoxygenation,HY with SiO_(2)/Al_(2)O_(3) molar ratio of 5.3 was screened as the alkylation catalyst in the reaction of model phenolic compounds and mixtures,and the reaction conditions were optimized to achieve conversion of phenolic compounds higher than 87%and selectivity of bicyclic and tricyclic products higher than 99%.Then two phenolic pools simulating the composition of two typic lignin oils were studied to validate the alkylation and analyze the competition mechanism of phenolic compounds in mixture system.Finally,real lignin oil from depolymerized of beech powder was tested,and notably80%of phenolic monomers in the oil were converted into fuel precursor.After hydrodeoxygenation,the alkylated product was converted to fuel blend with a density of 0.91 g/mL at 20℃and a freezing point lower than-60℃,very promising as high density fuel.This work provides a facile and energyefficient way of synthesizing high-performance jet fuel directly from lignocellulosic derivatives,which decreases processing energy consumption and improve the utilization rate of feedstock.展开更多
BACKGROUND:An increase in high-density lipoprotein(HDL)is well associated with a decreased cardiovascular risk,especially atherosclerosis.Recent studies suggest that lower levels of HDL may also be associated with an ...BACKGROUND:An increase in high-density lipoprotein(HDL)is well associated with a decreased cardiovascular risk,especially atherosclerosis.Recent studies suggest that lower levels of HDL may also be associated with an increased risk of sepsis and an increased rate of mortality in septic patients.However,this conclusion remains controversial.METHODS:MEDLINE,EMBASE,and CENTRAL databases were searched from inception to September 30,2019.All studies were conducted to evaluate the correlation of lipoprotein levels and the risk and outcomes of sepsis in adult patients.The primary outcomes were the risk and mortality of sepsis.RESULTS:Seven studies comprising 791 patients were included.Lower levels of HDL had no marked relevance with the risk of sepsis(odds radio[OR]for each 1 mg/dL increase,0.94;95%CI 0.86–1.02;P=0.078),whereas lower HDL levels were related to an increased mortality rate in septic patients(OR for below about median HDL levels,2.00;95%CI 1.23–3.24;P=0.005).CONCLUSION:This meta-analysis did not reveal a signifi cant association between lower HDL levels and an increase in the risk of sepsis,whereas it showed that lower HDL levels are associated with a higher mortality rate in septic adult patients.These findings suggest that HDL may be considered as a promising factor for the prevention and treatment of sepsis in the future.展开更多
Objective:Disturbances in lipid and lipoprotein profiles in patients after kidney transplantation (Tx) are still not understood. Methods:Serum levels of lipids,lipoprotein,triglyceride-rich lipoproteins (TRLs),and hig...Objective:Disturbances in lipid and lipoprotein profiles in patients after kidney transplantation (Tx) are still not understood. Methods:Serum levels of lipids,lipoprotein,triglyceride-rich lipoproteins (TRLs),and high-density lipoprotein (HDL) particles were determined,lipid and lipoprotein ratios were calculated,and their relationships in Tx patients with hypertriglyceridemia (HTG) and lower apolipoprotein AI (apoAI) concentration were examined. Serum lipid and lipoprotein levels were measured in 109 Tx patients and 89 healthy subjects. HDL particle levels were de-termined by enzyme-linked immunosorbent assay (ELISA). Results:Tx patients had disturbed concentration,com-position,and metabolism of TRLs and HDL particles. Multivariance analysis showed significant and positive correlation between HDL cholesterol/apoAI (HDL-C/apoAI) and HDL-C/HDL ratios,which indicates that both ratios could sensi-tively reflect changes in the HDL subclasses and their distribution into smaller size particles. In Tx patients,the de-creased HDL-C/apoAI ratio indicates that,along with the decreased apoAI concentration,the HDL-C level is de-creased. However,a low HDL-C/HDL ratio indicates that HDL particles in Tx patients transport lesser content of HDL-C but more triglyceride (TG) (high TG/HDL ratio),and thus are hypercatabolized and removed; therefore,con-centration of HDL particles in serum was decreased. Conclusion:The decrease of HDL-C/apoAI ratio seems to be a good marker of HDL subclass distribution into smaller size particles.展开更多
High-density lipoproteins (HDLs) have been well established to protect against the development of atherosclerotic cardiovascular disease. It has become apparent that in addition to the promotion of reverse cholester...High-density lipoproteins (HDLs) have been well established to protect against the development of atherosclerotic cardiovascular disease. It has become apparent that in addition to the promotion of reverse cholesterol transport, HDLs possess a number of additional functional properties that may contribute to their beneficial influence on the arterial wall. A number of exciting therapeutic strategies have been developed that target HDL and its ability to protect against the development of atherosclerotic plaque. This paper will review how the promotion of the functional properties of HDL inhibits the formation of atherosclerotic plaque and stabilises lesions in patients with established disease.展开更多
AIM: To investigate the possibility of recombinant highdensity lipoprotein (rHDL) being a carrier for delivering antitumoral drug to hepatoma cells. METHODS: Recombinant complex of HDL and aclacinomycin (rHDL-ACM) was...AIM: To investigate the possibility of recombinant highdensity lipoprotein (rHDL) being a carrier for delivering antitumoral drug to hepatoma cells. METHODS: Recombinant complex of HDL and aclacinomycin (rHDL-ACM) was prepared by cosonication of apoproteins from HDL (Apo HDL) and ACM as well as phosphatidylcholine. Characteristics of the rHDL-ACM were elucidated by electrophoretic mobility, including the size of particles, morphology and entrapment efficiency. Binding activity of rHDL-ACM to human hepatoma cells was determined by competition assay in the presence of excess native HDL. The cytotoxicity of rHDL-ACM was assessed by MTT method. RESULTS: The density range of rHDL-ACM was 1.063-1.210 g/mL, and the same as that of native HDL. The purity of all rHDL-ACM preparations was more than 92%. Encapsulated efficiencies of rHDL-ACM were more than 90%. rHDL-ACM particles were typical sphere model of lipoproteins and heterogeneous in particle size. The average diameter was 31.26±5.62 nm by measure of 110 rHDL-ACM particles in the range of diameter of lipoproteins. rHDL-ACM could bind on SMMC-7721 cells, and such binding could be competed against in the presence of excess native HDL. rHDL-ACM had same binding capacity as native HDL. The cellular uptake of rHDL-ACM by SMMC-7721 hepatoma cells was significantly higher than that of free ACM at the concentration range of 0.5-10 μg/mL (P<0.01). Cytotoxicity of rHDL-ACM to SMMC-7721 cells was significantly higher than that of free ACM at concentration range of less than 5 ug/mL (P<0.01) and IC50 of rHDL-ACM was lower than IC50 of free ACM (1.68 nmol/L vs3 nmol/L). Compared to L02 hepatocytes, a normal liver cell line, the cellular uptake of rHDL-ACM by SMMC-7721 cells was significantly higher (P<0.01) and in a dose-dependent manner at the concentration range of 0.5-10 μg/mL.Cytotoxicity of the rHDL-ACM to SMMC- 7721 cells was significantly higher than that to L02 cells at concentration range of 1-7.5μg/mL (P<0.01). IC50 for SMMC-7721 cells (1.68 nmol/L) was lower than that for L02 cells (5.68 nmol/L), showing a preferential cytotoxicity of rHDL-ACM for SMMC-7721 cells. CONCLUSION: rHDL-ACM complex keeps the basic physical and biological binding properties of native HDL and shows a preferential cytotoxicity for SMMC-7721 hepatoma to normal L02 hepatocytes, HDL is a potential carrier for delivering lipophilic antitumoral drug to hepatoma cells.展开更多
Low-density lipoprotein (LDL) extracted from hen egg yolk has recently been considered to be superior to whole egg yolk in sperm cryopreservation of various animal species. Meanwhile, there was a notion that high-de...Low-density lipoprotein (LDL) extracted from hen egg yolk has recently been considered to be superior to whole egg yolk in sperm cryopreservation of various animal species. Meanwhile, there was a notion that high-density lipoprotein (HDL) in egg yolk may have a negative effect on post-thaw survival. The role of LDL and HDL in sperm cryopreservation of rhesus monkeys has not been explored. The present study evaluates their effect in comparison with egg yolk with or without the addition of permeable cryoprotectant (glycerol) on sperm cryopreservation of rhesus macaques. In addition, various additives intended to change the lipid composition of LDL-sperm membrane complex have also been tested for their effectiveness in preserving post-thaw viability. Our findings indicated that LDL is the main component in egg yolk that is responsible for its protective role for sperm cryopreservation in rhesus monkeys. Regardless of the presence or absence of glycerol, the protective role of LDL is similar to that of egg yolk and we did not observe any superiority in post-thaw survival with LDL when compared to egg yolk. Modifying the lipid composition of LDL-sperm membrane complex with the addition of cholesterol, cholesterol loaded cyclodextrin and phosphatidylcholine also did not yield any improvements in pest-thaw survival; while addition of methyl-β-cyclodextrin reduced post-thaw motility. HDL plays a neutral role in sperm cryopreservation of rhesus monkeys. The present study suggests that egg yolk may still hold advantages when compared with LDL as effective components in extenders for sperm cryopreservation in rhesus monkeys.展开更多
We examined the effects of dietary proso-millet protein on plasma levels of high-density lipoprotein (HDL) cholesterol in different rats from animals reported in our previous studies. The results showed also, in this ...We examined the effects of dietary proso-millet protein on plasma levels of high-density lipoprotein (HDL) cholesterol in different rats from animals reported in our previous studies. The results showed also, in this animal, that the ingestion of the millet protein elevates plasma levels of HDL-cholesterol like our earlier works. Taking into account the anti-atherogenic function of HDL, therefore, the millet protein would be useful as a new food ingredient which has the function that regulates cholesterol metabolism展开更多
Grain number per spikelet (GNS) is a key determinant of grain yield in wheat.A recombinant inbred line population comprising 300 lines was developed from a cross between a high GNS variety H461 and Chinese Spring from...Grain number per spikelet (GNS) is a key determinant of grain yield in wheat.A recombinant inbred line population comprising 300 lines was developed from a cross between a high GNS variety H461 and Chinese Spring from which the reference genome assembly of bread wheat was obtained.Both parents and the recombinant inbred lines were genotyped using the wheat 55K single nucleotide polymorphism(SNP) array.A high-density genetic map containing 21,197 SNPs was obtained.These markers covered each of the 21 chromosomes with a total linkage distance of 3792.71 c M.Locations of these markers in this linkage map were highly consistent with their physical locations in the genome assembly of Chinese Spring.The two parents and the whole RIL population were assessed for GNS in two consecutive years at two different locations.Based on multi-environment phenotype data and best liner unbiased prediction values,three quantitative trait loci (QTL) for GNS were identified.One of them located on chromosomes 2B and the other two on 2D.Phenotypic variation explained by these loci varied from 3.07%to26.57%.One of these QTL,QGns.sicau-2D-2,was identified in each of all trials conducted.Based on the best linear unbiased prediction values,this locus explained 19.59%–26.57%of phenotypic variation.A KASP(Kompetitive Allele-Specific PCR) marker closely linked with this locus was generated and used to validate the effects of this locus in three different genetic backgrounds.The identified QTL and the KASP marker developed for it will be highly valuable in fine-mapping the locus and in exploiting it for markerassisted selection in wheat breeding programs.展开更多
There is a tight link between bone and lipid metabolic pathways.In this vein,several studies focused on the exploration of high-density lipoprotein(HDL)in the pathobiology of bone diseases,with emphasis to the osteoar...There is a tight link between bone and lipid metabolic pathways.In this vein,several studies focused on the exploration of high-density lipoprotein(HDL)in the pathobiology of bone diseases,with emphasis to the osteoarthritis(OA)and osteoporosis,the most common bone pathologies.Indeed,epidemiological and in vitro data have connected reduced HDL levels or dysfunctional HDL with cartilage destruction and OA development.Recent studies uncovered functional links between HDL and OA fueling the interesting hypothesis that OA could be a chronic element of the metabolic syndrome.Other studies have linked HDL to bone mineral density.Even though at epidemiological levels the results are conflicting,studies in animals as well as in vitro experiments have shown that HDL facilitates osteoblastogensis and bone synthesis and most probably affects osteoclastogenesis and osteoclast bone resorption.Notably,reduced HDL levels result in increased bone marrow adiposity affecting bone cells function.Unveiling the mechanisms that connect HDL and bone/cartilage homeostasis may contribute to the design of novel therapeutic agents for the improvement of bone and cartilage quality and thus for the treatment of related pathological conditions.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant 22278439,21776313)the Shandong Province Higher Education Youth Innovation Technology Support Program(Grant 2022KJ074)。
文摘Metal-support interactions and hydrogen spillover effects in heterogeneous catalysts play a crucial role in aromatic hydrogenation reactions;however,these effects are limited by the metal dispersion on the catalyst and the number of acceptable H*receptors.This study prepares highly dispersed Ni nanoparticles(NPs)catalysts on a Beta substrate via precursor structure topology transformation.In contrast to traditional support materials,the coordination and electronic structure changes between the Ni NPs and the support were achieved,further optimizing the active interface sites and enhancing hydrogen activation and hydrogenation performance.Additionally,the-OH groups at the strong acid sites in zeolite effectively intensified the hydrogen spillover effect as receptors for H^(*)migration and anchoring,accelerating the hydrogenation rate of aromatic rings.Under solvent-free conditions,this catalyst was used for the hydrogenation reaction of aromatic-rich oils,directly producing a C_(8)-C_(14)branched cycloalkanes mixture with an aromatic conversion rate of>99%.The cycloalkanes mixture produced by this method features high density(0.92 g/mL)and a low freezing point(<-60℃),making it suitable for use as high-density aviation fuel or as an additive to enhance the volumetric heat value of conventional aviation fuels in practical applications.
基金supported by the National Natural Science Foundation of China(Nos.52373045 and 52033005).
文摘In rotationally extruded fittings,high-density polyethylene(HDPE)pipes prepared using conventional processing methods often suffer from poor pressure resistance and low toughness.This study introduces an innovative rotary shear system(RSS)to address these deficiencies through controlled mandrel rotation and cooling rates.We successfully prepared self-reinforced HDPE pipes with a three-layer structure combining spherical and shish-kebab crystals.Rotational processing aligned the molecular chains in the ring direction and formed shish-kebab crystals.As a result,the annular tensile strength of the rotationally processed three-layer shish-kebab structure(TSK)pipe increased from 26.7 MPa to 76.3 MPa,an enhancement of 185.8%.Notably,while maintaining excellent tensile strength(73.4 MPa),the elongation at break of the spherulite shishkebab spherulite(SKS)tubes was improved to 50.1%,as compared to 33.8%in the case of shish-kebab spherulite shish-kebab(KSK)tubes.This improvement can be attributed to the changes in the micro-morphology and polymer structure within the SKS tubes,specifically due to the formation of small-sized shish-kebab crystals and the low degrees of interlocking.In addition,2D-SAXS analysis revealed that KSK tubes have higher tensile strength due to smaller crystal sizes and larger shish dimensions,forming dense interlocking structures.In contrast,the SKS and TSK tubes had thicker amorphous regions and smaller shish sizes,resulting in reduced interlocking and mechanical performance.
基金Supported by National Key Research and Development Program of China(No.2023YFC3707901)。
文摘Evaluation of backfilling effectiveness plays a crucial role in the geological environment management and restoration of abandoned open-pit quarries,providing a scientific basis for subsequent greening efforts.Backfill soil,predominantly composed of silty clay,demonstrates high water retention capacity and elevated moisture content,leading to a pronounced resistivity contrast with the bedrock exposed by quarrying activities.To investigate the distribution of backfill soil subsurface and assess backfilling effectiveness in the study area,this study conducted a comprehensive geophysical investigation utilizing the high-density electrical resistivity tomography(ERT).A total of 19 ERT survey lines were deployed across three distinct areas in Liuyao Village,Huaibei City,Anhui Province,China.The inversion results,derived from both two-dimensional(2D)and three-dimensional(3D),reveal distinct electrical properties of the subsurface materials:the backfill soil layer shows low resistivity features,the fill stone layer exhibits medium to high resistivity,and the bedrock shows the highest resistivity.The 2D inversion results,from the data measured using the Wenner array effectively capture the spatial distribution and structural features of the backfill soil layer.The findings indicate a gradual east-west thinning of the clay layer within the quarry.Furthermore,the northern pit area exhibits a uniform distribution of backfill soil layer,indicative of effective backfilling operations.In contrast,the southern pit area lacks a well-defined clay layer,suggesting suboptimal backfilling effectiveness.
基金supported by the National Science Foundation of China under the Grant Nos.12127806 and 62175195the International Joint Research Laboratory for Micro/Nano Manufacturing and Measurement Technologies。
文摘High-density interconnect(HDI)soft electronics that can integrate multiple individual functions into one miniaturized monolithic system is promising for applications related to smart healthcare,soft robotics,and human-machine interactions.However,despite the recent advances,the development of three-dimensional(3D)soft electronics with both high resolution and high integration is still challenging because of the lack of efficient manufacturing methods to guarantee interlayer alignment of the high-density vias and reliable interlayer electrical conductivity.Here,an advanced 3D laser printing pathway,based on femtosecond laser direct writing(FLDW),is demonstrated for preparing liquid metal(LM)-based any layer HDI soft electronics.FLDW technology,with the characteristics of high spatial resolution and high precision,allows the maskless fabrication of high-resolution embedded LM microchannels and high-density vertical interconnect accesses for 3D integrated circuits.High-aspect-ratio blind/through LM microstructures are formed inside the elastomer due to the supermetalphobicity induced during laser ablation.The LM-based HDI circuit featuring high resolution(~1.5μm)and high integration(10-layer electrical interconnection)is achieved for customized soft electronics,including various customized multilayer passive electric components,soft multilayer circuit,and cross-scale multimode sensors.The 3D laser printing method provides a versatile approach for developing chip-level soft electronics.
基金supported by the National Key Research and Development Project(2023YFA1609100)the NSFC Funding(U2141207,52171111,52001083)+6 种基金Natural Science Foundation of Heilongjiang(YQ2023E026)China Postdoctoral Science foundation(2024M754149)Postdoctoral Fellowship Program of CPSF(GZC20242192)support from the National Science Foundation(DMR-1611180 and 1809640)with the program directors,DrsHKU Seed Fund for Collaborative Research(#2207101618)support by Croucher Senior Research Fellowship and City U Project(Project No.9229019)Shenzhen Science and Technology Program(Project No.JCYJ20220818101203007)。
文摘Dislocation strengthening,as one of the methods to simultaneously enhance the room temperature strength and ductility of alloys,does not achieve the desired strengthening and plasticity effect during elevated-temperature deformation.Here,we report a novel strategy to boost the dislocation multiplication and accumulation during deformation at elevated temperatures through dynamic strain aging(DSA).With the introduction of the rare-earth element Ho in Mg-Y-Zn alloy,Ho atoms diffuse toward dislocations during deformation at elevated temperatures,provoking the DSA effect,which increases the dislocation density significantly via the interactions of mobile dislocations and Ho atoms.The resulting alloy achieves a great enhancement of dislocation hardening and obtains the dual benefits of high strength and good ductility simultaneously at high homologous temperatures.The present work provides an effective strategy to enhancing the strength and ductility for elevated-temperature materials.
基金Supported by Science and Technology Program of Quzhou,China,No.2022K67Zhejiang Medical Association Clinical Research Fund Project,No.2024ZYC-A526and the Research Project of Quzhou People’s Hospital,No.KYQD2024-006.
文摘BACKGROUND The association between the uric acid-to-high-density lipoprotein cholesterol ratio(UHR)and mental health among individuals with type 2 diabetes mellitus(T2DM)has not been thoroughly investigated.AIM To examine the link between UHR and symptoms of depression and anxiety in patients with T2DM.METHODS A cross-sectional analysis was carried out from March 2023 to April 2024,involving participants diagnosed with T2DM.Data on sociodemographic characteristics,clinical parameters,and UHR values were systematically gathered.The Self-Rating Depression Scale(SDS)and Self-Rating Anxiety Scale(SAS)were utilized to evaluate depressive and anxiety symptoms,respectively.To assess the relationships between UHR and SDS/SAS scores,linear regression models were employed,incorporating adjustments for potential confounding variables.Additionally,smooth curve fitting and threshold effect analyses were conducted to explore potential nonlinear relationships.RESULTS A total of 285 patients with T2DM were included.Initial univariate analysis demonstrated a significant positive correlation between elevated UHR levels and higher SDS and SAS scores.Multivariate regression analysis revealed that a one-unit rise in UHR was associated with a 1.13-point increase in SDS scores(95%CI:0.69-1.58)and a 0.57-point increase in SAS scores(95%CI:0.20-0.93).After controlling for confounders,UHR remained positively correlated with SDS(β=1.55,95%CI:0.57-2.53)and SAS(β=0.72,95%CI:0.35-1.09).Nonlinear analysis identified critical thresholds at UHR values of 5.02 for SDS and 4.00 for SAS,beyond which the relationships between UHR and psychological symptom scores became markedly stronger(P<0.05).CONCLUSION Higher UHR levels are significantly linked to exacerbated depressive and anxiety symptoms in patients with T2DM.These results indicate that UHR may function as a promising biomarker to identify individuals at greater risk of mental health complications within this population.
基金funded by the Scientific and Technological Key Program of Guizhou Province, China (Qiankehezhicheng [2022] Key 031)the National Natural Science Foundation of China (32160483 and 32360497)+2 种基金the Post-Funded Project for the National Natural Science Foundation of China from Guizhou University ([2023]093)the Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, China (Qiankehezhongyindi [2023]008)the Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions, China (Qianjiaoji [2023] 007)。
文摘Rapeseed mustard(Brassica juncea L.) is the third most important oilseed crop in the world, but the geneticmechanism underlying its massive phenotypic variation remains largely unexplored. In this study, specific length amplified fragment sequencing(SLAF-Seq) was used to resequence a population comprising 197 F8recombinantinbred lines(RILs) derived from a cross between vegetable-type Qichi881 and oilseed-type YufengZC of B. juncea. In total, 438,895 high-quality SLAFs were discovered, 47,644 of which were polymorphic, and 3,887 of the polymorphic markers met the requirements for genetic map construction. The final map included 3,887 markers on 18 linkage groups and was 1,830.23 centiMorgan(cM) in length, with an average distance of 0.47 cM between adjacent markers. Using the newly constructed high-density genetic map, a total of 53 QTLs for erucicacid(EA), oleic acid(OA), and linolenic acid(LNA) were detected and integrated into eight consensus QTLswith two for each of these traits. For each of these three traits, two candidate genes were cloned and sequence analysis indicated colocalization with their respective consensus QTLs. The co-dominant allele-specific markers for Bju.FAD3.A03 and Bju.FAD3.B07 were developed and showed co-localization with their consensus QTLs andco-segregation with LNA content, further supporting the results of QTL mapping and bioinformatic analysis. Theexpression levels of the cloned homologous genes were also determined, and the genes were tightly correlatedwith the EA, OA and LNA contents of different lines. The results of this study will facilitate the improvement offatty acid traits and molecular breeding of B. juncea. Further uses of the high-density genetic map created in this study are also discussed.
基金supported by the National Natural Science Foundation of China(72061006)the research on the auxiliary diagnosis system of chronic injury of levator scapulae based on the concept of digital twin(Contract No:Qian Kehe Support[2023]General 117)Research on indoor intelligent assisted walking robot for the rehabilitation of walking ability of the elderly(Contract No:Qian kehe Support[2023]General 124).
文摘Stroke survivors often face significant challenges when performing daily self-care activities due to upper limb motor impairments.Traditional surface electromyography(sEMG)analysis typically focuses on isolated hand postures,overlooking the complexity of object-interactive behaviors that are crucial for promoting patient independence.This study introduces a novel framework that combines high-density sEMG(HD-sEMG)signals with an improved Whale Optimization Algorithm(IWOA)-optimized Long Short-Term Memory(LSTM)network to address this limitation.The key contributions of this work include:(1)the creation of a specialized HD-sEMG dataset that captures nine continuous self-care behaviors,along with time and posture markers,to better reflect real-world patient interactions;(2)the development of a multi-channel feature fusion module based on Pascal’s theorem,which enables efficient signal segmentation and spatial–temporal feature extraction;and(3)the enhancement of the IWOA algorithm,which integrates optimal point set initialization,a diversity-driven pooling mechanism,and cosine-based differential evolution to optimize LSTM hyperparameters,thereby improving convergence and global search capabilities.Experimental results demonstrate superior performance,achieving 99.58%accuracy in self-care behavior recognition and 86.19%accuracy for 17 continuous gestures on the Ninapro db2 benchmark.The framework operates with low latency,meeting the real-time requirements for assistive devices.By enabling precise,context-aware recognition of daily activities,this work advances personalized rehabilitation technologies,empowering stroke patients to regain autonomy in self-care tasks.The proposed methodology offers a robust,scalable solution for clinical applications,bridging the gap between laboratory-based gesture recognition and practical,patient-centered care.
基金Projects(41074085,41374118)supported by the National Natural Science Foundation of ChinaProject(20120162110015)supported by Doctoral Fund of Ministry of Education of ChinaProject(NCET-12-0551)supported by Program for New Century Excellent Talents in University,China
文摘The 2D data processing adopted by the high-density resistivity method regards the geological structures as two degrees, which makes the results of the 2D data inversion only an approximate interpretation;the accuracy and effect can not meet the precise requirement of the inversion. Two typical models of the geological bodies were designed, and forward calculation was carried out using finite element method. The forward-modeled profiles were obtained. 1% Gaussian random error was added in the forward models and then 2D and 3D inversions using a high-density resistivity method were undertaken to realistically simulate field data and analyze the sensitivity of the 2D and 3D inversion algorithms to noise. Contrast between the 2D and 3D inversion results of least squares inversion shows that two inversion results of high-density resistivity method all can basically reflect the spatial position of an anomalous body. However, the 3D inversion can more effectively eliminate the influence of interference from Gaussian random error and better reflect the distribution of resistivity in the anomalous bodies. Overall, the 3D inversion was better than 2D inversion in terms of embodying anomalous body positions, morphology and resistivity properties.
文摘Various previous studies have found a negative cor-relation between the risk of cardiovascular events and serum high-density lipoprotein(HDL) cholesterol levels. The reverse cholesterol transport, a pathway of choles-terol from peripheral tissue to liver which has several potent antiatherogenic properties. For instance, the particles of HDL mediate to transport cholesterol from cells in arterial tissues, particularly from atherosclerotic plaques, to the liver. Both ATP-binding cassette trans-porters(ABC) A1 and ABCG1 are membrane cholesterol transporters and have been implicated in mediating cholesterol effluxes from cells in the presence of HDL and apolipoprotein A-I, a major protein constituent of HDL. Previous studies demonstrated that ABCA1 and ABCG1 or the interaction between ABCA1 and ABCG1 exerted antiatherosclerotic effects. As a therapeutic approach for increasing HDL cholesterol levels, much focus has been placed on increasing HDL cholesterol levels as well as enhancing HDL biochemical functions. HDL therapies that use injections of reconstituted HDL, apoA-I mimetics, or full-length apoA-I have shown dramatic effectiveness. In particular, a novel apoA-I mi-metic peptide, Fukuoka University ApoA-I Mimetic Pep-tide, effectively removes cholesterol via specific ABCA1 and other transporters, such as ABCG1, and has an an-tiatherosclerotic effect by enhancing the biological func-tions of HDL without changing circulating HDL choles-terol levels. Thus, HDL-targeting therapy has significant atheroprotective potential, as it uses lipid transporter-targeting agents, and may prove to be a therapeutic tool for atherosclerotic cardiovascular diseases.
基金supported by the China Geological Survey Project“Deep Geological Survey of the Qin-Hang Belt”(No.DD20160082)the National Natural Science Foundation of China(No.41574048)
文摘A profile of shallow crustal velocity structure(1–2 km) may greatly enhance interpretation of the sedimentary environment and shallow tectonic deformation.Recent advances in surface wave tomography, using ambient noise data recorded with high-density seismic arrays, have improved the understanding of regional crustal structure. As the interest in detailed shallow crustal structure imaging has increased, dense seismic array methods have become increasingly efficient. This study used a high-density seismic array deployed in the Xinjiang basin in southeastern China, to record seismic data, which was then processed with the ambient noise tomography method. The high-density seismic array contained 203 short-period seismometers, spaced at short intervals(~ 400 m). The array collected continuous records of ambient noise for 32 days. Data preprocessing,cross correlation calculation, and Rayleigh surface wave phase-velocity dispersion curve extraction, yielded more than 16,000 Rayleigh surface wave phase-velocity dispersion curves, which were then analyzed using the direct-inversion method. Checkerboard tests indicate that the shear wave velocity is recovered in the study area, at depths of 0–1.4 km,with a lateral image resolution of ~ 400 m. Model test results show that the seismic array effectively images a 50 m thick slab at a depth of 0–300 m, a 150 m thick anomalous body at a depth of 300–600 m, and a 400 m thick anomalous body at a depth of 0.6–1.4 km. The shear wave velocity profile reveals features very similar to those detected by a deep seismic reflection profile across the study area. This demonstrates that analysis of shallow crustal velocity structure provides high-resolution imaging of crustal features.Thus, ambient noise tomography with a high-density seismic array may play an important role in imaging shallow crustal structure.
基金supported by the National Key Research and Development Program(2021YFC2104400)the Tianjin Science and Technology Plan Project(21JCQNJC00340)the Haihe Laboratory of Sustainable Chemical Transformations。
文摘Synthesizing high-density fuel from lignocellulose can not only achieve green and low-carbon development,but also expand the feedstock source of hydrocarbon fuel.Here,we reported a route of producing high-density fuel from lignin oil and hemicellulose derivative cyclopentanol through alkylation and hydrodeoxygenation,HY with SiO_(2)/Al_(2)O_(3) molar ratio of 5.3 was screened as the alkylation catalyst in the reaction of model phenolic compounds and mixtures,and the reaction conditions were optimized to achieve conversion of phenolic compounds higher than 87%and selectivity of bicyclic and tricyclic products higher than 99%.Then two phenolic pools simulating the composition of two typic lignin oils were studied to validate the alkylation and analyze the competition mechanism of phenolic compounds in mixture system.Finally,real lignin oil from depolymerized of beech powder was tested,and notably80%of phenolic monomers in the oil were converted into fuel precursor.After hydrodeoxygenation,the alkylated product was converted to fuel blend with a density of 0.91 g/mL at 20℃and a freezing point lower than-60℃,very promising as high density fuel.This work provides a facile and energyefficient way of synthesizing high-performance jet fuel directly from lignocellulosic derivatives,which decreases processing energy consumption and improve the utilization rate of feedstock.
文摘BACKGROUND:An increase in high-density lipoprotein(HDL)is well associated with a decreased cardiovascular risk,especially atherosclerosis.Recent studies suggest that lower levels of HDL may also be associated with an increased risk of sepsis and an increased rate of mortality in septic patients.However,this conclusion remains controversial.METHODS:MEDLINE,EMBASE,and CENTRAL databases were searched from inception to September 30,2019.All studies were conducted to evaluate the correlation of lipoprotein levels and the risk and outcomes of sepsis in adult patients.The primary outcomes were the risk and mortality of sepsis.RESULTS:Seven studies comprising 791 patients were included.Lower levels of HDL had no marked relevance with the risk of sepsis(odds radio[OR]for each 1 mg/dL increase,0.94;95%CI 0.86–1.02;P=0.078),whereas lower HDL levels were related to an increased mortality rate in septic patients(OR for below about median HDL levels,2.00;95%CI 1.23–3.24;P=0.005).CONCLUSION:This meta-analysis did not reveal a signifi cant association between lower HDL levels and an increase in the risk of sepsis,whereas it showed that lower HDL levels are associated with a higher mortality rate in septic adult patients.These findings suggest that HDL may be considered as a promising factor for the prevention and treatment of sepsis in the future.
基金Project (Nos. PW 55/09 and DS 41/09) supported by the Department of Laboratory Diagnostics, Medical University of Lublin, Poland
文摘Objective:Disturbances in lipid and lipoprotein profiles in patients after kidney transplantation (Tx) are still not understood. Methods:Serum levels of lipids,lipoprotein,triglyceride-rich lipoproteins (TRLs),and high-density lipoprotein (HDL) particles were determined,lipid and lipoprotein ratios were calculated,and their relationships in Tx patients with hypertriglyceridemia (HTG) and lower apolipoprotein AI (apoAI) concentration were examined. Serum lipid and lipoprotein levels were measured in 109 Tx patients and 89 healthy subjects. HDL particle levels were de-termined by enzyme-linked immunosorbent assay (ELISA). Results:Tx patients had disturbed concentration,com-position,and metabolism of TRLs and HDL particles. Multivariance analysis showed significant and positive correlation between HDL cholesterol/apoAI (HDL-C/apoAI) and HDL-C/HDL ratios,which indicates that both ratios could sensi-tively reflect changes in the HDL subclasses and their distribution into smaller size particles. In Tx patients,the de-creased HDL-C/apoAI ratio indicates that,along with the decreased apoAI concentration,the HDL-C level is de-creased. However,a low HDL-C/HDL ratio indicates that HDL particles in Tx patients transport lesser content of HDL-C but more triglyceride (TG) (high TG/HDL ratio),and thus are hypercatabolized and removed; therefore,con-centration of HDL particles in serum was decreased. Conclusion:The decrease of HDL-C/apoAI ratio seems to be a good marker of HDL subclass distribution into smaller size particles.
文摘High-density lipoproteins (HDLs) have been well established to protect against the development of atherosclerotic cardiovascular disease. It has become apparent that in addition to the promotion of reverse cholesterol transport, HDLs possess a number of additional functional properties that may contribute to their beneficial influence on the arterial wall. A number of exciting therapeutic strategies have been developed that target HDL and its ability to protect against the development of atherosclerotic plaque. This paper will review how the promotion of the functional properties of HDL inhibits the formation of atherosclerotic plaque and stabilises lesions in patients with established disease.
基金Supported by the National Natural Science Foundation of China,No. 39770164
文摘AIM: To investigate the possibility of recombinant highdensity lipoprotein (rHDL) being a carrier for delivering antitumoral drug to hepatoma cells. METHODS: Recombinant complex of HDL and aclacinomycin (rHDL-ACM) was prepared by cosonication of apoproteins from HDL (Apo HDL) and ACM as well as phosphatidylcholine. Characteristics of the rHDL-ACM were elucidated by electrophoretic mobility, including the size of particles, morphology and entrapment efficiency. Binding activity of rHDL-ACM to human hepatoma cells was determined by competition assay in the presence of excess native HDL. The cytotoxicity of rHDL-ACM was assessed by MTT method. RESULTS: The density range of rHDL-ACM was 1.063-1.210 g/mL, and the same as that of native HDL. The purity of all rHDL-ACM preparations was more than 92%. Encapsulated efficiencies of rHDL-ACM were more than 90%. rHDL-ACM particles were typical sphere model of lipoproteins and heterogeneous in particle size. The average diameter was 31.26±5.62 nm by measure of 110 rHDL-ACM particles in the range of diameter of lipoproteins. rHDL-ACM could bind on SMMC-7721 cells, and such binding could be competed against in the presence of excess native HDL. rHDL-ACM had same binding capacity as native HDL. The cellular uptake of rHDL-ACM by SMMC-7721 hepatoma cells was significantly higher than that of free ACM at the concentration range of 0.5-10 μg/mL (P<0.01). Cytotoxicity of rHDL-ACM to SMMC-7721 cells was significantly higher than that of free ACM at concentration range of less than 5 ug/mL (P<0.01) and IC50 of rHDL-ACM was lower than IC50 of free ACM (1.68 nmol/L vs3 nmol/L). Compared to L02 hepatocytes, a normal liver cell line, the cellular uptake of rHDL-ACM by SMMC-7721 cells was significantly higher (P<0.01) and in a dose-dependent manner at the concentration range of 0.5-10 μg/mL.Cytotoxicity of the rHDL-ACM to SMMC- 7721 cells was significantly higher than that to L02 cells at concentration range of 1-7.5μg/mL (P<0.01). IC50 for SMMC-7721 cells (1.68 nmol/L) was lower than that for L02 cells (5.68 nmol/L), showing a preferential cytotoxicity of rHDL-ACM for SMMC-7721 cells. CONCLUSION: rHDL-ACM complex keeps the basic physical and biological binding properties of native HDL and shows a preferential cytotoxicity for SMMC-7721 hepatoma to normal L02 hepatocytes, HDL is a potential carrier for delivering lipophilic antitumoral drug to hepatoma cells.
基金This work was supported in part by funding from the National Natural Science Foundation of China (No. 30800845), the Natural Science Fund for Distinguished Young Scholars of Zhejiang Province (No. R3100105), and the NIH grants RR00169 and RR13439. We thank Dr. M. Anton for providing the detailed protocols of LDL and HDL extraction.
文摘Low-density lipoprotein (LDL) extracted from hen egg yolk has recently been considered to be superior to whole egg yolk in sperm cryopreservation of various animal species. Meanwhile, there was a notion that high-density lipoprotein (HDL) in egg yolk may have a negative effect on post-thaw survival. The role of LDL and HDL in sperm cryopreservation of rhesus monkeys has not been explored. The present study evaluates their effect in comparison with egg yolk with or without the addition of permeable cryoprotectant (glycerol) on sperm cryopreservation of rhesus macaques. In addition, various additives intended to change the lipid composition of LDL-sperm membrane complex have also been tested for their effectiveness in preserving post-thaw viability. Our findings indicated that LDL is the main component in egg yolk that is responsible for its protective role for sperm cryopreservation in rhesus monkeys. Regardless of the presence or absence of glycerol, the protective role of LDL is similar to that of egg yolk and we did not observe any superiority in post-thaw survival with LDL when compared to egg yolk. Modifying the lipid composition of LDL-sperm membrane complex with the addition of cholesterol, cholesterol loaded cyclodextrin and phosphatidylcholine also did not yield any improvements in pest-thaw survival; while addition of methyl-β-cyclodextrin reduced post-thaw motility. HDL plays a neutral role in sperm cryopreservation of rhesus monkeys. The present study suggests that egg yolk may still hold advantages when compared with LDL as effective components in extenders for sperm cryopreservation in rhesus monkeys.
文摘We examined the effects of dietary proso-millet protein on plasma levels of high-density lipoprotein (HDL) cholesterol in different rats from animals reported in our previous studies. The results showed also, in this animal, that the ingestion of the millet protein elevates plasma levels of HDL-cholesterol like our earlier works. Taking into account the anti-atherogenic function of HDL, therefore, the millet protein would be useful as a new food ingredient which has the function that regulates cholesterol metabolism
基金supported by the National Natural Science Foundation of China (31771794)the National Key Research and Development Program of China (2016YFD0101004 and 2017YFD0100900)the International Science & Technology Cooperation Program of the Bureau of Science and Technology of Chengdu China (2015DFA306002015-GH03-00008-HZ)。
文摘Grain number per spikelet (GNS) is a key determinant of grain yield in wheat.A recombinant inbred line population comprising 300 lines was developed from a cross between a high GNS variety H461 and Chinese Spring from which the reference genome assembly of bread wheat was obtained.Both parents and the recombinant inbred lines were genotyped using the wheat 55K single nucleotide polymorphism(SNP) array.A high-density genetic map containing 21,197 SNPs was obtained.These markers covered each of the 21 chromosomes with a total linkage distance of 3792.71 c M.Locations of these markers in this linkage map were highly consistent with their physical locations in the genome assembly of Chinese Spring.The two parents and the whole RIL population were assessed for GNS in two consecutive years at two different locations.Based on multi-environment phenotype data and best liner unbiased prediction values,three quantitative trait loci (QTL) for GNS were identified.One of them located on chromosomes 2B and the other two on 2D.Phenotypic variation explained by these loci varied from 3.07%to26.57%.One of these QTL,QGns.sicau-2D-2,was identified in each of all trials conducted.Based on the best linear unbiased prediction values,this locus explained 19.59%–26.57%of phenotypic variation.A KASP(Kompetitive Allele-Specific PCR) marker closely linked with this locus was generated and used to validate the effects of this locus in three different genetic backgrounds.The identified QTL and the KASP marker developed for it will be highly valuable in fine-mapping the locus and in exploiting it for markerassisted selection in wheat breeding programs.
文摘There is a tight link between bone and lipid metabolic pathways.In this vein,several studies focused on the exploration of high-density lipoprotein(HDL)in the pathobiology of bone diseases,with emphasis to the osteoarthritis(OA)and osteoporosis,the most common bone pathologies.Indeed,epidemiological and in vitro data have connected reduced HDL levels or dysfunctional HDL with cartilage destruction and OA development.Recent studies uncovered functional links between HDL and OA fueling the interesting hypothesis that OA could be a chronic element of the metabolic syndrome.Other studies have linked HDL to bone mineral density.Even though at epidemiological levels the results are conflicting,studies in animals as well as in vitro experiments have shown that HDL facilitates osteoblastogensis and bone synthesis and most probably affects osteoclastogenesis and osteoclast bone resorption.Notably,reduced HDL levels result in increased bone marrow adiposity affecting bone cells function.Unveiling the mechanisms that connect HDL and bone/cartilage homeostasis may contribute to the design of novel therapeutic agents for the improvement of bone and cartilage quality and thus for the treatment of related pathological conditions.