期刊文献+
共找到57,180篇文章
< 1 2 250 >
每页显示 20 50 100
Controlled high-density interface engineering of Fe_(3)O_(4)-FeS nanoarray for efficient hydrogen evolution 被引量:1
1
作者 Min Yang Wen-Hui Hu +7 位作者 Meng-Xuan Li Yu-Ning Cao Bin Dong Yu Ma Hui-Ying Zhao Feng-Ge Wang Jier Huang Yong-Ming Chai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期96-103,共8页
The rational design of double active sites system is vital for constructing high-efficiency iron sulfides electrocatalysts towards hydrogen evolution reaction(HER) in alkaline media. However, it remains a challenge to... The rational design of double active sites system is vital for constructing high-efficiency iron sulfides electrocatalysts towards hydrogen evolution reaction(HER) in alkaline media. However, it remains a challenge to controllably create the high-density interface of double sites for optimal synergistic effect.Herein, we reported a simple chemical oxidation-induced surface reconfiguration strategy to obtain the interface-rich Fe_(3)O_(4)-FeS nanoarray supported on iron foam(Fe_(3)O_(4)-FeS/IF) using FeS nanosheets as precursors. The abundant Fe_(3)O_(4)-FeS interfaces could improve the dispersion of active sites and facilitate the electron transfer, leading to enhanced hydrogen evolution efficiency. And meanwhile, by altering the oxidation temperature, the content of S and O could be effectively controlled, further achieving the ratio optimization of Fe_(3)O_(4)to FeS. Synchrotron-based X-ray absorption near-edge structure, X-ray photoelectron spectroscopy and ultraviolet photoemission spectroscopy consistently confirm the changes of electronic structure and d-band center of Fe_(3)O_(4)-FeS after chemical oxidation. Consequently, Fe_(3)O_(4)-FeS/IF exhibits excellent alkaline HER activity with a low overpotential of 120.8 mV to reach 20 mA cm^(-2),and remains stable ranging from 10, 20 to 50 mA cm^(-2) for each 20 h, respectively. Therefore, the facile and controllable chemical oxidation may be an effective strategy for designing high-density interfaces of transition metal-based sulfides towards alkaline HER. 展开更多
关键词 high-density interfaces Double sites Chemical oxidation Hydrogen evolution reaction
在线阅读 下载PDF
Induction mechanisms of high-density nano twins during solidification process:Reducing stacking fault energy ofγphase by Re and forming highly mismatched B2(Re)/α_(2)interface
2
作者 Kexuan Li Hongze Fang +4 位作者 Lingyan Zhou Xiaokang Yang Xianfei Ding Yongchun Zou Ruirun Chen 《Journal of Materials Science & Technology》 2025年第13期269-284,共16页
It is extremely difficult to introduce high-density nano twins during the solidification process of TiAl alloy.In this study,high-density nanotwins are inducted in the as-cast Ti48Al2Cr alloyed by adding Re element.Ph... It is extremely difficult to introduce high-density nano twins during the solidification process of TiAl alloy.In this study,high-density nanotwins are inducted in the as-cast Ti48Al2Cr alloyed by adding Re element.Phase transformation,morphology characteristics of nano twins,compressive and tensile proper-ties,and the related mechanisms have been studied.Results show that B2 phase enriched with Re tends to precipitate along theα_(2)/γinterface within lamellar colony.The stacking fault energy(SFE)ofγphase decreases from 43 mJ/m^(2) to 16 mJ/m^(2) as Re content increases from 0 at.%to 0.6 at.%,decreasing the crit-ical shear stress for twin formation.Compared to the mismatch value ofα_(2)/γinterface(0.004),which of B2/α_(2) and B2/γinterfaces increase to 0.247 and 0.149,respectively.Driven by high interfacial stress,high-density dislocations are generated at the B2/α_(2) interface,providing the dislocation slip channel for the formation of stacking faults(SFs)and nanotwins at the B2/γinterface.Therefore,the mechanism of inducting high-density nanotwins is to reduce the stacking fault energy ofγphase by Re and form highly mismatched B2/α_(2) interface.Compressive strength and the strain increase from 1723 MPa to 2398 MPa and 29%to 39%as Re content increases from 0 at.%to 0.6 at.%,respectively.Tensile strength increases from 356 MPa to 452 MPa without sacrificing plasticity.The improvement in strength and plasticity are attributed to the nano-twinning strengthening and interfacial thermal mismatch strengthening.Forming nanotwins during solidification process serve as the nucleation sites for newly formed twins during de-formation process,increasing the deformation tolerance of TiAl alloy. 展开更多
关键词 TiAl alloy NANOTWINS Stacking fault energy Phase interface Microstructure evolution Mechanical properties
原文传递
Brain-computer interfaces re-shape functional neurosurgery
3
作者 Thomas Kinfe Steffen Brenner Nima Etminan 《Neural Regeneration Research》 2026年第3期1122-1123,共2页
Invasive as well as non-invasive neurotechnologies conceptualized to interface the central and peripheral nervous system have been probed for the past decades,which refer to electroencephalography,electrocorticography... Invasive as well as non-invasive neurotechnologies conceptualized to interface the central and peripheral nervous system have been probed for the past decades,which refer to electroencephalography,electrocorticography and microelectrode arrays.The challenges of these mentioned approaches are characterized by the bandwidth of the spatiotemporal resolution,which in turn is essential for large-area neuron recordings(Abiri et al.,2019). 展开更多
关键词 microelectrode arraysthe brain computer interfaces ELECTROENCEPHALOGRAPHY ELECTROCORTICOGRAPHY interface central peripheral nervous system non invasive neurotechnologies functional neurosurgery microelectrode arrays
暂未订购
Recent advances and perspectives in interface engineering of high-performance alloys
4
作者 Yuan Zhu Tongbo Jiang +7 位作者 Honghui Wu Faguo Hou Xiaoye Zhou Feiyang Wang Shuize Wang Junheng Gao Haitao Zhao Chaolei Zhang 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期53-67,共15页
High-performance alloys are indispensable in modern engineering because of their exceptional strength,ductility,corrosion resistance,fatigue resistance,and thermal stability,which are all significantly influenced by t... High-performance alloys are indispensable in modern engineering because of their exceptional strength,ductility,corrosion resistance,fatigue resistance,and thermal stability,which are all significantly influenced by the alloy interface structures.Despite substantial efforts,a comprehensive overview of interface engineering of high-performance alloys has not been presented so far.In this study,the interfaces in high-performance alloys,particularly grain and phase boundaries,were systematically examined,with emphasis on their crystallographic characteristics and chemical element segregations.The effects of the interfaces on the electrical conductivity,mechanical strength,toughness,hydrogen embrittlement resistance,and thermal stability of the alloys were elucidated.Moreover,correlations among various types of interfaces and advanced experimental and computational techniques were examined using big data analytics,enabling robust design strategies.Challenges currently faced in the field of interface engineering and emerging opportunities in the field are also discussed.The study results would guide the development of next-generation high-performance alloys. 展开更多
关键词 interface engineering crystallographic boundary chemical boundary alloy design
在线阅读 下载PDF
Influence of interface shape on microstructure and mechanical properties of Mg/Al composite plates fabricated by hot-pressing
5
作者 Shi-jun TAN Bo SONG +6 位作者 Hao-hua XU Ting-ting LIU Jia SHE Sheng-feng GUO Xian-hua CHEN Kai-hong ZHENG Fu-sheng PAN 《Transactions of Nonferrous Metals Society of China》 2026年第1期124-143,共20页
A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The resu... A new method was proposed for preparing AZ31/1060 composite plates with a corrugated interface,which involved cold-pressing a corrugated surface on the Al plate and then hot-pressing the assembled Mg/Al plate.The results show that cold-pressing produces intense plastic deformation near the corrugated surface of the Al plate,which promotes dynamic recrystallization of the Al substrate near the interface during the subsequent hot-pressing.In addition,the initial corrugation on the surface of the Al plate also changes the local stress state near the interface during hot pressing,which has a large effect on the texture components of the substrates near the corrugated interface.The construction of the corrugated interface can greatly enhance the shear strength by 2−4 times due to the increased contact area and the strong“mechanical gearing”effect.Moreover,the mechanical properties are largely depended on the orientation relationship between corrugated direction and loading direction. 展开更多
关键词 Mg/Al composite plate interface shape MICROSTRUCTURE mechanical properties TEXTURE
在线阅读 下载PDF
Lithium-Ion Dynamic Interface Engineering of Nano-Charged Composite Polymer Electrolytes for Solid-State Lithium-Metal Batteries
6
作者 Shanshan Lv Jingwen Wang +7 位作者 Yuanming Zhai Yu Chen Jiarui Yang Zhiwei Zhu Rui Peng Xuewei Fu Wei Yang Yu Wang 《Nano-Micro Letters》 2026年第2期288-305,共18页
Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving... Composite polymer electrolytes(CPEs)offer a promising solution for all-solid-state lithium-metal batteries(ASSLMBs).However,conventional nanofillers with Lewis-acid-base surfaces make limited contribution to improving the overall performance of CPEs due to their difficulty in achieving robust electrochemical and mechanical interfaces simultaneously.Here,by regulating the surface charge characteristics of halloysite nanotube(HNT),we propose a concept of lithium-ion dynamic interface(Li^(+)-DI)engineering in nano-charged CPE(NCCPE).Results show that the surface charge characteristics of HNTs fundamentally change the Li^(+)-DI,and thereof the mechanical and ion-conduction behaviors of the NCCPEs.Particularly,the HNTs with positively charged surface(HNTs+)lead to a higher Li^(+)transference number(0.86)than that of HNTs-(0.73),but a lower toughness(102.13 MJ m^(-3)for HNTs+and 159.69 MJ m^(-3)for HNTs-).Meanwhile,a strong interface compatibilization effect by Li^(+)is observed for especially the HNTs+-involved Li^(+)-DI,which improves the toughness by 2000%compared with the control.Moreover,HNTs+are more effective to weaken the Li^(+)-solvation strength and facilitate the formation of Li F-rich solid-electrolyte interphase of Li metal compared to HNTs-.The resultant Li|NCCPE|LiFePO4cell delivers a capacity of 144.9 m Ah g^(-1)after 400 cycles at 0.5 C and a capacity retention of 78.6%.This study provides deep insights into understanding the roles of surface charges of nanofillers in regulating the mechanical and electrochemical interfaces in ASSLMBs. 展开更多
关键词 Charged nanofillers Nanocomposite polymer electrolyte Dynamic lithium ion interface Solid ion-conductors Solidstate lithium-metal battery
在线阅读 下载PDF
Diffusion mechanism of immiscible Fe-Mg system induced by high-density defects at the steel/Mg composite interface 被引量:2
7
作者 Yanlan Sun Xuefeng Liu +2 位作者 Wenjing Wang Yaohua Yang Weiliang Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第13期150-160,共11页
Due to positive mixing heat between Fe and Mg,it is difficult to diffuse for Fe-Mg at the interface of steel/Mg laminated composites,resulting in the inability to achieve high-strength metallurgical bonding.In this pa... Due to positive mixing heat between Fe and Mg,it is difficult to diffuse for Fe-Mg at the interface of steel/Mg laminated composites,resulting in the inability to achieve high-strength metallurgical bonding.In this paper,20#steel/Mg laminated composites were prepared by large deformation rolling and subse-quent diffusion heat treatment process.The interfacial bonding strength was improved by constructing high-density crystal defects at the interface to promote element diffusion.The mechanisms of interface morphology evolution and element diffusion were analyzed by finite element simulation and theoretical calculation.The results show after diffusion heat treatment,the bond strength of the large deformation rolled interface was increased from 14 to 30 MPa.Fe-Mg transition layer with about 80 nm thickness as well as high-density vacancies,dislocations and grain boundaries were formed in the large deforma-tion rolled interface region.During diffusion heat treatment,Mg elements diffused into grain interior and grain boundary regions of 20#steel under the effect of heat-force coupling,and the thickness of Fe-Mg transition layer increased to 150 nm,forming an Fe-based supersaturated solid solution.The in-terface with high-density defects constituted a non-equilibrium interface.The 20#steel internal energy in the non-equilibrium interface is able to overcome positive mixing heat of immiscible Fe-Mg system and provide the driving force for Mg elements diffusion.Promoting elemental diffusion by constructing high-density defects can be a new concept to achieve metallurgical bonding at the interface of immiscible metal laminated composites. 展开更多
关键词 Steel/Mg composite interface Immiscible Fe-Mg system Non-equilibrium interface Diffusion mechanism
原文传递
Local high-density distributions of phospholipids induced by the nucleation and growth of smectic liquid crystals at the interface 被引量:2
8
作者 Chenjing Yang Li Chen +3 位作者 Rui Zhang Dong Chen Laura R.Arriaga David A.Weitz 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第8期3973-3976,共4页
Amphiphilic molecules adsorbed at the interface could control the orientation of liquid crystals(LCs)while LCs in turn could influence the distributions of amphiphilic molecules.The studies on the interactions between... Amphiphilic molecules adsorbed at the interface could control the orientation of liquid crystals(LCs)while LCs in turn could influence the distributions of amphiphilic molecules.The studies on the interactions between liquid crystals and amphiphilic molecules at the interface are important for the development of molecular sensors.In this paper,we demonstrate that the development of smectic LC ordering from isotropic at the LC/water interface could induce local high-density distributions of amphiphilic phospholipids.Mixtures of liquid crystals and phospholipids in chloroform are first emulsified in water.By fluorescently labeling the phospholipids adsorbed at the interface,their distributions are visualized under fluorescent confocal microscope.Interestingly,local high-density distributions of phospholipids showing a high fluorescent intensity are observed on the surface of LC droplets.Investigations on the correlation between phospholipid density,surface tension and smectic LC ordering suggest that when domains of smectic LC layers nucleate and grow from isotropic at the LC/water interface as chloroform slowly evaporates at room temperature,phospholipids transition from liquid-expanded to liquid-condensed phases in response to the smectic ordering,which induces a higher surface tension at the interface.The results will provide an important insight into the interactions between liquid crystals and amphiphilic molecules at the interface. 展开更多
关键词 Liquid crystals PHOSPHOLIPIDS DROPLET interface SMECTIC
原文传递
Multiple Tin Compounds Modified Carbon Fibers to Construct Heterogeneous Interfaces for Corrosion Prevention and Electromagnetic Wave Absorption 被引量:1
9
作者 Zhiqiang Guo Di Lan +6 位作者 Zirui Jia Zhenguo Gao Xuetao Shi Mukun He Hua Guo Guanglei Wu Pengfei Yin 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期507-527,共21页
Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is con... Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments. 展开更多
关键词 Electrostatic spinning Component regulation Heterogeneous interfaces Electromagnetic wave absorption Corrosion protection
在线阅读 下载PDF
Recent applications of EEG-based brain-computer-interface in the medical field 被引量:8
10
作者 Xiu-Yun Liu Wen-Long Wang +39 位作者 Miao Liu Ming-Yi Chen Tânia Pereira Desta Yakob Doda Yu-Feng Ke Shou-Yan Wang Dong Wen Xiao-Guang Tong Wei-Guang Li Yi Yang Xiao-Di Han Yu-Lin Sun Xin Song Cong-Ying Hao Zi-Hua Zhang Xin-Yang Liu Chun-Yang Li Rui Peng Xiao-Xin Song Abi Yasi Mei-Jun Pang Kuo Zhang Run-Nan He Le Wu Shu-Geng Chen Wen-Jin Chen Yan-Gong Chao Cheng-Gong Hu Heng Zhang Min Zhou Kun Wang Peng-Fei Liu Chen Chen Xin-Yi Geng Yun Qin Dong-Rui Gao En-Ming Song Long-Long Cheng Xun Chen Dong Ming 《Military Medical Research》 2025年第8期1283-1322,共40页
Brain-computer interfaces(BCIs)represent an emerging technology that facilitates direct communication between the brain and external devices.In recent years,numerous review articles have explored various aspects of BC... Brain-computer interfaces(BCIs)represent an emerging technology that facilitates direct communication between the brain and external devices.In recent years,numerous review articles have explored various aspects of BCIs,including their fundamental principles,technical advancements,and applications in specific domains.However,these reviews often focus on signal processing,hardware development,or limited applications such as motor rehabilitation or communication.This paper aims to offer a comprehensive review of recent electroencephalogram(EEG)-based BCI applications in the medical field across 8 critical areas,encompassing rehabilitation,daily communication,epilepsy,cerebral resuscitation,sleep,neurodegenerative diseases,anesthesiology,and emotion recognition.Moreover,the current challenges and future trends of BCIs were also discussed,including personal privacy and ethical concerns,network security vulnerabilities,safety issues,and biocompatibility. 展开更多
关键词 Brain-computer interfaces(BCIs) Medical applications REHABILITATION COMMUNICATION Brain monitoring DIAGNOSIS
原文传递
Analysis of Micromechanical Properties at the Interface of Pre-wet SBS Modified Asphalt Mixture Based on Molecular Simulation Technology
11
作者 CHEN Wuxing CHEN Shuang +3 位作者 YU Yan ZHANG Jiangyi XU Haiyang GUO Wei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期103-113,共11页
The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggre... The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggregate was analyzed by molecular dynamics simulation.The diffusion coefficient and concentration distribution of SBS modified asphalt on aggregate surface are included.The simulation results show that the diffusion coefficient of the aggregate surface of SBS modified asphalt is increased by 47.6%and 70.5%respectively after 110#asphalt and 130#asphalt are pre-wetted.The concentration distribution of SBS modified asphalt on the aggregate surface after pre-wetting is more uniform.According to the results of interface energy calculation,the interface energy of SBS modified bitumen and aggregate can be increased by about 5%after pre-wetting.According to the results of molecular dynamics simulation,the pre-wetting technology can effectively improve the interface workability of SBS modified bitumen and aggregate,so as to improve the interface performance. 展开更多
关键词 pre-wet oil-stone interface interface interaction interface mechanics molecular dynamics simulation
原文传递
Droplet-Enabled Controllable Manipulation of Tribo-Charges from Liquid-Solid Interface 被引量:1
12
作者 Xunjia Li Jianjun Luo +1 位作者 Jianfeng Ping Zhong Lin Wang 《Engineering》 2025年第2期132-142,共11页
Efficient utilization of electrostatic charges is paramount for numerous applications,from printing to kinetic energy harvesting.However,existing technologies predominantly focus on the static qualities of these charg... Efficient utilization of electrostatic charges is paramount for numerous applications,from printing to kinetic energy harvesting.However,existing technologies predominantly focus on the static qualities of these charges,neglecting their dynamic capabilities as carriers for energy conversion.Herein,we report a paradigm-shifting strategy that orchestrates the swift transit of surface charges,generated through contact electrification,via a freely moving droplet.This technique ingeniously creates a bespoke charged surface which,in tandem with a droplet acting as a transfer medium to the ground,facilitates targeted charge displacement and amplifies electrical energy collection.The spontaneously generated electric field between the charged surface and needle tip,along with the enhanced water ionization under the electric field,proves pivotal in facilitating controlled charge transfer.By coupling the effects of charge self-transfer,contact electrification,and electrostatic induction,a dual-electrode droplet-driven(DD)triboelectric nanogenerator(TENG)is designed to harvest the water-related energy,exhibiting a two-orderof-magnitude improvement in electrical output compared to traditional single-electrode systems.Our strategy establishes a fundamental groundwork for efficient water drop energy acquisition,offering deep insights and substantial utility for future interdisciplinary research and applications in energy science. 展开更多
关键词 Solid-liquid interface engineering Energy harvesting device Triboelectric nanogenertor interface charge utilization Water energy
在线阅读 下载PDF
Catalysis-Induced Highly-Stable Interface on Porous Silicon for High-Rate Lithium-Ion Batteries 被引量:2
13
作者 Zhuobin Han Phornphimon Maitarad +11 位作者 Nuttapon Yodsin Baogang Zhao Haoyu Ma Kexin Liu Yongfeng Hu Siriporn Jungsuttiwong Yumei Wang Li Lu Liyi Shi Shuai Yuan Yongyao Xia Yingying Lv 《Nano-Micro Letters》 2025年第8期548-563,共16页
Silicon stands as a key anode material in lithium-ion battery ascribing to its high energy density.Nevertheless,the poor rate performance and limited cycling life remain unresolved through conventional approaches that... Silicon stands as a key anode material in lithium-ion battery ascribing to its high energy density.Nevertheless,the poor rate performance and limited cycling life remain unresolved through conventional approaches that involve carbon composites or nanostructures,primarily due to the un-controllable effects arising from the substantial formation of a solid electrolyte interphase(SEI)during the cycling.Here,an ultra-thin and homogeneous Ti doping alumina oxide catalytic interface is meticulously applied on the porous Si through a synergistic etching and hydrolysis process.This defect-rich oxide interface promotes a selective adsorption of fluoroethylene carbonate,leading to a catalytic reaction that can be aptly described as“molecular concentration-in situ conversion”.The resultant inorganic-rich SEI layer is electrochemical stable and favors ion-transport,particularly at high-rate cycling and high temperature.The robustly shielded porous Si,with a large surface area,achieves a high initial Coulombic efficiency of 84.7%and delivers exceptional high-rate performance at 25 A g^(−1)(692 mAh g^(−1))and a high Coulombic efficiency of 99.7%over 1000 cycles.The robust SEI constructed through a precious catalytic layer promises significant advantages for the fast development of silicon-based anode in fast-charging batteries. 展开更多
关键词 Catalytic interface MESOPOROUS Inorganic-rich SEI Silicon anode Lithium-ion batteries
在线阅读 下载PDF
Construction of Ni_(2)P/CoP interface for highly efficient electrolysis of urea-assisted hydrogen production at industrial current densities 被引量:1
14
作者 Borong Lu Chunmei Lv +3 位作者 Ying Xie Kai Zhu Ke Ye Xiaojin Li 《Chinese Journal of Catalysis》 2025年第2期163-175,共13页
Interface chemical modulation strategies are considered as promising method to prepare electrocatalysts for the urea oxidation reaction(UOR).However,conventional interface catalysts are generally limited by the inhere... Interface chemical modulation strategies are considered as promising method to prepare electrocatalysts for the urea oxidation reaction(UOR).However,conventional interface catalysts are generally limited by the inherent activity and incompatibility of the individual components themselves,and the irregular charge distribution and slow charge transfer ability between interfaces severely limit the activity of UOR.Therefore,we optimized and designed a Ni_(2)P/CoP interface with modulated surface charge distribution and directed charge transfer to promote UOR activity.Density functional theorycalculations first predict a regular charge transfer from CoP to Ni_(2)P,which creates a built-in electric field between Ni_(2)P and CoP interface.Optimization of the adsorption/desorption process of UOR/HER reaction intermediates leads to the improvement of catalytic activity.Electrochemical impedance spectroscopy and ex situ X-ray photoelectron spectroscopy characterization confirm the unique mechanism of facilitated reaction at the Ni_(2)P/CoP interface.Electrochemical tests further validated the prediction with excellent UOR/HER activities of 1.28 V and 19.7 mV vs.RHE,at 10 mA cm^(-2),respectively.Furthermore,Ni_(2)P/CoP achieves industrial-grade current densities(500 mA cm^(−2))at 1.75 V and 1.87 V in the overall urea electrolyzer(UOR||HER)and overall human urine electrolyzer(HUOR||HER),respectively,and demonstrates considerable durability. 展开更多
关键词 interface chemical strategy Theoretical predictions Advanced interface construction Directed charge transfer Urea oxidation reaction
在线阅读 下载PDF
Co-regulation effect of solvation and interface of pyridine derivative enabling highly reversible zinc anode 被引量:1
15
作者 Binrui Xu Guangbin Wang +3 位作者 Yong Liu Quanan Li Fengzhang Ren Jianmin Ma 《Journal of Materials Science & Technology》 2025年第1期1-9,共9页
The poor reversibility and stability of Zn anodes greatly restrict the practical application of aqueous Zn-ion batteries(AZIBs),resulting from the uncontrollable dendrite growth and H_(2)O-induced side reactions durin... The poor reversibility and stability of Zn anodes greatly restrict the practical application of aqueous Zn-ion batteries(AZIBs),resulting from the uncontrollable dendrite growth and H_(2)O-induced side reactions during cycling.Electrolyte additive modification is considered one of the most effective and simplest methods for solving the aforementioned problems.Herein,the pyridine derivatives(PD)including 2,4-dihydroxypyridine(2,4-DHP),2,3-dihydroxypyridine(2,3-DHP),and 2-hydroxypyrdine(2-DHP),were em-ployed as novel electrolyte additives in ZnSO_(4)electrolyte.Both density functional theory calculation and experimental findings demonstrated that the incorporation of PD additives into the electrolyte effectively modulates the solvation structure of hydrated Zn ions,thereby suppressing side reactions in AZIBs.Ad-ditionally,the adsorption of PD molecules on the zinc anode surface contributed to uniform Zn deposi-tion and dendrite growth inhibition.Consequently,a 2,4-DHP-modified Zn/Zn symmetrical cell achieved an extremely long cyclic stability up to 5650 h at 1 mA cm^(-2).Furthermore,the Zn/NH_(4)V_(4)O_(10)full cell with 2,4-DHP-containing electrolyte exhibited an outstanding initial capacity of 204 mAh g^(-1),with a no-table capacity retention of 79%after 1000 cycles at 5 A g^(-1).Hence,this study expands the selection of electrolyte additives for AZIBs,and the working mechanism of PD additives provides new insights for electrolyte modification enabling highly reversible zinc anode. 展开更多
关键词 Zn anode Pyridine derivative Electrolyte additive Solvation regulation interface modification
原文传递
Pore-scale investigation of forced imbibition in porous rocks through interface curvature and pore topology analysis 被引量:1
16
作者 Jianchao Cai Xiangjie Qin +2 位作者 Han Wang Yuxuan Xia Shuangmei Zou 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期245-257,共13页
Forced imbibition,the invasion of a wetting fluid into porous rocks,plays an important role in the effective exploitation of hydrocarbon resources and the geological sequestration of carbon dioxide.However,the interfa... Forced imbibition,the invasion of a wetting fluid into porous rocks,plays an important role in the effective exploitation of hydrocarbon resources and the geological sequestration of carbon dioxide.However,the interface dynamics influenced by complex topology commonly leads to non-wetting fluid trapping.Particularly,the underlying mechanisms under viscously unfavorable conditions remain unclear.This study employs a direct numerical simulation method to simulate forced imbibition through the reconstructed digital rocks of sandstone.The interface dynamics and fluid–fluid interactions are investigated through transient simulations,while the pore topology metrics are introduced to analyze the impact on steady-state residual fluid distribution obtained by a pseudo-transient scheme.The results show that the cooperative pore-filling process promoted by corner flow is dominant at low capillary numbers.This leads to unstable inlet pressure,mass flow,and interface curvature,which correspond to complicated interface dynamics and higher residual fluid saturation.During forced imbibition,the interface curvature gradually increases,with the pore-filling mechanisms involving the cooperation of main terminal meniscus movement and arc menisci filling.Complex topology with small diameter pores may result in the destabilization of interface curvature.The residual fluid saturation is negatively correlated with porosity and pore throat size,and positively correlated with tortuosity and aspect ratio.A large mean coordination number characterizing global connectivity promotes imbibition.However,high connectivity characterized by the standardized Euler number corresponding to small pores is associated with a high probability of non-wetting fluid trapping. 展开更多
关键词 Forced imbibition Porous rocks interface dynamics Pore topology Residual fluid distribution
在线阅读 下载PDF
Frequency optimization for electrodes in implantable brain-computer interfaces 被引量:1
17
作者 CHEN Han LIU Xiangyu +2 位作者 CHENG Jiajun QIN Jiangfan ZHANG Xueli 《Journal of Southeast University(English Edition)》 2025年第3期366-374,共9页
Fully implanted brain-computer interfaces(BCIs)are preferred as they eliminate signal degradation caused by interference and absorption in external tissues,a common issue in non-fully implanted systems.To optimize the... Fully implanted brain-computer interfaces(BCIs)are preferred as they eliminate signal degradation caused by interference and absorption in external tissues,a common issue in non-fully implanted systems.To optimize the design of electroencephalography electrodes in fully implanted BCI systems,this study investigates the penetration and absorption characteristics of microwave signals in human brain tissue at different frequencies.Electromagnetic simulations are used to analyze the power density distribution and specific absorption rate(SAR)of signals at various frequen-cies.The results indicate that lower-frequency signals offer advantages in terms of power density and attenuation coeffi-cients.However,SAR-normalized analysis,which considers both power density and electromagnetic radiation hazards,shows that higher-frequency signals perform better at superficial to intermediate depths.Specifically,at a depth of 2 mm beneath the cortex,the power density of a 6.5 GHz signal is 247.83%higher than that of a 0.4 GHz signal.At a depth of 5 mm,the power density of a 3.5 GHz signal exceeds that of a 0.4 GHz signal by 224.16%.The findings suggest that 6.5 GHz is optimal for electrodes at a depth of 2 mm,3.5 GHz for 5 mm,2.45 GHz for depths of 15-20 mm,and 1.8 GHz for 25 mm. 展开更多
关键词 brain-computer interfaces electromagnetic simulation electroencephalography electrodes power den-sity specific absorption rate
在线阅读 下载PDF
Constructing Air-Interface Links for Mobile Communications:From{0,1}to[0,1] 被引量:1
18
作者 Tao Jiang 《Engineering》 2025年第3期16-22,共7页
1.Introduction Mobile communications have catalyzed a new era of informa-tion technology revolution,significantly broadening and deepen-ing human-to-human,human-to-machine,and machine-to-machine connections.With their... 1.Introduction Mobile communications have catalyzed a new era of informa-tion technology revolution,significantly broadening and deepen-ing human-to-human,human-to-machine,and machine-to-machine connections.With their incredible speed of development and wide-reaching impact,mobile communications serve as the cornerstone of the Internet of Everything,profoundly reshaping human cognitive abilities and ways of thinking.Furthermore,mobile communications are altering the patterns of production and life,driving leaps in productivity quality,and strongly promot-ing innovation within human civilization. 展开更多
关键词 internet everything air interface links information technology revolution productivity quality mobile communications
在线阅读 下载PDF
Bulging Performance and Quality Control of Aluminum Alloy Tailor-welded Overlapping Sheets Based on Interface Friction
19
作者 GAO Tiejun GAO Bowen +1 位作者 LI Weijie ZHANG Jiabin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期258-264,共7页
In order to solve the problem of poor formability caused by different materials and properties in the process of tailor-welded sheets forming,a forming method was proposed to change the stress state of tailor-welded s... In order to solve the problem of poor formability caused by different materials and properties in the process of tailor-welded sheets forming,a forming method was proposed to change the stress state of tailor-welded sheets by covering the tailor-welded sheets with better plastic properties overlapping sheets.At the same time,the interface friction effect between the overlapping and tailor-welded sheets was utilized to control the stress magnitude and further improve the formability and quality of the tailor-welded sheets.In this work,the bulging process of the tailor-welded overlapping sheets was taken as the research object.Aluminum alloy tailor-welded overlapping sheets bulging specimens were studied by a combination of finite element analysis and experimental verification.The results show that the appropriate use of interface friction between tailor-welded and overlapping sheets can improve the formability of tailor-welded sheets and control the flow of weld seam to improve the forming quality.When increasing the interface friction coefficient on the side of tailor-welded sheets with higher strength and decreasing that on the side of tailor-welded sheets with lower strength,the deformation of the tailor-welded sheets are more uniform,the offset of the weld seam is minimal,the limit bulging height is maximal,and the forming quality is optimal. 展开更多
关键词 tailor-welded sheets overlapping sheet BULGING interface friction weld seam stress
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部