Multi-organ-on-a-chip(MOOC)technology represents a pivotal direction in the organ-on-a-chip field,seeking to emulate the complex interactions of multiple human organs in vitro through microfluidic systems.This technol...Multi-organ-on-a-chip(MOOC)technology represents a pivotal direction in the organ-on-a-chip field,seeking to emulate the complex interactions of multiple human organs in vitro through microfluidic systems.This technology overcomes the limitations of traditional single-organ models,providing a novel platform for investigating complex disease mechanisms and evaluating drug efficacy and toxicity.Although it demonstrates broad application prospects,its development still faces critical bottlenecks,including inadequate physiological coupling between organs,short functional maintenance durations,and limited real-time monitoring capabilities.Contemporary research is advancing along three key directions,including functional coupling,sensor integration,and full-process automation systems,to propel the technology toward enhanced levels of physiological relevance and predictive accuracy.展开更多
China is carving out a distinctive development path which features urban-rural integration.This approach has not only yielded tangible results domestically but also drawn the attention of other countries.
Does traditional Chinese economic thought possess genuine analytical rigor?This question lies at the heart of any serious evaluation of its theoretical value and historical significance.It also matters for understandi...Does traditional Chinese economic thought possess genuine analytical rigor?This question lies at the heart of any serious evaluation of its theoretical value and historical significance.It also matters for understanding how best to preserve,build on its remarkable achievements,and develop its intellectual legacy.Critics such as Schumpeter and Taylor have long argued that the economic reasoning found in ancient China cannot compare with that of classical Greece or medieval Europe.Yet this view often reflects the narrow assumptions of mainstream economics,defining analysis almost entirely in terms of market exchange.As a result,it tends to overlook traditions built around statecraft,governance,and the management of economic order.A careful re-examination and Sino-Western comparative analysis of key thinkers-including Mencius,Guanzi,and Sima Qian-tells a different story.Rooted in China’s distinctive cultural and philosophical heritage,traditional Chinese economic thought not only contains the analytical dimensions(as defined by Schumpeter)but also displays a broader and more diverse set of economic reasoning.Notably,its systematic depth and intellectual precision were,in many respects,remarkably advanced.Therefore,advancing the construction of a Chinese school of economics in the new era under the framework of the“Second Integration”,i.e.,integrating the basic tenets of Marxism with China’s fine traditional culture,should,and indeed can draw essential insights from this analytical tradition.展开更多
Urinary tract infections(UTIs)are among the most prevalent pediatric bacterial infections,and undertreated episodes may lead to renal scarring,hypertension,or chronic kidney disease.Multidrug-resistant(MDR)Enterobacte...Urinary tract infections(UTIs)are among the most prevalent pediatric bacterial infections,and undertreated episodes may lead to renal scarring,hypertension,or chronic kidney disease.Multidrug-resistant(MDR)Enterobacterales have been increasingly reported in children,with higher rates in Asian and Middle Eastern settings than in high-income countries[1,2].展开更多
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently...Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.展开更多
The rapid growth of artificial intelligence has accelerated data generation,which increasingly exposes the limitations faced by traditional computational architectures,particularly in terms of energy consumption and d...The rapid growth of artificial intelligence has accelerated data generation,which increasingly exposes the limitations faced by traditional computational architectures,particularly in terms of energy consumption and data latency.In contrast,data-centric computing that integrates processing and storage has the potential of reducing latency and energy usage.Organic optoelectronic synaptic transistors have emerged as one type of promising devices to implement the data-centric com-puting paradigm owing to their superiority of flexibility,low cost,and large-area fabrication.However,sophisticated functions including vector-matrix multiplication that a single device can achieve are limited.Thus,the fabrication and utilization of organic optoelectronic synaptic transistor arrays(OOSTAs)are imperative.Here,we summarize the recent advances in OOSTAs.Various strategies for manufacturing OOSTAs are introduced,including coating and casting,physical vapor deposition,printing,and photolithography.Furthermore,innovative applications of the OOSTA system integration are discussed,including neuromor-phic visual systems and neuromorphic computing systems.At last,challenges and future perspectives of utilizing OOSTAs in real-world applications are discussed.展开更多
Metal-support interactions and hydrogen spillover effects in heterogeneous catalysts play a crucial role in aromatic hydrogenation reactions;however,these effects are limited by the metal dispersion on the catalyst an...Metal-support interactions and hydrogen spillover effects in heterogeneous catalysts play a crucial role in aromatic hydrogenation reactions;however,these effects are limited by the metal dispersion on the catalyst and the number of acceptable H*receptors.This study prepares highly dispersed Ni nanoparticles(NPs)catalysts on a Beta substrate via precursor structure topology transformation.In contrast to traditional support materials,the coordination and electronic structure changes between the Ni NPs and the support were achieved,further optimizing the active interface sites and enhancing hydrogen activation and hydrogenation performance.Additionally,the-OH groups at the strong acid sites in zeolite effectively intensified the hydrogen spillover effect as receptors for H^(*)migration and anchoring,accelerating the hydrogenation rate of aromatic rings.Under solvent-free conditions,this catalyst was used for the hydrogenation reaction of aromatic-rich oils,directly producing a C_(8)-C_(14)branched cycloalkanes mixture with an aromatic conversion rate of>99%.The cycloalkanes mixture produced by this method features high density(0.92 g/mL)and a low freezing point(<-60℃),making it suitable for use as high-density aviation fuel or as an additive to enhance the volumetric heat value of conventional aviation fuels in practical applications.展开更多
In rotationally extruded fittings,high-density polyethylene(HDPE)pipes prepared using conventional processing methods often suffer from poor pressure resistance and low toughness.This study introduces an innovative ro...In rotationally extruded fittings,high-density polyethylene(HDPE)pipes prepared using conventional processing methods often suffer from poor pressure resistance and low toughness.This study introduces an innovative rotary shear system(RSS)to address these deficiencies through controlled mandrel rotation and cooling rates.We successfully prepared self-reinforced HDPE pipes with a three-layer structure combining spherical and shish-kebab crystals.Rotational processing aligned the molecular chains in the ring direction and formed shish-kebab crystals.As a result,the annular tensile strength of the rotationally processed three-layer shish-kebab structure(TSK)pipe increased from 26.7 MPa to 76.3 MPa,an enhancement of 185.8%.Notably,while maintaining excellent tensile strength(73.4 MPa),the elongation at break of the spherulite shishkebab spherulite(SKS)tubes was improved to 50.1%,as compared to 33.8%in the case of shish-kebab spherulite shish-kebab(KSK)tubes.This improvement can be attributed to the changes in the micro-morphology and polymer structure within the SKS tubes,specifically due to the formation of small-sized shish-kebab crystals and the low degrees of interlocking.In addition,2D-SAXS analysis revealed that KSK tubes have higher tensile strength due to smaller crystal sizes and larger shish dimensions,forming dense interlocking structures.In contrast,the SKS and TSK tubes had thicker amorphous regions and smaller shish sizes,resulting in reduced interlocking and mechanical performance.展开更多
Evaluation of backfilling effectiveness plays a crucial role in the geological environment management and restoration of abandoned open-pit quarries,providing a scientific basis for subsequent greening efforts.Backfil...Evaluation of backfilling effectiveness plays a crucial role in the geological environment management and restoration of abandoned open-pit quarries,providing a scientific basis for subsequent greening efforts.Backfill soil,predominantly composed of silty clay,demonstrates high water retention capacity and elevated moisture content,leading to a pronounced resistivity contrast with the bedrock exposed by quarrying activities.To investigate the distribution of backfill soil subsurface and assess backfilling effectiveness in the study area,this study conducted a comprehensive geophysical investigation utilizing the high-density electrical resistivity tomography(ERT).A total of 19 ERT survey lines were deployed across three distinct areas in Liuyao Village,Huaibei City,Anhui Province,China.The inversion results,derived from both two-dimensional(2D)and three-dimensional(3D),reveal distinct electrical properties of the subsurface materials:the backfill soil layer shows low resistivity features,the fill stone layer exhibits medium to high resistivity,and the bedrock shows the highest resistivity.The 2D inversion results,from the data measured using the Wenner array effectively capture the spatial distribution and structural features of the backfill soil layer.The findings indicate a gradual east-west thinning of the clay layer within the quarry.Furthermore,the northern pit area exhibits a uniform distribution of backfill soil layer,indicative of effective backfilling operations.In contrast,the southern pit area lacks a well-defined clay layer,suggesting suboptimal backfilling effectiveness.展开更多
High-density interconnect(HDI)soft electronics that can integrate multiple individual functions into one miniaturized monolithic system is promising for applications related to smart healthcare,soft robotics,and human...High-density interconnect(HDI)soft electronics that can integrate multiple individual functions into one miniaturized monolithic system is promising for applications related to smart healthcare,soft robotics,and human-machine interactions.However,despite the recent advances,the development of three-dimensional(3D)soft electronics with both high resolution and high integration is still challenging because of the lack of efficient manufacturing methods to guarantee interlayer alignment of the high-density vias and reliable interlayer electrical conductivity.Here,an advanced 3D laser printing pathway,based on femtosecond laser direct writing(FLDW),is demonstrated for preparing liquid metal(LM)-based any layer HDI soft electronics.FLDW technology,with the characteristics of high spatial resolution and high precision,allows the maskless fabrication of high-resolution embedded LM microchannels and high-density vertical interconnect accesses for 3D integrated circuits.High-aspect-ratio blind/through LM microstructures are formed inside the elastomer due to the supermetalphobicity induced during laser ablation.The LM-based HDI circuit featuring high resolution(~1.5μm)and high integration(10-layer electrical interconnection)is achieved for customized soft electronics,including various customized multilayer passive electric components,soft multilayer circuit,and cross-scale multimode sensors.The 3D laser printing method provides a versatile approach for developing chip-level soft electronics.展开更多
Under the current medical education reform,the“clinical-research”model for TCM master’s degrees is a key approach to advancing the modernization of traditional Chinese medicine.With the core of“dual-track integrat...Under the current medical education reform,the“clinical-research”model for TCM master’s degrees is a key approach to advancing the modernization of traditional Chinese medicine.With the core of“dual-track integration,”this model aims to enhance both clinical practice and research abilities simultaneously.However,ten years of practice have shown that it still faces multiple challenges:an imbalance between clinical rotation time and research investment,deeply rooted attitudes that prioritize clinical work over research,insufficient TCM research resources and fragmented platforms,and poor coordination between policy and teaching design.These issues,particularly the methodological differences between TCM experience-based medicine and modern evidence-based medicine,further complicate the integration of clinical and research efforts.Therefore,there is an urgent need to promote the deep integration of research training into clinical practice through system design,value orientation,and evaluation systems,fostering a new ecological environment where clinical and research efforts thrive together.This will help cultivate TCM professionals with both strong clinical skills and innovative research capabilities,providing sustained momentum for the high-quality development of traditional Chinese medicine.展开更多
Dislocation strengthening,as one of the methods to simultaneously enhance the room temperature strength and ductility of alloys,does not achieve the desired strengthening and plasticity effect during elevated-temperat...Dislocation strengthening,as one of the methods to simultaneously enhance the room temperature strength and ductility of alloys,does not achieve the desired strengthening and plasticity effect during elevated-temperature deformation.Here,we report a novel strategy to boost the dislocation multiplication and accumulation during deformation at elevated temperatures through dynamic strain aging(DSA).With the introduction of the rare-earth element Ho in Mg-Y-Zn alloy,Ho atoms diffuse toward dislocations during deformation at elevated temperatures,provoking the DSA effect,which increases the dislocation density significantly via the interactions of mobile dislocations and Ho atoms.The resulting alloy achieves a great enhancement of dislocation hardening and obtains the dual benefits of high strength and good ductility simultaneously at high homologous temperatures.The present work provides an effective strategy to enhancing the strength and ductility for elevated-temperature materials.展开更多
In the context of rapid urbanization,high-density construction areas face significant challenges,including the reduction of ecological spaces and the deterioration of their functions.Planning and managing ecological s...In the context of rapid urbanization,high-density construction areas face significant challenges,including the reduction of ecological spaces and the deterioration of their functions.Planning and managing ecological spaces have emerged as essential strategies to address the conflict between urban development and ecological conservation.Using Jinjiang City,Fujian Province as the case study,this paper systematically examines the significance and primary challenges of ecological space planning in highdensity construction areas.It also identifies prevailing issues within the current research domain,including“an overemphasis on top-level design at the expense of implementation,a focus on isolated aspects rather than systemic integration,and prioritization of control over coordination”.This study proposes the key aspects of ecological space planning and management in high-density construction areas,focusing on three fundamental dimensions:human-centered demand orientation,the integration of top-down and bottomup linkage mechanisms,and a differentiated control system.Drawing on the full-element assessment of the ecosystem,ecological network construction,and full-process control system implemented in Jinjiang City,an integrated approach to ecological space governance,encompassing assessment,planning,and control,has been developed.This approach offers both theoretical insights and practical guidance for optimizing ecological spaces in comparable urban contexts.展开更多
Silicon nitride photonics has emerged as a promising integrated optical platform due to its broad transparency window,low optical loss,and mature fabrication technology.However,the inherent centrosymmetric crystal str...Silicon nitride photonics has emerged as a promising integrated optical platform due to its broad transparency window,low optical loss,and mature fabrication technology.However,the inherent centrosymmetric crystal structure of silicon nitride fundamentally restricts its applications in second-order nonlinear optical processes.Monolayer transition metal dichalcogenides,particularly tungsten disulfide(WS_(2)),exhibit strong second-order nonlinear responses,making them ideal candidates for nonlinear photonic applications.Herein,we demonstrate a heterogeneously integrated platform combining silicon nitride waveguides with chemical vapor deposition(CVD)-grown monolayer WS_(2),enabling second harmonic generation.A specially designed silica cladding featuring gentle-slope profile on silicon nitride strip waveguides facilitates the integration of centimeter-scale WS_(2)film with photonic circuits.This approach provides a robust solution for incorporating second-order nonlinearity into silicon nitride photonic systems.The demonstrated platform holds significant potential for advancing quantum networks,visible-light lasers,and integrated optical modulation/detection systems.展开更多
Against the backdrop of digital-intelligence technologies profoundly reshaping the construction industry and industry-education integration becoming a core direction for vocational education reform,the traditional cur...Against the backdrop of digital-intelligence technologies profoundly reshaping the construction industry and industry-education integration becoming a core direction for vocational education reform,the traditional curriculum system of the engineering cost major in higher vocational colleges faces the dual dilemma of“technical disconnection from the industry and teaching detachment from practice.”This paper takes the engineering cost major at Chongqing Energy Vocational College as the research subject,systematically analyzing the background and significance of curriculum system construction from the“dual-collaboration”perspective of industry-education integration and digital-intelligence integration.It clarifies four construction principles:“symbiotic integration of digital-intelligence and major,precise alignment with enterprise needs,integration of courses,positions,competitions,and certificates,and dynamic optimization.”Subsequently,it proposes three construction paths:a modular curriculum framework design of“digital-intelligence foundation-professional core-practical innovation-ideological and political integration,”collaborative development of curriculum resources by schools and enterprises,and an integrated assessment and evaluation system of“courses,positions,competitions,and certificates.”The study aims to provide practical references for cultivating compound technical and skilled talents in the engineering cost major of higher vocational colleges to meet the demands of the digital-intelligence era,thereby facilitating the digital transformation and upgrading of the construction industry.展开更多
Against the backdrop of intensified global cultural collisions and ideological competition,deeply integrating excellent traditional Chinese culture(ETCC)into university ideological and political courses(IPCs)has becom...Against the backdrop of intensified global cultural collisions and ideological competition,deeply integrating excellent traditional Chinese culture(ETCC)into university ideological and political courses(IPCs)has become an imperative of our times.Guided by General Secretary Xi Jinping’s methodology of“Two Integrations,”this paper examines the pathways for this integration from three dimensions:value,theory,and practice.The value dimension emphasizes fostering moral conviction and strengthening the spiritual foundation to meet needs such as safeguarding cultural security,preserving the spiritual lineage,and constructing a spiritual framework.The theoretical dimension reveals the mutually constitutive breakthroughs between Marxism and traditional Chinese dialectical thinking,encompassing methodological complementarity,logical coherence of values,and discursive system innovation.The practical dimension involves constructing a comprehensive educational ecosystem by localizing teaching content,modernizing traditional resources,and fostering inter-platform collaborative education,thereby internalizing the value of traditional culture.These three dimensions synergize and co-constitute each other,collectively providing methodological support and practical paradigms for cultivating cultural confidence among youth and forging a new generation capable of shouldering the mission of national rejuvenation.展开更多
This study examines the “V + Dào” construction as a state change event through the lens of the Event Integration Hypothesis. It focuses on how these constructions represent state changes, exploring distinctions...This study examines the “V + Dào” construction as a state change event through the lens of the Event Integration Hypothesis. It focuses on how these constructions represent state changes, exploring distinctions between “change” and “stasis”. Using a corpus-based approach, the analysis covers the semantic and syntactic features of “V + Dào” constructions and their event integration patterns. The findings highlight the distribution of agency, animacy, and support relations in state change events, emphasizing the complex interaction of internal and external event integrations and their correlation with the conceptual primitives of change and transition. This study offers insights into the lexicalization and grammaticalization processes of the “V + Dào” construction, and potentially the broader verb-complement constructions in Mandarin.展开更多
The 13-node quadrilateral and 39-node hexahedral cubic serendipity elements produce nodally integrated positive-definite lumped heat capacity matrices in higher-order finite element analysis.However,these elements dis...The 13-node quadrilateral and 39-node hexahedral cubic serendipity elements produce nodally integrated positive-definite lumped heat capacity matrices in higher-order finite element analysis.However,these elements display severe convergence deterioration in explicit transient heat conduction analysis with lumped heat ca-pacity matrices.This convergence decay is due to the violation of variational integration consistency by the standard Galerkin formulation with lumped heat capacity matrices.This issue is resolved by introducing the boundary-enhanced Galerkin weak form that incorporates the elemental boundary contribution in the discrete finite element formulation.Subsequently,it is theoretically proven that a direct nodal integration identically fulfills the variational integration consistency in the context of the boundary-enhanced Galerkin weak form.The proposed variationally consistent nodal integration therefore enables optimal convergence for explicit transient heat conduction analysis with lumped heat capacity matrices.The efficacy of the proposed variationally con-sistent nodal integration formulation for the 13-node quadrilateral and 39-node hexahedral cubic elements is thoroughly demonstrated via numerical examples.展开更多
BACKGROUND The association between the uric acid-to-high-density lipoprotein cholesterol ratio(UHR)and mental health among individuals with type 2 diabetes mellitus(T2DM)has not been thoroughly investigated.AIM To exa...BACKGROUND The association between the uric acid-to-high-density lipoprotein cholesterol ratio(UHR)and mental health among individuals with type 2 diabetes mellitus(T2DM)has not been thoroughly investigated.AIM To examine the link between UHR and symptoms of depression and anxiety in patients with T2DM.METHODS A cross-sectional analysis was carried out from March 2023 to April 2024,involving participants diagnosed with T2DM.Data on sociodemographic characteristics,clinical parameters,and UHR values were systematically gathered.The Self-Rating Depression Scale(SDS)and Self-Rating Anxiety Scale(SAS)were utilized to evaluate depressive and anxiety symptoms,respectively.To assess the relationships between UHR and SDS/SAS scores,linear regression models were employed,incorporating adjustments for potential confounding variables.Additionally,smooth curve fitting and threshold effect analyses were conducted to explore potential nonlinear relationships.RESULTS A total of 285 patients with T2DM were included.Initial univariate analysis demonstrated a significant positive correlation between elevated UHR levels and higher SDS and SAS scores.Multivariate regression analysis revealed that a one-unit rise in UHR was associated with a 1.13-point increase in SDS scores(95%CI:0.69-1.58)and a 0.57-point increase in SAS scores(95%CI:0.20-0.93).After controlling for confounders,UHR remained positively correlated with SDS(β=1.55,95%CI:0.57-2.53)and SAS(β=0.72,95%CI:0.35-1.09).Nonlinear analysis identified critical thresholds at UHR values of 5.02 for SDS and 4.00 for SAS,beyond which the relationships between UHR and psychological symptom scores became markedly stronger(P<0.05).CONCLUSION Higher UHR levels are significantly linked to exacerbated depressive and anxiety symptoms in patients with T2DM.These results indicate that UHR may function as a promising biomarker to identify individuals at greater risk of mental health complications within this population.展开更多
基金supported by the Shenzhen Medical Research Fund(Grant No.A2303049)Guangdong Basic and Applied Basic Research(Grant No.2023A1515010647)+1 种基金National Natural Science Foundation of China(Grant No.22004135)Shenzhen Science and Technology Program(Grant No.RCBS20210706092409020,GXWD20201231165807008,20200824162253002).
文摘Multi-organ-on-a-chip(MOOC)technology represents a pivotal direction in the organ-on-a-chip field,seeking to emulate the complex interactions of multiple human organs in vitro through microfluidic systems.This technology overcomes the limitations of traditional single-organ models,providing a novel platform for investigating complex disease mechanisms and evaluating drug efficacy and toxicity.Although it demonstrates broad application prospects,its development still faces critical bottlenecks,including inadequate physiological coupling between organs,short functional maintenance durations,and limited real-time monitoring capabilities.Contemporary research is advancing along three key directions,including functional coupling,sensor integration,and full-process automation systems,to propel the technology toward enhanced levels of physiological relevance and predictive accuracy.
文摘China is carving out a distinctive development path which features urban-rural integration.This approach has not only yielded tangible results domestically but also drawn the attention of other countries.
基金supported by the National Social Science Fund of China(NSSFC):NSSFC Major Project“Exploration and Practice in the Development of Chinese Economics Since the Modern Era”(Grant No.17ZDA034)NSSFC Key Project“The Status and Value of Traditional Chinese Economic Thought”(Grant No.17AJL006)NSSFC General Project“The Transformation and Evolution of Chinese Economic Thought During the Republican Era”(Grant No.22BJL130).
文摘Does traditional Chinese economic thought possess genuine analytical rigor?This question lies at the heart of any serious evaluation of its theoretical value and historical significance.It also matters for understanding how best to preserve,build on its remarkable achievements,and develop its intellectual legacy.Critics such as Schumpeter and Taylor have long argued that the economic reasoning found in ancient China cannot compare with that of classical Greece or medieval Europe.Yet this view often reflects the narrow assumptions of mainstream economics,defining analysis almost entirely in terms of market exchange.As a result,it tends to overlook traditions built around statecraft,governance,and the management of economic order.A careful re-examination and Sino-Western comparative analysis of key thinkers-including Mencius,Guanzi,and Sima Qian-tells a different story.Rooted in China’s distinctive cultural and philosophical heritage,traditional Chinese economic thought not only contains the analytical dimensions(as defined by Schumpeter)but also displays a broader and more diverse set of economic reasoning.Notably,its systematic depth and intellectual precision were,in many respects,remarkably advanced.Therefore,advancing the construction of a Chinese school of economics in the new era under the framework of the“Second Integration”,i.e.,integrating the basic tenets of Marxism with China’s fine traditional culture,should,and indeed can draw essential insights from this analytical tradition.
文摘Urinary tract infections(UTIs)are among the most prevalent pediatric bacterial infections,and undertreated episodes may lead to renal scarring,hypertension,or chronic kidney disease.Multidrug-resistant(MDR)Enterobacterales have been increasingly reported in children,with higher rates in Asian and Middle Eastern settings than in high-income countries[1,2].
基金National Natural Science Foundation of China(11971211,12171388).
文摘Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.
基金supported by the National Key Research and Development Program of China(2021YFA1101303)the National Natural Science Foundation of China(62374115)the Innovation Program of Shanghai Municipal Education Commission(2021-01-07-00-07-E00096).
文摘The rapid growth of artificial intelligence has accelerated data generation,which increasingly exposes the limitations faced by traditional computational architectures,particularly in terms of energy consumption and data latency.In contrast,data-centric computing that integrates processing and storage has the potential of reducing latency and energy usage.Organic optoelectronic synaptic transistors have emerged as one type of promising devices to implement the data-centric com-puting paradigm owing to their superiority of flexibility,low cost,and large-area fabrication.However,sophisticated functions including vector-matrix multiplication that a single device can achieve are limited.Thus,the fabrication and utilization of organic optoelectronic synaptic transistor arrays(OOSTAs)are imperative.Here,we summarize the recent advances in OOSTAs.Various strategies for manufacturing OOSTAs are introduced,including coating and casting,physical vapor deposition,printing,and photolithography.Furthermore,innovative applications of the OOSTA system integration are discussed,including neuromor-phic visual systems and neuromorphic computing systems.At last,challenges and future perspectives of utilizing OOSTAs in real-world applications are discussed.
基金financially supported by the National Natural Science Foundation of China(Grant 22278439,21776313)the Shandong Province Higher Education Youth Innovation Technology Support Program(Grant 2022KJ074)。
文摘Metal-support interactions and hydrogen spillover effects in heterogeneous catalysts play a crucial role in aromatic hydrogenation reactions;however,these effects are limited by the metal dispersion on the catalyst and the number of acceptable H*receptors.This study prepares highly dispersed Ni nanoparticles(NPs)catalysts on a Beta substrate via precursor structure topology transformation.In contrast to traditional support materials,the coordination and electronic structure changes between the Ni NPs and the support were achieved,further optimizing the active interface sites and enhancing hydrogen activation and hydrogenation performance.Additionally,the-OH groups at the strong acid sites in zeolite effectively intensified the hydrogen spillover effect as receptors for H^(*)migration and anchoring,accelerating the hydrogenation rate of aromatic rings.Under solvent-free conditions,this catalyst was used for the hydrogenation reaction of aromatic-rich oils,directly producing a C_(8)-C_(14)branched cycloalkanes mixture with an aromatic conversion rate of>99%.The cycloalkanes mixture produced by this method features high density(0.92 g/mL)and a low freezing point(<-60℃),making it suitable for use as high-density aviation fuel or as an additive to enhance the volumetric heat value of conventional aviation fuels in practical applications.
基金supported by the National Natural Science Foundation of China(Nos.52373045 and 52033005).
文摘In rotationally extruded fittings,high-density polyethylene(HDPE)pipes prepared using conventional processing methods often suffer from poor pressure resistance and low toughness.This study introduces an innovative rotary shear system(RSS)to address these deficiencies through controlled mandrel rotation and cooling rates.We successfully prepared self-reinforced HDPE pipes with a three-layer structure combining spherical and shish-kebab crystals.Rotational processing aligned the molecular chains in the ring direction and formed shish-kebab crystals.As a result,the annular tensile strength of the rotationally processed three-layer shish-kebab structure(TSK)pipe increased from 26.7 MPa to 76.3 MPa,an enhancement of 185.8%.Notably,while maintaining excellent tensile strength(73.4 MPa),the elongation at break of the spherulite shishkebab spherulite(SKS)tubes was improved to 50.1%,as compared to 33.8%in the case of shish-kebab spherulite shish-kebab(KSK)tubes.This improvement can be attributed to the changes in the micro-morphology and polymer structure within the SKS tubes,specifically due to the formation of small-sized shish-kebab crystals and the low degrees of interlocking.In addition,2D-SAXS analysis revealed that KSK tubes have higher tensile strength due to smaller crystal sizes and larger shish dimensions,forming dense interlocking structures.In contrast,the SKS and TSK tubes had thicker amorphous regions and smaller shish sizes,resulting in reduced interlocking and mechanical performance.
基金Supported by National Key Research and Development Program of China(No.2023YFC3707901)。
文摘Evaluation of backfilling effectiveness plays a crucial role in the geological environment management and restoration of abandoned open-pit quarries,providing a scientific basis for subsequent greening efforts.Backfill soil,predominantly composed of silty clay,demonstrates high water retention capacity and elevated moisture content,leading to a pronounced resistivity contrast with the bedrock exposed by quarrying activities.To investigate the distribution of backfill soil subsurface and assess backfilling effectiveness in the study area,this study conducted a comprehensive geophysical investigation utilizing the high-density electrical resistivity tomography(ERT).A total of 19 ERT survey lines were deployed across three distinct areas in Liuyao Village,Huaibei City,Anhui Province,China.The inversion results,derived from both two-dimensional(2D)and three-dimensional(3D),reveal distinct electrical properties of the subsurface materials:the backfill soil layer shows low resistivity features,the fill stone layer exhibits medium to high resistivity,and the bedrock shows the highest resistivity.The 2D inversion results,from the data measured using the Wenner array effectively capture the spatial distribution and structural features of the backfill soil layer.The findings indicate a gradual east-west thinning of the clay layer within the quarry.Furthermore,the northern pit area exhibits a uniform distribution of backfill soil layer,indicative of effective backfilling operations.In contrast,the southern pit area lacks a well-defined clay layer,suggesting suboptimal backfilling effectiveness.
基金supported by the National Science Foundation of China under the Grant Nos.12127806 and 62175195the International Joint Research Laboratory for Micro/Nano Manufacturing and Measurement Technologies。
文摘High-density interconnect(HDI)soft electronics that can integrate multiple individual functions into one miniaturized monolithic system is promising for applications related to smart healthcare,soft robotics,and human-machine interactions.However,despite the recent advances,the development of three-dimensional(3D)soft electronics with both high resolution and high integration is still challenging because of the lack of efficient manufacturing methods to guarantee interlayer alignment of the high-density vias and reliable interlayer electrical conductivity.Here,an advanced 3D laser printing pathway,based on femtosecond laser direct writing(FLDW),is demonstrated for preparing liquid metal(LM)-based any layer HDI soft electronics.FLDW technology,with the characteristics of high spatial resolution and high precision,allows the maskless fabrication of high-resolution embedded LM microchannels and high-density vertical interconnect accesses for 3D integrated circuits.High-aspect-ratio blind/through LM microstructures are formed inside the elastomer due to the supermetalphobicity induced during laser ablation.The LM-based HDI circuit featuring high resolution(~1.5μm)and high integration(10-layer electrical interconnection)is achieved for customized soft electronics,including various customized multilayer passive electric components,soft multilayer circuit,and cross-scale multimode sensors.The 3D laser printing method provides a versatile approach for developing chip-level soft electronics.
基金Yunnan Province High-level Science and Technology Talents and Innovation Team Selection Special Project。
文摘Under the current medical education reform,the“clinical-research”model for TCM master’s degrees is a key approach to advancing the modernization of traditional Chinese medicine.With the core of“dual-track integration,”this model aims to enhance both clinical practice and research abilities simultaneously.However,ten years of practice have shown that it still faces multiple challenges:an imbalance between clinical rotation time and research investment,deeply rooted attitudes that prioritize clinical work over research,insufficient TCM research resources and fragmented platforms,and poor coordination between policy and teaching design.These issues,particularly the methodological differences between TCM experience-based medicine and modern evidence-based medicine,further complicate the integration of clinical and research efforts.Therefore,there is an urgent need to promote the deep integration of research training into clinical practice through system design,value orientation,and evaluation systems,fostering a new ecological environment where clinical and research efforts thrive together.This will help cultivate TCM professionals with both strong clinical skills and innovative research capabilities,providing sustained momentum for the high-quality development of traditional Chinese medicine.
基金supported by the National Key Research and Development Project(2023YFA1609100)the NSFC Funding(U2141207,52171111,52001083)+6 种基金Natural Science Foundation of Heilongjiang(YQ2023E026)China Postdoctoral Science foundation(2024M754149)Postdoctoral Fellowship Program of CPSF(GZC20242192)support from the National Science Foundation(DMR-1611180 and 1809640)with the program directors,DrsHKU Seed Fund for Collaborative Research(#2207101618)support by Croucher Senior Research Fellowship and City U Project(Project No.9229019)Shenzhen Science and Technology Program(Project No.JCYJ20220818101203007)。
文摘Dislocation strengthening,as one of the methods to simultaneously enhance the room temperature strength and ductility of alloys,does not achieve the desired strengthening and plasticity effect during elevated-temperature deformation.Here,we report a novel strategy to boost the dislocation multiplication and accumulation during deformation at elevated temperatures through dynamic strain aging(DSA).With the introduction of the rare-earth element Ho in Mg-Y-Zn alloy,Ho atoms diffuse toward dislocations during deformation at elevated temperatures,provoking the DSA effect,which increases the dislocation density significantly via the interactions of mobile dislocations and Ho atoms.The resulting alloy achieves a great enhancement of dislocation hardening and obtains the dual benefits of high strength and good ductility simultaneously at high homologous temperatures.The present work provides an effective strategy to enhancing the strength and ductility for elevated-temperature materials.
文摘In the context of rapid urbanization,high-density construction areas face significant challenges,including the reduction of ecological spaces and the deterioration of their functions.Planning and managing ecological spaces have emerged as essential strategies to address the conflict between urban development and ecological conservation.Using Jinjiang City,Fujian Province as the case study,this paper systematically examines the significance and primary challenges of ecological space planning in highdensity construction areas.It also identifies prevailing issues within the current research domain,including“an overemphasis on top-level design at the expense of implementation,a focus on isolated aspects rather than systemic integration,and prioritization of control over coordination”.This study proposes the key aspects of ecological space planning and management in high-density construction areas,focusing on three fundamental dimensions:human-centered demand orientation,the integration of top-down and bottomup linkage mechanisms,and a differentiated control system.Drawing on the full-element assessment of the ecosystem,ecological network construction,and full-process control system implemented in Jinjiang City,an integrated approach to ecological space governance,encompassing assessment,planning,and control,has been developed.This approach offers both theoretical insights and practical guidance for optimizing ecological spaces in comparable urban contexts.
基金Project supported by the National Innovative Training Program for College Students of China(Grant No.2023069)the University Research and Innovation Project of the National University of Defense Technology。
文摘Silicon nitride photonics has emerged as a promising integrated optical platform due to its broad transparency window,low optical loss,and mature fabrication technology.However,the inherent centrosymmetric crystal structure of silicon nitride fundamentally restricts its applications in second-order nonlinear optical processes.Monolayer transition metal dichalcogenides,particularly tungsten disulfide(WS_(2)),exhibit strong second-order nonlinear responses,making them ideal candidates for nonlinear photonic applications.Herein,we demonstrate a heterogeneously integrated platform combining silicon nitride waveguides with chemical vapor deposition(CVD)-grown monolayer WS_(2),enabling second harmonic generation.A specially designed silica cladding featuring gentle-slope profile on silicon nitride strip waveguides facilitates the integration of centimeter-scale WS_(2)film with photonic circuits.This approach provides a robust solution for incorporating second-order nonlinearity into silicon nitride photonic systems.The demonstrated platform holds significant potential for advancing quantum networks,visible-light lasers,and integrated optical modulation/detection systems.
基金Chongqing Teaching Reform Research Project“Exploration of the Talent Cultivation Model for the Engineering Cost Major Based on Industry-Education Integration in the Digital Intelligence Era”(Z2241470)Scientific Research Project of Chongqing Vocational Education Association“Digital Intelligence Empowerment and Industry-Education Symbiosis:Constructing a New Talent Cultivation Model for Engineering Cost in Vocational Colleges”(2025ZJXH580108)。
文摘Against the backdrop of digital-intelligence technologies profoundly reshaping the construction industry and industry-education integration becoming a core direction for vocational education reform,the traditional curriculum system of the engineering cost major in higher vocational colleges faces the dual dilemma of“technical disconnection from the industry and teaching detachment from practice.”This paper takes the engineering cost major at Chongqing Energy Vocational College as the research subject,systematically analyzing the background and significance of curriculum system construction from the“dual-collaboration”perspective of industry-education integration and digital-intelligence integration.It clarifies four construction principles:“symbiotic integration of digital-intelligence and major,precise alignment with enterprise needs,integration of courses,positions,competitions,and certificates,and dynamic optimization.”Subsequently,it proposes three construction paths:a modular curriculum framework design of“digital-intelligence foundation-professional core-practical innovation-ideological and political integration,”collaborative development of curriculum resources by schools and enterprises,and an integrated assessment and evaluation system of“courses,positions,competitions,and certificates.”The study aims to provide practical references for cultivating compound technical and skilled talents in the engineering cost major of higher vocational colleges to meet the demands of the digital-intelligence era,thereby facilitating the digital transformation and upgrading of the construction industry.
基金Center for Sinicized Marxism and Traditional Culture,Sichuan University of Science&Engineering(Project No.:ZMCY202410)。
文摘Against the backdrop of intensified global cultural collisions and ideological competition,deeply integrating excellent traditional Chinese culture(ETCC)into university ideological and political courses(IPCs)has become an imperative of our times.Guided by General Secretary Xi Jinping’s methodology of“Two Integrations,”this paper examines the pathways for this integration from three dimensions:value,theory,and practice.The value dimension emphasizes fostering moral conviction and strengthening the spiritual foundation to meet needs such as safeguarding cultural security,preserving the spiritual lineage,and constructing a spiritual framework.The theoretical dimension reveals the mutually constitutive breakthroughs between Marxism and traditional Chinese dialectical thinking,encompassing methodological complementarity,logical coherence of values,and discursive system innovation.The practical dimension involves constructing a comprehensive educational ecosystem by localizing teaching content,modernizing traditional resources,and fostering inter-platform collaborative education,thereby internalizing the value of traditional culture.These three dimensions synergize and co-constitute each other,collectively providing methodological support and practical paradigms for cultivating cultural confidence among youth and forging a new generation capable of shouldering the mission of national rejuvenation.
文摘This study examines the “V + Dào” construction as a state change event through the lens of the Event Integration Hypothesis. It focuses on how these constructions represent state changes, exploring distinctions between “change” and “stasis”. Using a corpus-based approach, the analysis covers the semantic and syntactic features of “V + Dào” constructions and their event integration patterns. The findings highlight the distribution of agency, animacy, and support relations in state change events, emphasizing the complex interaction of internal and external event integrations and their correlation with the conceptual primitives of change and transition. This study offers insights into the lexicalization and grammaticalization processes of the “V + Dào” construction, and potentially the broader verb-complement constructions in Mandarin.
基金supported by the National Natural Science Foundation of China(Grant Nos.12372201 and 12072302).
文摘The 13-node quadrilateral and 39-node hexahedral cubic serendipity elements produce nodally integrated positive-definite lumped heat capacity matrices in higher-order finite element analysis.However,these elements display severe convergence deterioration in explicit transient heat conduction analysis with lumped heat ca-pacity matrices.This convergence decay is due to the violation of variational integration consistency by the standard Galerkin formulation with lumped heat capacity matrices.This issue is resolved by introducing the boundary-enhanced Galerkin weak form that incorporates the elemental boundary contribution in the discrete finite element formulation.Subsequently,it is theoretically proven that a direct nodal integration identically fulfills the variational integration consistency in the context of the boundary-enhanced Galerkin weak form.The proposed variationally consistent nodal integration therefore enables optimal convergence for explicit transient heat conduction analysis with lumped heat capacity matrices.The efficacy of the proposed variationally con-sistent nodal integration formulation for the 13-node quadrilateral and 39-node hexahedral cubic elements is thoroughly demonstrated via numerical examples.
基金Supported by Science and Technology Program of Quzhou,China,No.2022K67Zhejiang Medical Association Clinical Research Fund Project,No.2024ZYC-A526and the Research Project of Quzhou People’s Hospital,No.KYQD2024-006.
文摘BACKGROUND The association between the uric acid-to-high-density lipoprotein cholesterol ratio(UHR)and mental health among individuals with type 2 diabetes mellitus(T2DM)has not been thoroughly investigated.AIM To examine the link between UHR and symptoms of depression and anxiety in patients with T2DM.METHODS A cross-sectional analysis was carried out from March 2023 to April 2024,involving participants diagnosed with T2DM.Data on sociodemographic characteristics,clinical parameters,and UHR values were systematically gathered.The Self-Rating Depression Scale(SDS)and Self-Rating Anxiety Scale(SAS)were utilized to evaluate depressive and anxiety symptoms,respectively.To assess the relationships between UHR and SDS/SAS scores,linear regression models were employed,incorporating adjustments for potential confounding variables.Additionally,smooth curve fitting and threshold effect analyses were conducted to explore potential nonlinear relationships.RESULTS A total of 285 patients with T2DM were included.Initial univariate analysis demonstrated a significant positive correlation between elevated UHR levels and higher SDS and SAS scores.Multivariate regression analysis revealed that a one-unit rise in UHR was associated with a 1.13-point increase in SDS scores(95%CI:0.69-1.58)and a 0.57-point increase in SAS scores(95%CI:0.20-0.93).After controlling for confounders,UHR remained positively correlated with SDS(β=1.55,95%CI:0.57-2.53)and SAS(β=0.72,95%CI:0.35-1.09).Nonlinear analysis identified critical thresholds at UHR values of 5.02 for SDS and 4.00 for SAS,beyond which the relationships between UHR and psychological symptom scores became markedly stronger(P<0.05).CONCLUSION Higher UHR levels are significantly linked to exacerbated depressive and anxiety symptoms in patients with T2DM.These results indicate that UHR may function as a promising biomarker to identify individuals at greater risk of mental health complications within this population.