Coconut(Cocos nucifera L.),a major oil and fruit crop of the Arecaceae family,is extensively cultivated across the Asia—Pacific region.Despite its agricultural importance,genome assembly in coconut remains challengin...Coconut(Cocos nucifera L.),a major oil and fruit crop of the Arecaceae family,is extensively cultivated across the Asia—Pacific region.Despite its agricultural importance,genome assembly in coconut remains challenging due to its large genome size and high proportion of repetitive sequences.Allele-specific expression(ASE)plays a key role in regulating plant development and evolution,yet research on ASE in coconut is limited(Shao et al.,2019;Li et al.,2021;Zhang et al.,2021;Hu et al.,2022).Among phenotypic traits,fruit color is especially important as an indicator of maturity,guiding harvest timing and post-harvest processes(Kapoor et al.,2022).While prior studies have explored various coconut traits such as salt tolerance,fiber content,and plant height(Wang et al.,2021;Yang et al.,2021),investigations into ASE and fruit color remain scarce.展开更多
Objective Hepatitis Delt a Virus(HDV) antigen is widely used as a capture antigen in ELISAs for the identification of HDV infection; large amounts of recombinant HDV antigen with active antigenicity are required for...Objective Hepatitis Delt a Virus(HDV) antigen is widely used as a capture antigen in ELISAs for the identification of HDV infection; large amounts of recombinant HDV antigen with active antigenicity are required for this purpose. Methods Reconstruct the gene of HDV antigen based on the bias code of Escherichia coli, the recombinant protein expresses by high-density fermentation with fed-batch feeding strategy, and purify by immobilized metal chromatography. The sensitivity and specificity of this antigen detect by ELISA method. Results The expression of HDV antigen can reach 20% of the total cell mass in the soluble form. The recombinant HDV antigen can be conveniently purified(98%) by immobilized metal ion affinity chromatography(IMAC) using the interaction between a His-tag and nickel ions. Production of recombinant HDV antigen can reach 0.5 g/L under conditions of high-density cell fermentation. Applied to the diagnostic ELISA method, the recombinant HDV antigen shows excellent sensitivity(97% for IgM and 100% for IgG) and specificity(100% for IgG and IgM) for the detection of anti-HDV antibodies. Conclusion Expression and purification the recombinant HDV antigen as a candidate protein for application in a diagnostic ELISA for HDV infection. Large-scale production of the protein can be achieved using the high-density fermentation strategy.展开更多
Long-day length and high temperature inhibit sex expression in pumpkin(Cucurbita moschata Duch.),and therefore directly impact the production potential.In this study,female flowering patterns in photoperiod-insensitiv...Long-day length and high temperature inhibit sex expression in pumpkin(Cucurbita moschata Duch.),and therefore directly impact the production potential.In this study,female flowering patterns in photoperiod-insensitive(PPIS)and photoperiod-sensitive(PPS)germplasms differed significantly in a moderately long day and high temperature environment.However,both germplasms exhibited a similar response in short day with either low temperature or high temperature environment.Photoperiod sensitivity led to this difference in sex expression between the germplasms.For the traits of 1st female flowering node(FFFN)and number of female flowers(NFF),high-density linkage map construction and quantitative trait locus(QTL)mapping were performed using SLAF-seq technology and 162 F_(2) individuals generated from PPIS and PPS.In total,4655 SLAFs were selected and mapped on 20 linkage groups(LGs).The total map length was 2502.01 cM with an average interval distance of 0.75 cM.Major QTLs for both FFFN and NFF were detected on LG6 with intervals of 7.89 and 17.67 cM and PVE values of 30.5%and 22.9%,respectively.Further analyses of the major locus for FFFN revealed 73 protein-coding genes.Among them,4 were related to sex expression,photoperiod flowering,and hormone response.An InDel(insertion and deletion)marker partially correlated with FFFN of the F_(2) population was also developed.Our study identified the QTL for the sex expression response to environmental factors using the high-density linkage map.The identified candidate genes and markers will provide useful information about the molecular interaction between the environment and sex expression and for marker-assisted selection of pumpkin environment-insensitive resources.展开更多
BACKGROUND Colorectal cancer(CRC)is a common malignant tumor of the gastrointestinal tract.Lipid metabolism,as an important part of material and energy circulation,is well known to play a crucial role in CRC.AIM To ex...BACKGROUND Colorectal cancer(CRC)is a common malignant tumor of the gastrointestinal tract.Lipid metabolism,as an important part of material and energy circulation,is well known to play a crucial role in CRC.AIM To explore the relationship between serum lipids and CRC development and identify aberrantly expressed cholesterol metabolism genes in CRC.METHODS We retrospectively collected 843 patients who had confirmed CRC and received surgical resection from 2013 to 2015 at the Cancer Hospital of the Chinese Academy of Medical Sciences as our research subjects.The levels of serum total cholesterol(TC),triglycerides,low-density lipoprotein cholesterol(LDL-C),highdensity lipoprotein cholesterol(HDL-C),LDL-C/HDL-C and clinical features were collected and statistically analyzed by SPSS.Then,we used the data from Oncomine to screen the differentially expressed genes(DEGs)of the cholesterol metabolism pathway in CRC and used Gene Expression Profiling Interactive Analysis to confirm the candidate DEGs.PrognoScan was used to analyze the prognostic value of the DEGs,and Search Tool for the Retrieval of Interacting Genes was used to construct the protein-protein interaction network of DEGs.RESULTS The serum HDL-C level in CRC patients was significantly correlated with tumor size,and patients whose tumor size was more than 5 cm had a lower serum HDL-C level(1.18±0.41 mmol/L vs 1.25±0.35 mmol/L,P<0.01)than their counterparts.In addition,TC/HDL(4.19±1.33 vs 3.93±1.26,P<0.01)and LDL-C/HDL-C(2.83±1.10 vs 2.61±0.96,P<0.01)were higher in patients with larger tumors.The levels of HDL-C(P<0.05),TC/HDL-C(P<0.01)and LDL-C/HDL-C(P<0.05)varied in different stages of CRC patients,and the differences were significant.We screened 14 differentially expressed genes(DEGs)of the cholesterol metabolism pathway in CRC and confirmed that lipoprotein receptor-related protein 8(LRP8),PCSK9,low-density lipoprotein receptor(LDLR),MBTPS2 and FDXR are upregulated,while ABCA1 and OSBPL1A are downregulated in cancer tissue.Higher expression of LDLR(HR=3.12,95%CI:1.77-5.49,P<0.001),ABCA1(HR=1.66,95%CI:1.11-2.48,P=0.012)and OSBPL1A(HR=1.38,95%CI:1.01-1.89,P=0.041)all yielded significantly poorer DFS outcomes.Higher expression of FDXR(HR=0.7,95%CI:0.47-1.05,P=0.002)was correlated with longer DFS.LDLR,ABCA1,OSBPL1A and FDXR were involved in many important cellular function pathways.CONCLUSION Serum HDL-C levels are associated with tumor size and stage in CRC patients.LRP8,PCSK9,LDLR,MBTPS2 and FDXR are upregulated,while ABCA1 and OSBPL1A are downregulated in CRC.Among them,LDLR,ABCA1,OSBPL1A and FDXR were valuable prognostic factors of DFS and were involved in important cellular function pathways.展开更多
Artificial intelligence,such as deep learning technology,has advanced the study of facial expression recognition since facial expression carries rich emotional information and is significant for many naturalistic situ...Artificial intelligence,such as deep learning technology,has advanced the study of facial expression recognition since facial expression carries rich emotional information and is significant for many naturalistic situations.To pursue a high facial expression recognition accuracy,the network model of deep learning is generally designed to be very deep while the model’s real-time performance is typically constrained and limited.With MobileNetV3,a lightweight model with a good accuracy,a further study is conducted by adding a basic ResNet module to each of its existing modules and an SSH(Single Stage Headless Face Detector)context module to expand the model’s perceptual field.In this article,the enhanced model named Res-MobileNetV3,could alleviate the subpar of real-time performance and compress the size of large network models,which can process information at a rate of up to 33 frames per second.Although the improved model has been verified to be slightly inferior to the current state-of-the-art method in aspect of accuracy rate on the publically available face expression datasets,it can bring a good balance on accuracy,real-time performance,model size and model complexity in practical applications.展开更多
Rice is a poor source of folate,an essential micronutrient for the body.Biofortification offers an effective way to enhance the folate content of rice and alleviate folate deficiencies in humans.In this study,we confi...Rice is a poor source of folate,an essential micronutrient for the body.Biofortification offers an effective way to enhance the folate content of rice and alleviate folate deficiencies in humans.In this study,we confirmed that OsADCS and OsGTPCHI,encoding the initial enzymes necessary for folate synthesis,positively regulate folate accumulation in knockout mutants of both japonica and indica rice backgrounds.The folate content in the low-folate japonica variety was slightly increased by the expression of the indica alleles driven by the endosperm-specific promoter.We further obtained co-expression lines by stacking OsADCS and OsGTPCHI genes;the folate accumulation in brown rice and polished rice reached 5.65μg/g and 2.95μg/g,respectively,representing 37.9-fold and 26.5-fold increases compared with the wild type.Transcriptomic analysis of rice grains from six transgenic lines showed that folate changes affected biological pathways involved in the synthesis and metabolism of rice seed storage substances,while the expression of other folate synthesis genes was weakly regulated.In addition,we identified Aus rice as a high-folate germplasm carrying superior haplotypes of OsADCS and OsGTPCHI through natural variation.This study provides an alternative and effective complementary strategy for rice biofortification,promoting the rational combination of metabolic engineering and conventional breeding to breed high-folate varieties.展开更多
Oral expression skills play an essential role in the development of EFL students’language abilities,and how to improve EFL students’oral expression skills is an essential and challenging task.This study adopts a qua...Oral expression skills play an essential role in the development of EFL students’language abilities,and how to improve EFL students’oral expression skills is an essential and challenging task.This study adopts a quasi-experimental research method to carry out the research and proposes an AI-based reflective dialogue model.Based on this,an analysis of the impact brought by this model on EFL students’oral expression performance and learning anxiety levels.The results show that students in the experimental group have significantly higher oral expression performance than those in the control group in the three dimensions of grammatical accuracy,expressive fluency,and word accuracy.In addition,the students in the experimental group produced facilitated anxiety after using the AI-based reflective dialogue model for oral expression learning,which prompted the students to learn more diligently.展开更多
Objective INF2 is a member of the formins family.Abnormal expression and regulation of INF2 have been associated with the progression of various tumors,but the expression and role of INF2 in hepatocellular carcinoma(H...Objective INF2 is a member of the formins family.Abnormal expression and regulation of INF2 have been associated with the progression of various tumors,but the expression and role of INF2 in hepatocellular carcinoma(HCC)remain unclear.HCC is a highly lethal malignant tumor.Given the limitations of traditional treatments,this study explored the expression level,clinical value and potential mechanism of INF2 in HCC in order to seek new therapeutic targets.Methods In this study,we used public databases to analyze the expression of INF2 in pan-cancer and HCC,as well as the impact of INF2 expression levels on HCC prognosis.Quantitative real time polymerase chain reaction(RT-qPCR),Western blot,and immunohistochemistry were used to detect the expression level of INF2 in liver cancer cells and human HCC tissues.The correlation between INF2 expression and clinical pathological features was analyzed using public databases and clinical data of human HCC samples.Subsequently,the effects of INF2 expression on the biological function and Drp1 phosphorylation of liver cancer cells were elucidated through in vitro and in vivo experiments.Finally,the predictive value and potential mechanism of INF2 in HCC were further analyzed through database and immunohistochemical experiments.Results INF2 is aberrantly high expression in HCC samples and the high expression of INF2 is correlated with overall survival,liver cirrhosis and pathological differentiation of HCC patients.The expression level of INF2 has certain diagnostic value in predicting the prognosis and pathological differentiation of HCC.In vivo and in vitro HCC models,upregulated expression of INF2 triggers the proliferation and migration of the HCC cell,while knockdown of INF2 could counteract this effect.INF2 in liver cancer cells may affect mitochondrial division by inducing Drp1 phosphorylation and mediate immune escape by up-regulating PD-L1 expression,thus promoting tumor progression.Conclusion INF2 is highly expressed in HCC and is associated with poor prognosis.High expression of INF2 may promote HCC progression by inducing Drp1 phosphorylation and up-regulation of PD-L1 expression,and targeting INF2 may be beneficial for HCC patients with high expression of INF2.展开更多
The xylitol dehydrogenase(XDH)is a crucial enzyme involved in the xylose utilization in pentose⁃catabolizing yeasts and fungi.In addition to producing xylulose,XDH can also be employed to develop a biosensor for monit...The xylitol dehydrogenase(XDH)is a crucial enzyme involved in the xylose utilization in pentose⁃catabolizing yeasts and fungi.In addition to producing xylulose,XDH can also be employed to develop a biosensor for monitoring xylitol concentration.In this study,the gene encoding the thermophilic fungus Talaromyces emersonii XDH(TeXDH)was heterologously expressed in Escherichia coli BL21(DE3)at 16℃in the soluble form.Recombinant TeXDH with high purity was purified by using a Ni⁃NTA affinity column.Size⁃exclusion chromatography and SDS⁃PAGE analysis demonstrated that the puri⁃fied recombinant TeXDH exists as a native trimer with a molecular mass of approximately 116 kD,and is composed of three identical subunits,each with a molecular weight of around 39 kD.The TeXDH strictly preferred NAD^(+)as a coenzyme to NADP^(+).The optimal temperature and pH of the TeXDH were 40℃and 10.0,respectively.After EDTA treatment,the enzyme activity of TeXDH decreased to 43.26%of the initial enzyme activity,while the divalent metal ions Mg^(2+)or Ca^(2+)could recover the enzyme activity of TeXDH,reaching 103.32%and 110.69%of the initial enzyme activity,respectively,making them the optimal divalent metal ion cofactors for TeXDH enzyme.However,the divalent metal ions of Mn^(2+),Ni^(2+),Cu^(2+),Zn^(2+),Co^(2+),and Cd^(2+)significantly inhibited the activity of TeXDH.ICP⁃MS and molecular doc⁃king studies revealed that 1 mol/L of TeXDH bound 2 mol/L Zn^(2+)ions and 1 mol/L Mg^(2+)ion.Further⁃more,TeXDH exhibited a high specificity for xylitol,laying the foundation for the development of future xylitol biosensors.展开更多
DNA microarray technology is an extremely effective technique for studying gene expression patterns in cells, and the main challenge currently faced by this technology is how to analyze the large amount of gene expres...DNA microarray technology is an extremely effective technique for studying gene expression patterns in cells, and the main challenge currently faced by this technology is how to analyze the large amount of gene expression data generated. To address this, this paper employs a mixed-effects model to analyze gene expression data. In terms of data selection, 1176 genes from the white mouse gene expression dataset under two experimental conditions were chosen, setting up two conditions: pneumococcal infection and no infection, and constructing a mixed-effects model. After preprocessing the gene chip information, the data were imported into the model, preliminary results were calculated, and permutation tests were performed to biologically validate the preliminary results using GSEA. The final dataset consists of 20 groups of gene expression data from pneumococcal infection, which categorizes functionally related genes based on the similarity of their expression profiles, facilitating the study of genes with unknown functions.展开更多
Metal-support interactions and hydrogen spillover effects in heterogeneous catalysts play a crucial role in aromatic hydrogenation reactions;however,these effects are limited by the metal dispersion on the catalyst an...Metal-support interactions and hydrogen spillover effects in heterogeneous catalysts play a crucial role in aromatic hydrogenation reactions;however,these effects are limited by the metal dispersion on the catalyst and the number of acceptable H*receptors.This study prepares highly dispersed Ni nanoparticles(NPs)catalysts on a Beta substrate via precursor structure topology transformation.In contrast to traditional support materials,the coordination and electronic structure changes between the Ni NPs and the support were achieved,further optimizing the active interface sites and enhancing hydrogen activation and hydrogenation performance.Additionally,the-OH groups at the strong acid sites in zeolite effectively intensified the hydrogen spillover effect as receptors for H^(*)migration and anchoring,accelerating the hydrogenation rate of aromatic rings.Under solvent-free conditions,this catalyst was used for the hydrogenation reaction of aromatic-rich oils,directly producing a C_(8)-C_(14)branched cycloalkanes mixture with an aromatic conversion rate of>99%.The cycloalkanes mixture produced by this method features high density(0.92 g/mL)and a low freezing point(<-60℃),making it suitable for use as high-density aviation fuel or as an additive to enhance the volumetric heat value of conventional aviation fuels in practical applications.展开更多
Neuronal activity,synaptic transmission,and molecular changes in the basolateral amygdala play critical roles in fear memory.Cylindromatosis(CYLD)is a deubiquitinase that negatively regulates the nuclear factor kappa-...Neuronal activity,synaptic transmission,and molecular changes in the basolateral amygdala play critical roles in fear memory.Cylindromatosis(CYLD)is a deubiquitinase that negatively regulates the nuclear factor kappa-B pathway.CYLD is well studied in non-neuronal cells,yet underinvestigated in the brain,where it is highly expressed.Emerging studies have shown involvement of CYLD in the remodeling of glutamatergic synapses,neuroinflammation,fear memory,and anxiety-and autism-like behaviors.However,the precise role of CYLD in glutamatergic neurons is largely unknown.Here,we first proposed involvement of CYLD in cued fear expression.We next constructed transgenic model mice with specific deletion of Cyld from glutamatergic neurons.Our results show that glutamatergic CYLD deficiency exaggerated the expression of cued fear in only male mice.Further,loss of CYLD in glutamatergic neurons resulted in enhanced neuronal activation,impaired excitatory synaptic transmission,and altered levels of glutamate receptors accompanied by over-activation of microglia in the basolateral amygdala of male mice.Altogether,our study suggests a critical role of glutamatergic CYLD in maintaining normal neuronal,synaptic,and microglial activation.This may contribute,at least in part,to cued fear expression.展开更多
In rotationally extruded fittings,high-density polyethylene(HDPE)pipes prepared using conventional processing methods often suffer from poor pressure resistance and low toughness.This study introduces an innovative ro...In rotationally extruded fittings,high-density polyethylene(HDPE)pipes prepared using conventional processing methods often suffer from poor pressure resistance and low toughness.This study introduces an innovative rotary shear system(RSS)to address these deficiencies through controlled mandrel rotation and cooling rates.We successfully prepared self-reinforced HDPE pipes with a three-layer structure combining spherical and shish-kebab crystals.Rotational processing aligned the molecular chains in the ring direction and formed shish-kebab crystals.As a result,the annular tensile strength of the rotationally processed three-layer shish-kebab structure(TSK)pipe increased from 26.7 MPa to 76.3 MPa,an enhancement of 185.8%.Notably,while maintaining excellent tensile strength(73.4 MPa),the elongation at break of the spherulite shishkebab spherulite(SKS)tubes was improved to 50.1%,as compared to 33.8%in the case of shish-kebab spherulite shish-kebab(KSK)tubes.This improvement can be attributed to the changes in the micro-morphology and polymer structure within the SKS tubes,specifically due to the formation of small-sized shish-kebab crystals and the low degrees of interlocking.In addition,2D-SAXS analysis revealed that KSK tubes have higher tensile strength due to smaller crystal sizes and larger shish dimensions,forming dense interlocking structures.In contrast,the SKS and TSK tubes had thicker amorphous regions and smaller shish sizes,resulting in reduced interlocking and mechanical performance.展开更多
Evaluation of backfilling effectiveness plays a crucial role in the geological environment management and restoration of abandoned open-pit quarries,providing a scientific basis for subsequent greening efforts.Backfil...Evaluation of backfilling effectiveness plays a crucial role in the geological environment management and restoration of abandoned open-pit quarries,providing a scientific basis for subsequent greening efforts.Backfill soil,predominantly composed of silty clay,demonstrates high water retention capacity and elevated moisture content,leading to a pronounced resistivity contrast with the bedrock exposed by quarrying activities.To investigate the distribution of backfill soil subsurface and assess backfilling effectiveness in the study area,this study conducted a comprehensive geophysical investigation utilizing the high-density electrical resistivity tomography(ERT).A total of 19 ERT survey lines were deployed across three distinct areas in Liuyao Village,Huaibei City,Anhui Province,China.The inversion results,derived from both two-dimensional(2D)and three-dimensional(3D),reveal distinct electrical properties of the subsurface materials:the backfill soil layer shows low resistivity features,the fill stone layer exhibits medium to high resistivity,and the bedrock shows the highest resistivity.The 2D inversion results,from the data measured using the Wenner array effectively capture the spatial distribution and structural features of the backfill soil layer.The findings indicate a gradual east-west thinning of the clay layer within the quarry.Furthermore,the northern pit area exhibits a uniform distribution of backfill soil layer,indicative of effective backfilling operations.In contrast,the southern pit area lacks a well-defined clay layer,suggesting suboptimal backfilling effectiveness.展开更多
High-density interconnect(HDI)soft electronics that can integrate multiple individual functions into one miniaturized monolithic system is promising for applications related to smart healthcare,soft robotics,and human...High-density interconnect(HDI)soft electronics that can integrate multiple individual functions into one miniaturized monolithic system is promising for applications related to smart healthcare,soft robotics,and human-machine interactions.However,despite the recent advances,the development of three-dimensional(3D)soft electronics with both high resolution and high integration is still challenging because of the lack of efficient manufacturing methods to guarantee interlayer alignment of the high-density vias and reliable interlayer electrical conductivity.Here,an advanced 3D laser printing pathway,based on femtosecond laser direct writing(FLDW),is demonstrated for preparing liquid metal(LM)-based any layer HDI soft electronics.FLDW technology,with the characteristics of high spatial resolution and high precision,allows the maskless fabrication of high-resolution embedded LM microchannels and high-density vertical interconnect accesses for 3D integrated circuits.High-aspect-ratio blind/through LM microstructures are formed inside the elastomer due to the supermetalphobicity induced during laser ablation.The LM-based HDI circuit featuring high resolution(~1.5μm)and high integration(10-layer electrical interconnection)is achieved for customized soft electronics,including various customized multilayer passive electric components,soft multilayer circuit,and cross-scale multimode sensors.The 3D laser printing method provides a versatile approach for developing chip-level soft electronics.展开更多
Dislocation strengthening,as one of the methods to simultaneously enhance the room temperature strength and ductility of alloys,does not achieve the desired strengthening and plasticity effect during elevated-temperat...Dislocation strengthening,as one of the methods to simultaneously enhance the room temperature strength and ductility of alloys,does not achieve the desired strengthening and plasticity effect during elevated-temperature deformation.Here,we report a novel strategy to boost the dislocation multiplication and accumulation during deformation at elevated temperatures through dynamic strain aging(DSA).With the introduction of the rare-earth element Ho in Mg-Y-Zn alloy,Ho atoms diffuse toward dislocations during deformation at elevated temperatures,provoking the DSA effect,which increases the dislocation density significantly via the interactions of mobile dislocations and Ho atoms.The resulting alloy achieves a great enhancement of dislocation hardening and obtains the dual benefits of high strength and good ductility simultaneously at high homologous temperatures.The present work provides an effective strategy to enhancing the strength and ductility for elevated-temperature materials.展开更多
In the context of rapid urbanization,high-density construction areas face significant challenges,including the reduction of ecological spaces and the deterioration of their functions.Planning and managing ecological s...In the context of rapid urbanization,high-density construction areas face significant challenges,including the reduction of ecological spaces and the deterioration of their functions.Planning and managing ecological spaces have emerged as essential strategies to address the conflict between urban development and ecological conservation.Using Jinjiang City,Fujian Province as the case study,this paper systematically examines the significance and primary challenges of ecological space planning in highdensity construction areas.It also identifies prevailing issues within the current research domain,including“an overemphasis on top-level design at the expense of implementation,a focus on isolated aspects rather than systemic integration,and prioritization of control over coordination”.This study proposes the key aspects of ecological space planning and management in high-density construction areas,focusing on three fundamental dimensions:human-centered demand orientation,the integration of top-down and bottomup linkage mechanisms,and a differentiated control system.Drawing on the full-element assessment of the ecosystem,ecological network construction,and full-process control system implemented in Jinjiang City,an integrated approach to ecological space governance,encompassing assessment,planning,and control,has been developed.This approach offers both theoretical insights and practical guidance for optimizing ecological spaces in comparable urban contexts.展开更多
Mandarin fish(Siniperca scherzeri) has high market prices and significant market potential in China because of its highquality meat and high nutritional value. However, due to the limited scale of aquaculture, meeting...Mandarin fish(Siniperca scherzeri) has high market prices and significant market potential in China because of its highquality meat and high nutritional value. However, due to the limited scale of aquaculture, meeting the market demand is difficult, making the effective development of the aquaculture potential of mandarin fish an important challenge for the industry. In this study, a 30-d breeding experiment was conducted on mandarin fish larvae under three photoperiod conditions: G1 8 h light:16 h dark(8L:16D), G2 12 h light:12 h dark(12L:12D), and G3 16 h light:8 h dark(16L:8D). The results showed that the G2 group exhibited the best growth performance and development status, with final body weights, weight gain rates, and specific growth rates all higher than those of the other two groups(P < 0.05). Observations of sections from each group revealed that the intestinal villi length and muscle thickness of the G2 group were significantly greater than those of the other two groups(P < 0.05). The G2 group inhibited the transcriptional activation of key circadian rhythm genes, including nr1d2a, nr1d1 and per1, while upregulating the expression of BMAL1 in S. scherzeri.The activation of both the insulin signalling pathway and the Fox O signalling pathway enhanced the efficient secretion of insulin, which subsequently played a critical role in regulating fatty acid metabolism. This active fatty acid metabolism provided an optimal energy supply, ensuring that other nutrients were fully utilized during the growth and development process while minimizing unnecessary nutrient loss. Consequently, this mechanism effectively promoted the overall growth and development of S. scherzeri. This study was the first to elucidate the transcriptomic expression patterns of S. scherzeri under varying photoperiod conditions. In response to the cyclic alternation of day and night, S. scherzeri regulated their metabolic levels and the transcriptional activation of downstream target genes via insulin signalling.展开更多
BACKGROUND The association between the uric acid-to-high-density lipoprotein cholesterol ratio(UHR)and mental health among individuals with type 2 diabetes mellitus(T2DM)has not been thoroughly investigated.AIM To exa...BACKGROUND The association between the uric acid-to-high-density lipoprotein cholesterol ratio(UHR)and mental health among individuals with type 2 diabetes mellitus(T2DM)has not been thoroughly investigated.AIM To examine the link between UHR and symptoms of depression and anxiety in patients with T2DM.METHODS A cross-sectional analysis was carried out from March 2023 to April 2024,involving participants diagnosed with T2DM.Data on sociodemographic characteristics,clinical parameters,and UHR values were systematically gathered.The Self-Rating Depression Scale(SDS)and Self-Rating Anxiety Scale(SAS)were utilized to evaluate depressive and anxiety symptoms,respectively.To assess the relationships between UHR and SDS/SAS scores,linear regression models were employed,incorporating adjustments for potential confounding variables.Additionally,smooth curve fitting and threshold effect analyses were conducted to explore potential nonlinear relationships.RESULTS A total of 285 patients with T2DM were included.Initial univariate analysis demonstrated a significant positive correlation between elevated UHR levels and higher SDS and SAS scores.Multivariate regression analysis revealed that a one-unit rise in UHR was associated with a 1.13-point increase in SDS scores(95%CI:0.69-1.58)and a 0.57-point increase in SAS scores(95%CI:0.20-0.93).After controlling for confounders,UHR remained positively correlated with SDS(β=1.55,95%CI:0.57-2.53)and SAS(β=0.72,95%CI:0.35-1.09).Nonlinear analysis identified critical thresholds at UHR values of 5.02 for SDS and 4.00 for SAS,beyond which the relationships between UHR and psychological symptom scores became markedly stronger(P<0.05).CONCLUSION Higher UHR levels are significantly linked to exacerbated depressive and anxiety symptoms in patients with T2DM.These results indicate that UHR may function as a promising biomarker to identify individuals at greater risk of mental health complications within this population.展开更多
Rapeseed mustard(Brassica juncea L.) is the third most important oilseed crop in the world, but the geneticmechanism underlying its massive phenotypic variation remains largely unexplored. In this study, specific leng...Rapeseed mustard(Brassica juncea L.) is the third most important oilseed crop in the world, but the geneticmechanism underlying its massive phenotypic variation remains largely unexplored. In this study, specific length amplified fragment sequencing(SLAF-Seq) was used to resequence a population comprising 197 F8recombinantinbred lines(RILs) derived from a cross between vegetable-type Qichi881 and oilseed-type YufengZC of B. juncea. In total, 438,895 high-quality SLAFs were discovered, 47,644 of which were polymorphic, and 3,887 of the polymorphic markers met the requirements for genetic map construction. The final map included 3,887 markers on 18 linkage groups and was 1,830.23 centiMorgan(cM) in length, with an average distance of 0.47 cM between adjacent markers. Using the newly constructed high-density genetic map, a total of 53 QTLs for erucicacid(EA), oleic acid(OA), and linolenic acid(LNA) were detected and integrated into eight consensus QTLswith two for each of these traits. For each of these three traits, two candidate genes were cloned and sequence analysis indicated colocalization with their respective consensus QTLs. The co-dominant allele-specific markers for Bju.FAD3.A03 and Bju.FAD3.B07 were developed and showed co-localization with their consensus QTLs andco-segregation with LNA content, further supporting the results of QTL mapping and bioinformatic analysis. Theexpression levels of the cloned homologous genes were also determined, and the genes were tightly correlatedwith the EA, OA and LNA contents of different lines. The results of this study will facilitate the improvement offatty acid traits and molecular breeding of B. juncea. Further uses of the high-density genetic map created in this study are also discussed.展开更多
基金supported by Central Public-interest Scientific Institution Basal Research Fund(CATAS-Nos.1630152023007,1630152023011,1630152023012,1630152023013)the National Natural Science Foundation of China(Grant No.32071805).
文摘Coconut(Cocos nucifera L.),a major oil and fruit crop of the Arecaceae family,is extensively cultivated across the Asia—Pacific region.Despite its agricultural importance,genome assembly in coconut remains challenging due to its large genome size and high proportion of repetitive sequences.Allele-specific expression(ASE)plays a key role in regulating plant development and evolution,yet research on ASE in coconut is limited(Shao et al.,2019;Li et al.,2021;Zhang et al.,2021;Hu et al.,2022).Among phenotypic traits,fruit color is especially important as an indicator of maturity,guiding harvest timing and post-harvest processes(Kapoor et al.,2022).While prior studies have explored various coconut traits such as salt tolerance,fiber content,and plant height(Wang et al.,2021;Yang et al.,2021),investigations into ASE and fruit color remain scarce.
文摘Objective Hepatitis Delt a Virus(HDV) antigen is widely used as a capture antigen in ELISAs for the identification of HDV infection; large amounts of recombinant HDV antigen with active antigenicity are required for this purpose. Methods Reconstruct the gene of HDV antigen based on the bias code of Escherichia coli, the recombinant protein expresses by high-density fermentation with fed-batch feeding strategy, and purify by immobilized metal chromatography. The sensitivity and specificity of this antigen detect by ELISA method. Results The expression of HDV antigen can reach 20% of the total cell mass in the soluble form. The recombinant HDV antigen can be conveniently purified(98%) by immobilized metal ion affinity chromatography(IMAC) using the interaction between a His-tag and nickel ions. Production of recombinant HDV antigen can reach 0.5 g/L under conditions of high-density cell fermentation. Applied to the diagnostic ELISA method, the recombinant HDV antigen shows excellent sensitivity(97% for IgM and 100% for IgG) and specificity(100% for IgG and IgM) for the detection of anti-HDV antibodies. Conclusion Expression and purification the recombinant HDV antigen as a candidate protein for application in a diagnostic ELISA for HDV infection. Large-scale production of the protein can be achieved using the high-density fermentation strategy.
基金supported by Key Realm R&D Program of Guangdong Province(Grant No.2020B020220003)the National Natural Science Foundation of China(Grant No.31601748)the Agricultural competitive industry discipline team building project of Guangdong Academy of Agricultural Sciences(Grant No.202103TD).
文摘Long-day length and high temperature inhibit sex expression in pumpkin(Cucurbita moschata Duch.),and therefore directly impact the production potential.In this study,female flowering patterns in photoperiod-insensitive(PPIS)and photoperiod-sensitive(PPS)germplasms differed significantly in a moderately long day and high temperature environment.However,both germplasms exhibited a similar response in short day with either low temperature or high temperature environment.Photoperiod sensitivity led to this difference in sex expression between the germplasms.For the traits of 1st female flowering node(FFFN)and number of female flowers(NFF),high-density linkage map construction and quantitative trait locus(QTL)mapping were performed using SLAF-seq technology and 162 F_(2) individuals generated from PPIS and PPS.In total,4655 SLAFs were selected and mapped on 20 linkage groups(LGs).The total map length was 2502.01 cM with an average interval distance of 0.75 cM.Major QTLs for both FFFN and NFF were detected on LG6 with intervals of 7.89 and 17.67 cM and PVE values of 30.5%and 22.9%,respectively.Further analyses of the major locus for FFFN revealed 73 protein-coding genes.Among them,4 were related to sex expression,photoperiod flowering,and hormone response.An InDel(insertion and deletion)marker partially correlated with FFFN of the F_(2) population was also developed.Our study identified the QTL for the sex expression response to environmental factors using the high-density linkage map.The identified candidate genes and markers will provide useful information about the molecular interaction between the environment and sex expression and for marker-assisted selection of pumpkin environment-insensitive resources.
文摘BACKGROUND Colorectal cancer(CRC)is a common malignant tumor of the gastrointestinal tract.Lipid metabolism,as an important part of material and energy circulation,is well known to play a crucial role in CRC.AIM To explore the relationship between serum lipids and CRC development and identify aberrantly expressed cholesterol metabolism genes in CRC.METHODS We retrospectively collected 843 patients who had confirmed CRC and received surgical resection from 2013 to 2015 at the Cancer Hospital of the Chinese Academy of Medical Sciences as our research subjects.The levels of serum total cholesterol(TC),triglycerides,low-density lipoprotein cholesterol(LDL-C),highdensity lipoprotein cholesterol(HDL-C),LDL-C/HDL-C and clinical features were collected and statistically analyzed by SPSS.Then,we used the data from Oncomine to screen the differentially expressed genes(DEGs)of the cholesterol metabolism pathway in CRC and used Gene Expression Profiling Interactive Analysis to confirm the candidate DEGs.PrognoScan was used to analyze the prognostic value of the DEGs,and Search Tool for the Retrieval of Interacting Genes was used to construct the protein-protein interaction network of DEGs.RESULTS The serum HDL-C level in CRC patients was significantly correlated with tumor size,and patients whose tumor size was more than 5 cm had a lower serum HDL-C level(1.18±0.41 mmol/L vs 1.25±0.35 mmol/L,P<0.01)than their counterparts.In addition,TC/HDL(4.19±1.33 vs 3.93±1.26,P<0.01)and LDL-C/HDL-C(2.83±1.10 vs 2.61±0.96,P<0.01)were higher in patients with larger tumors.The levels of HDL-C(P<0.05),TC/HDL-C(P<0.01)and LDL-C/HDL-C(P<0.05)varied in different stages of CRC patients,and the differences were significant.We screened 14 differentially expressed genes(DEGs)of the cholesterol metabolism pathway in CRC and confirmed that lipoprotein receptor-related protein 8(LRP8),PCSK9,low-density lipoprotein receptor(LDLR),MBTPS2 and FDXR are upregulated,while ABCA1 and OSBPL1A are downregulated in cancer tissue.Higher expression of LDLR(HR=3.12,95%CI:1.77-5.49,P<0.001),ABCA1(HR=1.66,95%CI:1.11-2.48,P=0.012)and OSBPL1A(HR=1.38,95%CI:1.01-1.89,P=0.041)all yielded significantly poorer DFS outcomes.Higher expression of FDXR(HR=0.7,95%CI:0.47-1.05,P=0.002)was correlated with longer DFS.LDLR,ABCA1,OSBPL1A and FDXR were involved in many important cellular function pathways.CONCLUSION Serum HDL-C levels are associated with tumor size and stage in CRC patients.LRP8,PCSK9,LDLR,MBTPS2 and FDXR are upregulated,while ABCA1 and OSBPL1A are downregulated in CRC.Among them,LDLR,ABCA1,OSBPL1A and FDXR were valuable prognostic factors of DFS and were involved in important cellular function pathways.
基金supported by China Academy of Railway Sciences Corporation Limited(No.2021YJ127).
文摘Artificial intelligence,such as deep learning technology,has advanced the study of facial expression recognition since facial expression carries rich emotional information and is significant for many naturalistic situations.To pursue a high facial expression recognition accuracy,the network model of deep learning is generally designed to be very deep while the model’s real-time performance is typically constrained and limited.With MobileNetV3,a lightweight model with a good accuracy,a further study is conducted by adding a basic ResNet module to each of its existing modules and an SSH(Single Stage Headless Face Detector)context module to expand the model’s perceptual field.In this article,the enhanced model named Res-MobileNetV3,could alleviate the subpar of real-time performance and compress the size of large network models,which can process information at a rate of up to 33 frames per second.Although the improved model has been verified to be slightly inferior to the current state-of-the-art method in aspect of accuracy rate on the publically available face expression datasets,it can bring a good balance on accuracy,real-time performance,model size and model complexity in practical applications.
基金supported by the Central Public-Interest Scientific Institution Basal Research Fund,China(Grant No.CPSIBRF-CNRRI-202403)。
文摘Rice is a poor source of folate,an essential micronutrient for the body.Biofortification offers an effective way to enhance the folate content of rice and alleviate folate deficiencies in humans.In this study,we confirmed that OsADCS and OsGTPCHI,encoding the initial enzymes necessary for folate synthesis,positively regulate folate accumulation in knockout mutants of both japonica and indica rice backgrounds.The folate content in the low-folate japonica variety was slightly increased by the expression of the indica alleles driven by the endosperm-specific promoter.We further obtained co-expression lines by stacking OsADCS and OsGTPCHI genes;the folate accumulation in brown rice and polished rice reached 5.65μg/g and 2.95μg/g,respectively,representing 37.9-fold and 26.5-fold increases compared with the wild type.Transcriptomic analysis of rice grains from six transgenic lines showed that folate changes affected biological pathways involved in the synthesis and metabolism of rice seed storage substances,while the expression of other folate synthesis genes was weakly regulated.In addition,we identified Aus rice as a high-folate germplasm carrying superior haplotypes of OsADCS and OsGTPCHI through natural variation.This study provides an alternative and effective complementary strategy for rice biofortification,promoting the rational combination of metabolic engineering and conventional breeding to breed high-folate varieties.
基金2024 Provincial Teaching Reform Program for Graduate Students in the Second Batch of the 14th Five-Year Plan of Zhejiang Provincial Office of Education:Innovation and Practice of“Six Synergistic”Graduate Teaching Guided by Educator’s Spirit(No.JGCG2024406)Key Project of Zhejiang Provincial Education Science Planning:Research on an interdisciplinary teaching model to promote students’computational thinking from multiple analytical perspectives[No.2025SB103].
文摘Oral expression skills play an essential role in the development of EFL students’language abilities,and how to improve EFL students’oral expression skills is an essential and challenging task.This study adopts a quasi-experimental research method to carry out the research and proposes an AI-based reflective dialogue model.Based on this,an analysis of the impact brought by this model on EFL students’oral expression performance and learning anxiety levels.The results show that students in the experimental group have significantly higher oral expression performance than those in the control group in the three dimensions of grammatical accuracy,expressive fluency,and word accuracy.In addition,the students in the experimental group produced facilitated anxiety after using the AI-based reflective dialogue model for oral expression learning,which prompted the students to learn more diligently.
文摘Objective INF2 is a member of the formins family.Abnormal expression and regulation of INF2 have been associated with the progression of various tumors,but the expression and role of INF2 in hepatocellular carcinoma(HCC)remain unclear.HCC is a highly lethal malignant tumor.Given the limitations of traditional treatments,this study explored the expression level,clinical value and potential mechanism of INF2 in HCC in order to seek new therapeutic targets.Methods In this study,we used public databases to analyze the expression of INF2 in pan-cancer and HCC,as well as the impact of INF2 expression levels on HCC prognosis.Quantitative real time polymerase chain reaction(RT-qPCR),Western blot,and immunohistochemistry were used to detect the expression level of INF2 in liver cancer cells and human HCC tissues.The correlation between INF2 expression and clinical pathological features was analyzed using public databases and clinical data of human HCC samples.Subsequently,the effects of INF2 expression on the biological function and Drp1 phosphorylation of liver cancer cells were elucidated through in vitro and in vivo experiments.Finally,the predictive value and potential mechanism of INF2 in HCC were further analyzed through database and immunohistochemical experiments.Results INF2 is aberrantly high expression in HCC samples and the high expression of INF2 is correlated with overall survival,liver cirrhosis and pathological differentiation of HCC patients.The expression level of INF2 has certain diagnostic value in predicting the prognosis and pathological differentiation of HCC.In vivo and in vitro HCC models,upregulated expression of INF2 triggers the proliferation and migration of the HCC cell,while knockdown of INF2 could counteract this effect.INF2 in liver cancer cells may affect mitochondrial division by inducing Drp1 phosphorylation and mediate immune escape by up-regulating PD-L1 expression,thus promoting tumor progression.Conclusion INF2 is highly expressed in HCC and is associated with poor prognosis.High expression of INF2 may promote HCC progression by inducing Drp1 phosphorylation and up-regulation of PD-L1 expression,and targeting INF2 may be beneficial for HCC patients with high expression of INF2.
基金湖南省教育厅基金优秀青年项目(No.22B0482)湖南科技大学博士启动基金(No.E51992 and E51993)资助。
文摘The xylitol dehydrogenase(XDH)is a crucial enzyme involved in the xylose utilization in pentose⁃catabolizing yeasts and fungi.In addition to producing xylulose,XDH can also be employed to develop a biosensor for monitoring xylitol concentration.In this study,the gene encoding the thermophilic fungus Talaromyces emersonii XDH(TeXDH)was heterologously expressed in Escherichia coli BL21(DE3)at 16℃in the soluble form.Recombinant TeXDH with high purity was purified by using a Ni⁃NTA affinity column.Size⁃exclusion chromatography and SDS⁃PAGE analysis demonstrated that the puri⁃fied recombinant TeXDH exists as a native trimer with a molecular mass of approximately 116 kD,and is composed of three identical subunits,each with a molecular weight of around 39 kD.The TeXDH strictly preferred NAD^(+)as a coenzyme to NADP^(+).The optimal temperature and pH of the TeXDH were 40℃and 10.0,respectively.After EDTA treatment,the enzyme activity of TeXDH decreased to 43.26%of the initial enzyme activity,while the divalent metal ions Mg^(2+)or Ca^(2+)could recover the enzyme activity of TeXDH,reaching 103.32%and 110.69%of the initial enzyme activity,respectively,making them the optimal divalent metal ion cofactors for TeXDH enzyme.However,the divalent metal ions of Mn^(2+),Ni^(2+),Cu^(2+),Zn^(2+),Co^(2+),and Cd^(2+)significantly inhibited the activity of TeXDH.ICP⁃MS and molecular doc⁃king studies revealed that 1 mol/L of TeXDH bound 2 mol/L Zn^(2+)ions and 1 mol/L Mg^(2+)ion.Further⁃more,TeXDH exhibited a high specificity for xylitol,laying the foundation for the development of future xylitol biosensors.
文摘DNA microarray technology is an extremely effective technique for studying gene expression patterns in cells, and the main challenge currently faced by this technology is how to analyze the large amount of gene expression data generated. To address this, this paper employs a mixed-effects model to analyze gene expression data. In terms of data selection, 1176 genes from the white mouse gene expression dataset under two experimental conditions were chosen, setting up two conditions: pneumococcal infection and no infection, and constructing a mixed-effects model. After preprocessing the gene chip information, the data were imported into the model, preliminary results were calculated, and permutation tests were performed to biologically validate the preliminary results using GSEA. The final dataset consists of 20 groups of gene expression data from pneumococcal infection, which categorizes functionally related genes based on the similarity of their expression profiles, facilitating the study of genes with unknown functions.
基金financially supported by the National Natural Science Foundation of China(Grant 22278439,21776313)the Shandong Province Higher Education Youth Innovation Technology Support Program(Grant 2022KJ074)。
文摘Metal-support interactions and hydrogen spillover effects in heterogeneous catalysts play a crucial role in aromatic hydrogenation reactions;however,these effects are limited by the metal dispersion on the catalyst and the number of acceptable H*receptors.This study prepares highly dispersed Ni nanoparticles(NPs)catalysts on a Beta substrate via precursor structure topology transformation.In contrast to traditional support materials,the coordination and electronic structure changes between the Ni NPs and the support were achieved,further optimizing the active interface sites and enhancing hydrogen activation and hydrogenation performance.Additionally,the-OH groups at the strong acid sites in zeolite effectively intensified the hydrogen spillover effect as receptors for H^(*)migration and anchoring,accelerating the hydrogenation rate of aromatic rings.Under solvent-free conditions,this catalyst was used for the hydrogenation reaction of aromatic-rich oils,directly producing a C_(8)-C_(14)branched cycloalkanes mixture with an aromatic conversion rate of>99%.The cycloalkanes mixture produced by this method features high density(0.92 g/mL)and a low freezing point(<-60℃),making it suitable for use as high-density aviation fuel or as an additive to enhance the volumetric heat value of conventional aviation fuels in practical applications.
基金supported by the National Natural Science Foundation of China,Nos.32371065(to CL)and 32170950(to LY)the Natural Science Foundation of the Guangdong Province,No.2023A1515010899(to CL)the Science and Technology Projects in Guangzhou,Nos.2023A4J0578 and 2024A03J0180(to CW)。
文摘Neuronal activity,synaptic transmission,and molecular changes in the basolateral amygdala play critical roles in fear memory.Cylindromatosis(CYLD)is a deubiquitinase that negatively regulates the nuclear factor kappa-B pathway.CYLD is well studied in non-neuronal cells,yet underinvestigated in the brain,where it is highly expressed.Emerging studies have shown involvement of CYLD in the remodeling of glutamatergic synapses,neuroinflammation,fear memory,and anxiety-and autism-like behaviors.However,the precise role of CYLD in glutamatergic neurons is largely unknown.Here,we first proposed involvement of CYLD in cued fear expression.We next constructed transgenic model mice with specific deletion of Cyld from glutamatergic neurons.Our results show that glutamatergic CYLD deficiency exaggerated the expression of cued fear in only male mice.Further,loss of CYLD in glutamatergic neurons resulted in enhanced neuronal activation,impaired excitatory synaptic transmission,and altered levels of glutamate receptors accompanied by over-activation of microglia in the basolateral amygdala of male mice.Altogether,our study suggests a critical role of glutamatergic CYLD in maintaining normal neuronal,synaptic,and microglial activation.This may contribute,at least in part,to cued fear expression.
基金supported by the National Natural Science Foundation of China(Nos.52373045 and 52033005).
文摘In rotationally extruded fittings,high-density polyethylene(HDPE)pipes prepared using conventional processing methods often suffer from poor pressure resistance and low toughness.This study introduces an innovative rotary shear system(RSS)to address these deficiencies through controlled mandrel rotation and cooling rates.We successfully prepared self-reinforced HDPE pipes with a three-layer structure combining spherical and shish-kebab crystals.Rotational processing aligned the molecular chains in the ring direction and formed shish-kebab crystals.As a result,the annular tensile strength of the rotationally processed three-layer shish-kebab structure(TSK)pipe increased from 26.7 MPa to 76.3 MPa,an enhancement of 185.8%.Notably,while maintaining excellent tensile strength(73.4 MPa),the elongation at break of the spherulite shishkebab spherulite(SKS)tubes was improved to 50.1%,as compared to 33.8%in the case of shish-kebab spherulite shish-kebab(KSK)tubes.This improvement can be attributed to the changes in the micro-morphology and polymer structure within the SKS tubes,specifically due to the formation of small-sized shish-kebab crystals and the low degrees of interlocking.In addition,2D-SAXS analysis revealed that KSK tubes have higher tensile strength due to smaller crystal sizes and larger shish dimensions,forming dense interlocking structures.In contrast,the SKS and TSK tubes had thicker amorphous regions and smaller shish sizes,resulting in reduced interlocking and mechanical performance.
基金Supported by National Key Research and Development Program of China(No.2023YFC3707901)。
文摘Evaluation of backfilling effectiveness plays a crucial role in the geological environment management and restoration of abandoned open-pit quarries,providing a scientific basis for subsequent greening efforts.Backfill soil,predominantly composed of silty clay,demonstrates high water retention capacity and elevated moisture content,leading to a pronounced resistivity contrast with the bedrock exposed by quarrying activities.To investigate the distribution of backfill soil subsurface and assess backfilling effectiveness in the study area,this study conducted a comprehensive geophysical investigation utilizing the high-density electrical resistivity tomography(ERT).A total of 19 ERT survey lines were deployed across three distinct areas in Liuyao Village,Huaibei City,Anhui Province,China.The inversion results,derived from both two-dimensional(2D)and three-dimensional(3D),reveal distinct electrical properties of the subsurface materials:the backfill soil layer shows low resistivity features,the fill stone layer exhibits medium to high resistivity,and the bedrock shows the highest resistivity.The 2D inversion results,from the data measured using the Wenner array effectively capture the spatial distribution and structural features of the backfill soil layer.The findings indicate a gradual east-west thinning of the clay layer within the quarry.Furthermore,the northern pit area exhibits a uniform distribution of backfill soil layer,indicative of effective backfilling operations.In contrast,the southern pit area lacks a well-defined clay layer,suggesting suboptimal backfilling effectiveness.
基金supported by the National Science Foundation of China under the Grant Nos.12127806 and 62175195the International Joint Research Laboratory for Micro/Nano Manufacturing and Measurement Technologies。
文摘High-density interconnect(HDI)soft electronics that can integrate multiple individual functions into one miniaturized monolithic system is promising for applications related to smart healthcare,soft robotics,and human-machine interactions.However,despite the recent advances,the development of three-dimensional(3D)soft electronics with both high resolution and high integration is still challenging because of the lack of efficient manufacturing methods to guarantee interlayer alignment of the high-density vias and reliable interlayer electrical conductivity.Here,an advanced 3D laser printing pathway,based on femtosecond laser direct writing(FLDW),is demonstrated for preparing liquid metal(LM)-based any layer HDI soft electronics.FLDW technology,with the characteristics of high spatial resolution and high precision,allows the maskless fabrication of high-resolution embedded LM microchannels and high-density vertical interconnect accesses for 3D integrated circuits.High-aspect-ratio blind/through LM microstructures are formed inside the elastomer due to the supermetalphobicity induced during laser ablation.The LM-based HDI circuit featuring high resolution(~1.5μm)and high integration(10-layer electrical interconnection)is achieved for customized soft electronics,including various customized multilayer passive electric components,soft multilayer circuit,and cross-scale multimode sensors.The 3D laser printing method provides a versatile approach for developing chip-level soft electronics.
基金supported by the National Key Research and Development Project(2023YFA1609100)the NSFC Funding(U2141207,52171111,52001083)+6 种基金Natural Science Foundation of Heilongjiang(YQ2023E026)China Postdoctoral Science foundation(2024M754149)Postdoctoral Fellowship Program of CPSF(GZC20242192)support from the National Science Foundation(DMR-1611180 and 1809640)with the program directors,DrsHKU Seed Fund for Collaborative Research(#2207101618)support by Croucher Senior Research Fellowship and City U Project(Project No.9229019)Shenzhen Science and Technology Program(Project No.JCYJ20220818101203007)。
文摘Dislocation strengthening,as one of the methods to simultaneously enhance the room temperature strength and ductility of alloys,does not achieve the desired strengthening and plasticity effect during elevated-temperature deformation.Here,we report a novel strategy to boost the dislocation multiplication and accumulation during deformation at elevated temperatures through dynamic strain aging(DSA).With the introduction of the rare-earth element Ho in Mg-Y-Zn alloy,Ho atoms diffuse toward dislocations during deformation at elevated temperatures,provoking the DSA effect,which increases the dislocation density significantly via the interactions of mobile dislocations and Ho atoms.The resulting alloy achieves a great enhancement of dislocation hardening and obtains the dual benefits of high strength and good ductility simultaneously at high homologous temperatures.The present work provides an effective strategy to enhancing the strength and ductility for elevated-temperature materials.
文摘In the context of rapid urbanization,high-density construction areas face significant challenges,including the reduction of ecological spaces and the deterioration of their functions.Planning and managing ecological spaces have emerged as essential strategies to address the conflict between urban development and ecological conservation.Using Jinjiang City,Fujian Province as the case study,this paper systematically examines the significance and primary challenges of ecological space planning in highdensity construction areas.It also identifies prevailing issues within the current research domain,including“an overemphasis on top-level design at the expense of implementation,a focus on isolated aspects rather than systemic integration,and prioritization of control over coordination”.This study proposes the key aspects of ecological space planning and management in high-density construction areas,focusing on three fundamental dimensions:human-centered demand orientation,the integration of top-down and bottomup linkage mechanisms,and a differentiated control system.Drawing on the full-element assessment of the ecosystem,ecological network construction,and full-process control system implemented in Jinjiang City,an integrated approach to ecological space governance,encompassing assessment,planning,and control,has been developed.This approach offers both theoretical insights and practical guidance for optimizing ecological spaces in comparable urban contexts.
基金The Science and Technology Plan of Dalian under contract Nos 2023RO058 and 2022RQ060the Liaoning Province Natural Science Planning Fund Project under contract No. 2022-BS-273+1 种基金the Liaoning Provincial Department of Education Basic Research Project under contract No. LJKQZ20222357the Discipline Construction Funding for Marine Science Subject of Dalian Ocean University。
文摘Mandarin fish(Siniperca scherzeri) has high market prices and significant market potential in China because of its highquality meat and high nutritional value. However, due to the limited scale of aquaculture, meeting the market demand is difficult, making the effective development of the aquaculture potential of mandarin fish an important challenge for the industry. In this study, a 30-d breeding experiment was conducted on mandarin fish larvae under three photoperiod conditions: G1 8 h light:16 h dark(8L:16D), G2 12 h light:12 h dark(12L:12D), and G3 16 h light:8 h dark(16L:8D). The results showed that the G2 group exhibited the best growth performance and development status, with final body weights, weight gain rates, and specific growth rates all higher than those of the other two groups(P < 0.05). Observations of sections from each group revealed that the intestinal villi length and muscle thickness of the G2 group were significantly greater than those of the other two groups(P < 0.05). The G2 group inhibited the transcriptional activation of key circadian rhythm genes, including nr1d2a, nr1d1 and per1, while upregulating the expression of BMAL1 in S. scherzeri.The activation of both the insulin signalling pathway and the Fox O signalling pathway enhanced the efficient secretion of insulin, which subsequently played a critical role in regulating fatty acid metabolism. This active fatty acid metabolism provided an optimal energy supply, ensuring that other nutrients were fully utilized during the growth and development process while minimizing unnecessary nutrient loss. Consequently, this mechanism effectively promoted the overall growth and development of S. scherzeri. This study was the first to elucidate the transcriptomic expression patterns of S. scherzeri under varying photoperiod conditions. In response to the cyclic alternation of day and night, S. scherzeri regulated their metabolic levels and the transcriptional activation of downstream target genes via insulin signalling.
基金Supported by Science and Technology Program of Quzhou,China,No.2022K67Zhejiang Medical Association Clinical Research Fund Project,No.2024ZYC-A526and the Research Project of Quzhou People’s Hospital,No.KYQD2024-006.
文摘BACKGROUND The association between the uric acid-to-high-density lipoprotein cholesterol ratio(UHR)and mental health among individuals with type 2 diabetes mellitus(T2DM)has not been thoroughly investigated.AIM To examine the link between UHR and symptoms of depression and anxiety in patients with T2DM.METHODS A cross-sectional analysis was carried out from March 2023 to April 2024,involving participants diagnosed with T2DM.Data on sociodemographic characteristics,clinical parameters,and UHR values were systematically gathered.The Self-Rating Depression Scale(SDS)and Self-Rating Anxiety Scale(SAS)were utilized to evaluate depressive and anxiety symptoms,respectively.To assess the relationships between UHR and SDS/SAS scores,linear regression models were employed,incorporating adjustments for potential confounding variables.Additionally,smooth curve fitting and threshold effect analyses were conducted to explore potential nonlinear relationships.RESULTS A total of 285 patients with T2DM were included.Initial univariate analysis demonstrated a significant positive correlation between elevated UHR levels and higher SDS and SAS scores.Multivariate regression analysis revealed that a one-unit rise in UHR was associated with a 1.13-point increase in SDS scores(95%CI:0.69-1.58)and a 0.57-point increase in SAS scores(95%CI:0.20-0.93).After controlling for confounders,UHR remained positively correlated with SDS(β=1.55,95%CI:0.57-2.53)and SAS(β=0.72,95%CI:0.35-1.09).Nonlinear analysis identified critical thresholds at UHR values of 5.02 for SDS and 4.00 for SAS,beyond which the relationships between UHR and psychological symptom scores became markedly stronger(P<0.05).CONCLUSION Higher UHR levels are significantly linked to exacerbated depressive and anxiety symptoms in patients with T2DM.These results indicate that UHR may function as a promising biomarker to identify individuals at greater risk of mental health complications within this population.
基金funded by the Scientific and Technological Key Program of Guizhou Province, China (Qiankehezhicheng [2022] Key 031)the National Natural Science Foundation of China (32160483 and 32360497)+2 种基金the Post-Funded Project for the National Natural Science Foundation of China from Guizhou University ([2023]093)the Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, China (Qiankehezhongyindi [2023]008)the Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions, China (Qianjiaoji [2023] 007)。
文摘Rapeseed mustard(Brassica juncea L.) is the third most important oilseed crop in the world, but the geneticmechanism underlying its massive phenotypic variation remains largely unexplored. In this study, specific length amplified fragment sequencing(SLAF-Seq) was used to resequence a population comprising 197 F8recombinantinbred lines(RILs) derived from a cross between vegetable-type Qichi881 and oilseed-type YufengZC of B. juncea. In total, 438,895 high-quality SLAFs were discovered, 47,644 of which were polymorphic, and 3,887 of the polymorphic markers met the requirements for genetic map construction. The final map included 3,887 markers on 18 linkage groups and was 1,830.23 centiMorgan(cM) in length, with an average distance of 0.47 cM between adjacent markers. Using the newly constructed high-density genetic map, a total of 53 QTLs for erucicacid(EA), oleic acid(OA), and linolenic acid(LNA) were detected and integrated into eight consensus QTLswith two for each of these traits. For each of these three traits, two candidate genes were cloned and sequence analysis indicated colocalization with their respective consensus QTLs. The co-dominant allele-specific markers for Bju.FAD3.A03 and Bju.FAD3.B07 were developed and showed co-localization with their consensus QTLs andco-segregation with LNA content, further supporting the results of QTL mapping and bioinformatic analysis. Theexpression levels of the cloned homologous genes were also determined, and the genes were tightly correlatedwith the EA, OA and LNA contents of different lines. The results of this study will facilitate the improvement offatty acid traits and molecular breeding of B. juncea. Further uses of the high-density genetic map created in this study are also discussed.