期刊文献+
共找到30篇文章
< 1 2 >
每页显示 20 50 100
High-cycle fatigue life improvement of a PtAl-coated third-generation Ni-based single-crystal superalloy after thermal exposure
1
作者 Dong Sun Siliang He +4 位作者 Longfei Li Song Lu Weiwei Zheng Jonathan Cormier Qiang Feng 《International Journal of Minerals,Metallurgy and Materials》 2025年第9期2200-2210,共11页
The as-deposited coating-substrate microstructure has been identified to substantially influence the high-cycle fatigue(HCF)behavior of Ni-based single-crystal(SX)superalloys at 900℃,but the impact of degraded micros... The as-deposited coating-substrate microstructure has been identified to substantially influence the high-cycle fatigue(HCF)behavior of Ni-based single-crystal(SX)superalloys at 900℃,but the impact of degraded microstructure on the HCF behavior remains unclear.In this work,a PtAl-coated third-generation SX superalloy with sheet specimen was thermal-exposed at 1100℃ with different durations and then subjected to HCF tests at 900℃.The influence of microstructural degradation on the HCF life and crack initiation were clarified by analyzing the development of microcracks and coating-substrate microstructure.Notably,the HCF life of the thermal-exposed coated alloy increased abnormally,which was attributed to the transformation of the fatigue crack initiation site from surface mi-crocracks to internal micropores compared to the as-deposited coated alloy.Although the nucleation and growth of surface microcracks occurred along the grain boundaries in the coating and the interdiffusion zone(IDZ)for both the as-deposited and the thermal-exposed coated alloys,remarkable differences of the microcrack growth into the substrate adjacent to the IDZ were observed,changing the crack initiation site.Specifically,the surface microcracks grew into the substrate through the cracking of the non-protective oxide layers in the as-deposited coated alloy.In comparison,the hinderance of the surface microcracks growth was found in the thermal-exposed coated al-loy,due to the formation of a protective Al_(2)O_(3) layer within the microcrack and theγ′rafting in the substrate close to the IDZ.This study will aid in improving the HCF life prediction model for the coated SX superalloys. 展开更多
关键词 platinum-aluminide coating single-crystal superalloy high-cycle fatigue INTERDIFFUSION surface microcracks coating-substrate microstructure
在线阅读 下载PDF
High-cycle fatigue and fracture behaviours of SLM AlSi10Mg alloy 被引量:13
2
作者 S.GLODEŽ J.KLEMENC +1 位作者 F.ZUPANIČ M.VESENJAK 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第10期2577-2589,共13页
The high-cycle fatigue and fracture behaviours of the selective laser melting(SLM)AlSi10Mg alloy were investigated.Flat specimens were designed directly in the shape required for the fatigue tests under pulsating load... The high-cycle fatigue and fracture behaviours of the selective laser melting(SLM)AlSi10Mg alloy were investigated.Flat specimens were designed directly in the shape required for the fatigue tests under pulsating loading in tension(R=0,R is the dynamic factor).The fatigue−life(S−N)curves were modelled with a conditional Weibull’s probability density function,where the real-valued genetic algorithm(GA)and the differential ant-stigmergy algorithm(DASA)were applied to estimating the needed Weibull’s parameters.The fractography of the fatigue specimens showed that the fatigue cracks initiated around the surface defects produced by SLM and then propagated in an unstable manner.However,the presence of large SLM defects mainly influenced the crack initiation period and did not have a strong influence on the crack propagation.The obtained experimental results present a basis for further investigation of the fatigue behaviour of advanced materials and structures(e.g.cellular metamaterials)fabricated by additive manufacturing(AM).Especially,in the case of two-dimensional cellular structures,the cross-section of cellular struts is usually rectangular which corresponds to the specimen shape considered in this work. 展开更多
关键词 selective laser melting AlSi10Mg alloy high-cycle fatigue fracture behaviour
在线阅读 下载PDF
Effect of laser shock peening on combined low- and high-cycle fatigue life of casting and forging turbine blades 被引量:4
3
作者 Cao Chen Xiao-yong Zhang +3 位作者 Xiao-jun Yan Jun Ren Da-wei Huang Ming-jing Qi 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2018年第1期108-119,共12页
Laser shock peening (LSP) is a novel effective surface treatment method to improve the fatigue performance of turbine blades. To study the effect of LSP on combined low- and high-cycle fatigue (CCF) life of turbin... Laser shock peening (LSP) is a novel effective surface treatment method to improve the fatigue performance of turbine blades. To study the effect of LSP on combined low- and high-cycle fatigue (CCF) life of turbine blades, the CCF tests were conducted at elevated temperatures on two types of full-scale turbine blades, which were made of K403 by casting and GH4133B by forging. Probabilistic analysis was conducted to find out the effect of LSP on fatigue life of those two kinds of blades. The results indicated that LSP extended the CCF life of both casting blades and forging blades obviously, and the effect of LSP on casting blades was more evident; besides, a threshold vibration stress existed for both casting blades and forging blades, and the CCF life tended to be extended by LSP only when the vibration stress was below the threshold vibra- tion stress. Further study of fractography was also conducted, indicating that due to the presence of compressive residual stress and refined grains induced by LSP, the crack initiation sources in LSP blades were obviously less, and the life of LSP blades was also longer; since the compressive residual stress was released by plastic deformation, LSP had no effect or adverse effect on CCF life of blade when the vibration stress of blade was above the threshold vibration stress. 展开更多
关键词 Laser shock peening Combined low-and high-cycle fatigue life (CCF) Full-scale turbine blade S-N curve -Threshold vibration stress
原文传递
Fatigue cracking criterion of high-strength steels induced by inclusions under high-cycle fatigue 被引量:2
4
作者 Peng Wang Peng Zhang +3 位作者 Bin Wang Yankun Zhu Zikuan Xu Zhefeng Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第23期114-128,共15页
Fatigue properties of high-strength steels become more and more sensitive to inclusions with enhancing the ultimate tensile strength (UTS) because the inclusions often cause a relatively low fatigue strength and a lar... Fatigue properties of high-strength steels become more and more sensitive to inclusions with enhancing the ultimate tensile strength (UTS) because the inclusions often cause a relatively low fatigue strength and a large scatter of fatigue lives. In this work, four S–N curves and more than 200 fatigue fracture morphologies were comprehensively investigated with a special focus on the size and type of inclusions at the fatigue cracking origin in GCr15 steel with a wide strength range by different heat treatments after high-cycle fatigue (HCF). It is found that the percentage of fatigue failure induced by the inclusion including Al2 O3 and TiN gradually increases with increasing the UTS, while the percentage of failure at sample surfaces decreases conversely and the fatigue strength first increases and then decreases. Besides, it is interestingly noted that the inclusion sizes at the cracking origin for TiN are smaller than that for Al2 O3 because the stress concentration factor for TiN is larger than that for Al2 O3 based on the finite element simulation. For the first time, a new fatigue cracking criterion including the isometric inclusion size line in the strength-toughness coordinate system with specific physical meaning was established to reveal the relationship among the UTS, fracture toughness, and the critical inclusion size considering different types of inclusions based on the fracture mechanics. And the critical inclusion size of Al2 O3 is about 1.33 times of TiN. The fatigue cracking criterion could be used to judge whether fatigue fracture occurred at inclusions or not and provides a theoretical basis for controlling the scale of different inclusion types for high-strength steels. Our work may offer a new perspective on the critical inclusion size in terms of the inclusion types, which is of scientific interest and has great merit to industrial metallurgical control for anti-fatigue design. 展开更多
关键词 High-strength steel high-cycle fatigue Critical inclusion size Inclusion types Tensile strength Fracture toughness Fatigue cracking criterion
原文传递
High-cycle Fatigue Fracture Behavior of Ultrahigh Strength Steels 被引量:2
5
作者 Weijun HUI Yihong NIE +2 位作者 Han DONG Yuqing WENG Chunxu WANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第5期787-792,共6页
The fatigue fracture behavior of four ultrahigh strength steels with different melting processes and therefore different inclusion sizes were studied by using a rotating bar two-point bending fatigue machine in the hi... The fatigue fracture behavior of four ultrahigh strength steels with different melting processes and therefore different inclusion sizes were studied by using a rotating bar two-point bending fatigue machine in the high-cycle regime up to 107 cycles of loading. The fracture surfaces were observed by field emission scanning electron microscopy (FESEM). It was found that the size of inclusion has significant effect on the fatigue behavior. For AtSI 4340 steel in which the inclusion size is smaller than 5.5 μm, all the fatigue cracks except one did not initiated from inclusion but from specimen surface and conventional S-N curve exists. For 65Si2MnWE and Aermet 100 steels in which the average inclusion sizes are 12.2 and 14.9 μm, respectively, fatigue cracks initiated from inclusions at lower stress amplitudes and stepwise S-N curves were observed. The S-N curve displays a continuous decline and fatigue failures originated from large oxide inclusion for 60Si2CrVA steel in which the average inclusion size is 44.4 pro. In the case of internal inclusion-induced fractures at cycles beyond about 1×10^6 for 65Si2MnWE and 60Si2CrVA steels, inclusion was always found inside the fish-eye and a granular bright facet (GBF) was observed in the vicinity around the inclusion. The GBF sizes increase with increasing the number of cycles to failure Nf in the long-life regime. The values of stress intensity factor range at crack initiation site for the GBF are almost constant with Nf, and are almost equal to that for the surface inclusion and the internal inclusion at cycles lower than about 1×10^6. Neither fish-eye nor GBF was observed for Aermet 100 steel in the present study. 展开更多
关键词 high-cycle fatigue Ultrahigh strength steel INCLUSION S-N curve Fish-eye fracture
在线阅读 下载PDF
Comparative study of tensile and high-cycle fatigue properties of extruded AZ91 and AZ91-0.3Ca-0.2Y alloys
6
作者 Ye Jin Kim Young Min Kim +3 位作者 Seong-Gu Hong Dae Woong Kim Chong Soo Lee Sung Hyuk Park 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第34期41-52,共12页
Mg-Al-Zn-Ca-Y alloys with excellent ignition and corrosion resistances—termed SEN alloys(where the letters"S,""E,"and"N"stand for stainless,environmentally friendly,and non-flammable,res... Mg-Al-Zn-Ca-Y alloys with excellent ignition and corrosion resistances—termed SEN alloys(where the letters"S,""E,"and"N"stand for stainless,environmentally friendly,and non-flammable,respectively)—have been developed recently.In this study,the microstructure,tensile properties,and high-cycle fatigue properties of an extruded Mg-9.0Al-0.8Zn-0.1Mn-0.3Ca-0.2Y(SEN9)alloy are investigated and compared with those of a commercial Mg-9.0Al-0.8Zn-0.1Mn(AZ91)alloy extruded under the same conditions.Both the extruded SEN9 alloy and the extruded AZ91 alloy have a fully recrystallized structure comprising equiaxed grains,but the former has a smaller average grain size owing to the promoted dynamic recrystallization during extrusion.The extruded AZ91 alloy contains coarse Mg_(17)Al_(12) discontinuous precipitate(DP)bands parallel to the extrusion direction,which are formed during its cool down after extrusion.In contrast,the extruded SEN9 alloy contains relatively fine undissolved Al_(2)Ca,Al_(8)Mn_(4)Y,and Al_(2)Y second-phase particles,which are formed during the solidification stage of the casting process.The tensile strength of the extruded SEN9 alloy,which has finer grains and more abundant particles,is slightly higher than that of the extruded AZ91 alloy.However,the difference in their strengths is relatively small because the stronger solid-solution hardening and precipitation hardening effects in the extruded AZ91alloy offset the stronger grain-boundary hardening and dispersion hardening effects in the extruded SEN9alloy to some extent.The tensile elongation of the extruded AZ91 alloy is significantly lower than that of the extruded SEN9 alloy because the large cracks formed in the DP bands in the former cause its premature fracture.Although the extruded SEN9 alloy has higher tensile properties than the extruded AZ91alloy,the high-cycle fatigue life and fatigue strength of the former are shorter and lower,respectively,than those of the latter.The DP bands in the extruded AZ91 alloy do not act as fatigue crack initiation sites,and therefore,fatigue cracks initiate on the specimen surface at all stress amplitude levels.In contrast,in most of the fatigue-fractured specimens of the extruded SEN9 alloy,fatigue cracks initiate on the undissolved Al_(2)Ca and Al_(2)Y particles present on the surface or subsurface of the specimens because of the high local stress concentration on the particles during cyclic loading.This particle-initiated fatigue fracture eventually decreases the high-cycle fatigue resistance of the extruded SEN9 alloy. 展开更多
关键词 Mg-Al-Zn-Ca-Y alloy EXTRUSION Tensile properties high-cycle fatigue Crack source
原文传递
Effect of heat treatment on high-cycle fatigue behavior of Mg-Zn-Y-Zr alloy
7
作者 刘志浩 徐永波 +2 位作者 韩恩厚 刘路 高国忠 《中国有色金属学会会刊:英文版》 CSCD 2005年第S3期28-32,共5页
High-cycle fatigue (HCF) behavior of as-forged-T5 Mg-Zn-Y-Zr wrought alloy with stress-ratio R=-1 at ambient environment was presented. The relationship between the maximum stress and the number of cycles to failure w... High-cycle fatigue (HCF) behavior of as-forged-T5 Mg-Zn-Y-Zr wrought alloy with stress-ratio R=-1 at ambient environment was presented. The relationship between the maximum stress and the number of cycles to failure was constructed. The results show that the fatigue strength at 107 cycles of the as-forged alloy in T5 state is higher than that of the alloy in T4 state. However, in T6 state, the fatigue strength at 107 cycles is higher than those of the alloys in both T5 and T4 states. 展开更多
关键词 MAGNESIUM ALLOY Mg-Zn-Y-Zr ALLOY high-cycle FATIGUE (HCF) HEAT treatment
在线阅读 下载PDF
High-cycle fatigue behavior of nickel-base single crystal superalloy
8
作者 刘源 于金江 +3 位作者 徐岩 孙晓峰 管恒荣 胡壮麒 《中国有色金属学会会刊:英文版》 CSCD 2005年第S3期57-60,共4页
High-cycle rotating bending fatigue behavior of SRR99 nickel-base single crystal alloy at 700 and 900℃ was investigated. The fatigue strengths for 107 cycles are 350 and 335MPa at 700 and 900℃, respectively. T... High-cycle rotating bending fatigue behavior of SRR99 nickel-base single crystal alloy at 700 and 900℃ was investigated. The fatigue strengths for 107 cycles are 350 and 335MPa at 700 and 900℃, respectively. The total fatigue life becomes shorter when the temperature increases regardless of the loading stress and frequency. With the number of cycles decreasing, the difference in fatigue strength at the two temperatures becomes smaller. Typical fatigue rupture process including crack initiation site, crack propagation region and final rupture region exhibits at 700℃. The fracture surface is basically characterized by cleavage rupture at 900℃. 展开更多
关键词 single crystal SUPERALLOY high-cycle FATIGUE FATIGUE LIMIT stress
在线阅读 下载PDF
Fracture Behavior of Nickel-Based Single Crystal Superalloy During High-Cycle Fatigue at 850℃
9
作者 Zhang Jingang Liu Xinling +4 位作者 Chen Xing Li Zhen Liu Jiabin Teng Peng Liu Changkui 《稀有金属材料与工程》 2025年第11期2777-2785,共9页
The high-cycle fatigue fracture characteristics and damage mechanism of nickel-based single crystal superalloys at 850℃ was investigated.The results indicate that high-cycle fatigue cracks in single crystal superallo... The high-cycle fatigue fracture characteristics and damage mechanism of nickel-based single crystal superalloys at 850℃ was investigated.The results indicate that high-cycle fatigue cracks in single crystal superalloys generally originate from defect locations on the subsurface or interior of the specimen at 850℃.Under the condition of stress ratio R=0.05,as the fatigue load decreases,the high-cycle fatigue life gradually increases.The high-cycle fatigue fracture is mainly characterized by octahedral slip mechanism.At high stress and low lifespan,the fracture exhibits single or multiple slip surface features.Some fractures originate along a vertical small plane and then propagate along the{111}slip surface.At low stress and high lifespan,the fracture surface tend to alternate and expand along multiple slip planes after originating from subsurface or internal sources,exhibiting characteristics of multiple slip planes.Through electron backscatter diffraction and transmission electron microscope analysis,there is obvious oxidation behavior on the surface of the high-cycle fatigue fracture,and the fracture section is composed of oxidation layer,distortion layer,and matrix layer from the outside to the inside.Among them,the main components of the oxidation layer are oxides of Ni and Co.The distortion layer is mainly distributed in the form of elongated or short rod-shaped oxides of Al,Ta,and W.The matrix layer is a single crystal layer.Crack initiation and propagation mechanism were obtained by systematical analysis of a large number of highcycle fatigue fractures.In addition,the stress ratio of 0.05 is closer to the vibration mode of turbine blades during actual service,providing effective guidance for the study of failure and fracture mechanisms of turbine blades. 展开更多
关键词 single crystal superalloys high-cycle fatigue oxidation behavior slip oxidation layer
原文传递
Fatigue damage origin of laser direct energy deposited titanium alloy:Competition and combination of gas pore and microstructure
10
作者 Jun CAO Xiangyi KONG +2 位作者 Yanyan ZHU Shuquan ZHANG Jikui ZHANG 《Chinese Journal of Aeronautics》 2025年第4期321-332,共12页
To accurately predict the fatigue properties of additively manufactured(AM)titanium alloys,it is important to understand the fatigue damage origin behavior.However,this behavior is still ambiguous.Therefore,the effect... To accurately predict the fatigue properties of additively manufactured(AM)titanium alloys,it is important to understand the fatigue damage origin behavior.However,this behavior is still ambiguous.Therefore,the effects of internal defects and microstructures on the fatigue damage origin behavior of laser direct energy deposited TC11(LDED-TC11)alloy were investigated using a fatigue origin criterion.The criterion was proposed to analyze the competing and combining effects by coupling the plasticity-corrected crack driving force,the resistance of short cracks,and the modified Kitagawa-Takahashi diagram.Three scenarios corresponding to the criterion were clarified,representing the damage mechanisms dominated by the microstructure,the combined effect of internal defect and microstructure,and the internal defect.As a result,the fatigue fracture morphology of high-cycle fatigue tests demonstrates two fatigue origin modes,i.e.microstructure and gas pore origin modes.The two fatigue modes belong to Scenario I and Scenario II,respectively,which indicates that the fatigue damage origin process of this alloy is sensitive to microstructure.Besides,it was found that the width of the primary a phase of this alloy is strongly relevant to intrinsic defect size.Finally,the fatigue origin criterion was verified in three aspects. 展开更多
关键词 Additive manufacture high-cycle fatigue Fatigue origin criterion Fatigue damage Gas pore MICROSTRUCTURE
原文传递
Experimental investigations on combined high and low cycle fatigue:Material-level specimen design and strain response characteristics
11
作者 Xin DING Dawei HUANG +5 位作者 Zixu GUO Han YAN Xiaojun YAN Yinzhuoran WANG Feng YIN Xu LUAN 《Chinese Journal of Aeronautics》 2025年第1期380-394,共15页
The paper designs a novel material-level specimen and its dedicated fixture suitable for applying Combined high-and low-Cycle Fatigue(CCF)loads.Unlike full-scale or simulation specimens,the CCF specimen eliminates geo... The paper designs a novel material-level specimen and its dedicated fixture suitable for applying Combined high-and low-Cycle Fatigue(CCF)loads.Unlike full-scale or simulation specimens,the CCF specimen eliminates geometrically induced stress gradients in the test region.Experimental data on CCF life and strain responses of ZSGH4169 alloy are acquired under different CCF loads.The Maximum Strain within Each(MSE)CCF cycle is demonstrated to be independent of the Low-Cycle Fatigue(LCF)loads and High-Cycle Fatigue(HCF)stress amplitudes,but exhibits a correlation with the Cycle Ratio of HCF/LCF(Rf).The growth law of MSE changes from linear to logarithmic as Rfdecreases.Strain amplitudes in the dwell stage,observed unaffected by Rf,are quantified as a function of LCF nominal stresses and HCF stress amplitudes.However,under a defined CCF load,strain amplitudes in the dwell stage remain constant.Strain peaks in the dwell stage in a single CCF cycle decrease in a power function with increasing HCF cycles. 展开更多
关键词 Material-level specimen Low-cycle fatigue high-cycle fatigue Combined high-and low-cycle fatigue Fatigue life Strain response
原文传递
Fatigue reliability assessment of turbine blade via direct probability integral method
12
作者 Guohai CHEN Pengfei GAO +1 位作者 Hui LI Dixiong YANG 《Chinese Journal of Aeronautics》 2025年第4期305-320,共16页
Fatigue analysis of engine turbine blade is an essential issue.Due to various uncertainties during the manufacture and operation,the fatigue damage and life of turbine blade present randomness.In this study,the random... Fatigue analysis of engine turbine blade is an essential issue.Due to various uncertainties during the manufacture and operation,the fatigue damage and life of turbine blade present randomness.In this study,the randomness of structural parameters,working condition and vibration environment are considered for fatigue life predication and reliability assessment.First,the lowcycle fatigue problem is modelled as stochastic static system with random parameters,while the high-cycle fatigue problem is considered as stochastic dynamic system under random excitations.Then,to deal with the two failure modes,the novel Direct Probability Integral Method(DPIM)is proposed,which is efficient and accurate for solving stochastic static and dynamic systems.The probability density functions of accumulated damage and fatigue life of turbine blade for low-cycle and high-cycle fatigue problems are achieved,respectively.Furthermore,the time–frequency hybrid method is advanced to enhance the computational efficiency for governing equation of system.Finally,the results of typical examples demonstrate high accuracy and efficiency of the proposed method by comparison with Monte Carlo simulation and other methods.It is indicated that the DPIM is a unified method for predication of random fatigue life for low-cycle and highcycle fatigue problems.The rotational speed,density,fatigue strength coefficient,and fatigue plasticity index have a high sensitivity to fatigue reliability of engine turbine blade. 展开更多
关键词 Engine turbine blade Low-cycle fatigue high-cycle fatigue Fatigue reliability Direct probability integral method
原文传递
Modeling of ratcheting accumulation of secondary deformation due to stress-controlled high-cyclic loading in granular soils
13
作者 贾鹏飞 孔令伟 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2306-2315,共10页
An objective of this work is to develop a validated computational model that can be used to estimate ratcheting accumulation behavior of granular soils due to high-cyclic loading. An accumulation model was proposed to... An objective of this work is to develop a validated computational model that can be used to estimate ratcheting accumulation behavior of granular soils due to high-cyclic loading. An accumulation model was proposed to describe only the envelope of the maximum plastic deformations generated during the cyclic loading process, which can calculate the accumulated deformation by means of relatively large load cycle increments. The concept of volumetric hardening was incorporated into the model and a so-called overstress formulation was employed to describe the evolution of the accumulated volumetric deformation as a state parameter. The model accounted for ratcheting shakedown and accumulation such as a pseudo-yield surface(a shakedown surface) associated with loading inside the current virgin yield surface which was implemented into the well-known modified Cam-clay model. Finally, the model was calibrated using data from the stress-controlled drained cyclic triaxial tests on homogeneous fine grained sands. It is seen that the model can successfully represent important features of the ratcheting accumulation of both volumetric and deviatoric deformation caused by repeated drained loading over a large number of cycles. 展开更多
关键词 ratcheting accumulation secondary deformation response envelope high-cyclic loading granular soils
在线阅读 下载PDF
Microstructural evolution and mechanical properties of duplex-phase Ti6242 alloy treated by laser shock peening 被引量:1
14
作者 Pu-ying SHI Xiang-hong LIU +3 位作者 Yong REN Zeng TIAN Feng-shou ZHANG Wei-feng HE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2521-2532,共12页
The effects of laser shock peening(LSP)on the microstructural evolution and mechanical properties of the Ti6242 alloy,including the residual stress,surface roughness,Vickers microhardness,tensile mechanical response,a... The effects of laser shock peening(LSP)on the microstructural evolution and mechanical properties of the Ti6242 alloy,including the residual stress,surface roughness,Vickers microhardness,tensile mechanical response,and high-cycle fatigue properties,were studied.The results showed that the LSP induced residual compressive stresses on the surface and near surface of the material.The maximum surface residual compressive stress was−661 MPa,and the compressive-stress-affected depth was greater than 1000μm.The roughness and Vickers micro-hardness increased with the number of shocks,and the maximum hardness-affected depth was about 700μm after three LSP treatments.LSP enhanced the fraction of low-angle grain boundaries,changed the grain preferred orientations,and notably increased the pole density ofαphase on the near surface from 2.41 to 3.46.The surface hardness values of the LSP samples increased with the increase of the number of shocks due to work hardening,while the LSP had a limited effect on the tensile properties.The high-cycle fatigue life of the LSP-treated sample was significantly enhanced by more than 20%compared with that of the untreated sample,which was caused by the suppression of the initiation and propagation of fatigue cracks. 展开更多
关键词 duplex-phase Ti6242 alloy surface modification laser shock peening gradient microstructure high-cycle fatigue properties
在线阅读 下载PDF
Temperature evolution and fatigue life evaluation of AZ31B magnesium alloy based on infrared thermography 被引量:10
15
作者 闫志峰 张红霞 +2 位作者 王文先 王凯 裴飞飞 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期1942-1948,共7页
The surface temperature of extruded AZ31B alloy plate was measured by infrared thermograph in air during tension and high-cycle fatigue tests. The mechanism of heat production was discussed and the value of critical f... The surface temperature of extruded AZ31B alloy plate was measured by infrared thermograph in air during tension and high-cycle fatigue tests. The mechanism of heat production was discussed and the value of critical fatigue damage temperature was calculated according to the P—ΔT curve. Results show that the variation trend of temperature is different between tension and fatigue tests. The temperature evolution in tension test consists of four stages: linear decrease, reverse linear increase, abrupt increase, and final drop. The initial decrease of temperature is caused by thermal elastic effect, which is corresponding to the elastic deformation in tension progress. When cyclic loading is above the fatigue limit, the temperature evolution mainly undergoes five stages: initial increase, steep reduction, steady state, abrupt increase, and final drop. The peak temperature in fatigue test is caused by strain hardening that can be used to evaluate the fatigue life of magnesium alloy. The critical temperature variation that causes the fatigue failure is 3.63 K. When ΔT≤3.63 K, the material is safe under cyclic loading. When ΔT3.63 K, the fatigue life is determined by cycle index and peak temperature. 展开更多
关键词 AZ31B magnesium alloy high-cycle fatigue thermographic analysis temperature evolution
在线阅读 下载PDF
Fatigue behavior of CoCrFeMnNi high-entropy alloy under fully reversed cyclic deformation 被引量:15
16
作者 Y.Z.Tian S.J.Sun +1 位作者 H.R.Lin Z.F.Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第3期334-340,共7页
Bulk ultrafine-grained(UFG) CoCrFeMnNi high-entropy alloy(HEA) with fully recrystallized microstructure was processed by cold rolling and annealing treatment. The high-cycle fatigue behaviors of the UFG HEA and a coar... Bulk ultrafine-grained(UFG) CoCrFeMnNi high-entropy alloy(HEA) with fully recrystallized microstructure was processed by cold rolling and annealing treatment. The high-cycle fatigue behaviors of the UFG HEA and a coarse-grained(CG) counterpart were investigated under fully reversed cyclic deformation.The fatigue strength of the UFG HEA can be significantly enhanced by refining the grain size. However,no grain coarsening was observed in the UFG HEA during fatigue tests. Mechanisms for the superior mechanical properties of the UFG HEA were explored. 展开更多
关键词 High-entropy alloy(HEA) Ultrafine-grain(UFG) high-cycle FATIGUE RECRYSTALLIZATION GRAIN size FATIGUE strength
原文传递
Experimental investigation on fatigue of blade specimen subjected to resonance and effect of a damping hard coating treatment 被引量:13
17
作者 CHEN Yu-gang ZHU Qing-yu ZHAI Jing-yu 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第2期445-453,共9页
Failures due to high-cycle fatigue have led to a high cost in aerospace engineering over the past few decades.In this paper,the experimental results of the fatigue behavior of compressor blade specimen subjected to re... Failures due to high-cycle fatigue have led to a high cost in aerospace engineering over the past few decades.In this paper,the experimental results of the fatigue behavior of compressor blade specimen subjected to resonance and the effects of a damping hard coating on relieving the fatigue progress are presented.The crack initiation and propagation processes were observed under resonance of the first bending mode by using the resonant frequencies as the indicator.Significant nonlinear features were observed in the spectrum of the blade with a fatigue crack.The finite element model considering the breathing crack was established with nonlinear contact based on the crack localization and size,which was obtained by ultrasonic phased array technology.The simulation results of the vibration behavior of the cracked blade were obtained and consistent with the experimental results.A NiCrAlY coating was deposited on the blade,and increases in the fatigue life were observed under the same condition.The results of this paper can help to better understand the fatigue of a compressor blade subjected to resonance and provide a preference for the application of a damping hard coating on compressor blades. 展开更多
关键词 blade vibration high-cycle fatigue fatigue test damping hard coating
在线阅读 下载PDF
Review on fatigue life prediction models of welded joint 被引量:10
18
作者 Guozheng Kang Huiliang Luo 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2020年第3期701-726,共26页
Fatigue assessment of welded joint is still far from being completely solved now,since many influencing factors coexist and some important ones should be considered in the developed life prediction models reasonably.T... Fatigue assessment of welded joint is still far from being completely solved now,since many influencing factors coexist and some important ones should be considered in the developed life prediction models reasonably.Thus,such influencing factors of welded joint fatigue are firstly summarized in this work;and then,the existing life prediction models are reviewed from two aspects,i.e.,uniaxial and multiaxial ones;finally,significant conclusions of existing experimental and theoretical researches and some suggestions on improving the fatigue assessment of welded joints,especially for the low-cycle fatigue with the occurrence of ratchetting,are provided. 展开更多
关键词 Welded joint high-cycle fatigue Low-cycle fatigue Influencing factors Life prediction models
原文传递
High Cycle Fatigue Properties of Die-Cast Magnesium Alloy AZ91D with Addition of Different Concentrations of Cerium 被引量:8
19
作者 杨友 刘勇兵 +1 位作者 秦淑影 方懿 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第5期591-595,共5页
The effect of addition of different concentrations of Ce on high-cycle fatigue behavior of die-cast magnesium alloy AZ91D was investigated. Mechanical fatigue tests were conducted at the stress ratio of R = 0.1, and f... The effect of addition of different concentrations of Ce on high-cycle fatigue behavior of die-cast magnesium alloy AZ91D was investigated. Mechanical fatigue tests were conducted at the stress ratio of R = 0.1, and fatigue strength was evaluated using up-and-down loading method. The results show that the grain size of AZ91D alloy is remarkably refined, and the amount of porosity decreases and evenly distributes with the addition of Ce. The fatigue strength of AZ91D alloy at room temperature increases from 96.7 up to 116.3 MPa ( 1% Ce) and 105.5 MPa (2 % Ce), respectively, at the number of cycles to failure, Nf = 1 × 10^7. The fatigue crack of AZ91D alloy initiates at porosities and inclusions, and propagates along grain boundaries. The fatigue striations on fractured surface appear with Ce addition. The fatigue fracture surface of test specimens shows mixed-fracture characteristics of quasi-cleavage and dimple. 展开更多
关键词 die-cast magnesium alloy CERIUM high-cycle fatigue fracture surface analysis rare earths
在线阅读 下载PDF
Fracture of two three-dimensional parallel internal cracks in brittle solid under ultrasonic fracturing 被引量:7
20
作者 Haijun Wang Hanzhang Li +3 位作者 Lei Tang Xuhua Ren Qingxiang Meng Chun Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第3期757-769,共13页
Similar to hydraulic fracturing(HF), the coalescence and fracture of cracks are induced within a rock under the action of an ultrasonic field, known as ultrasonic fracturing(UF). Investigating UF is important in both ... Similar to hydraulic fracturing(HF), the coalescence and fracture of cracks are induced within a rock under the action of an ultrasonic field, known as ultrasonic fracturing(UF). Investigating UF is important in both hard rock drilling and oil and gas recovery. A three-dimensional internal laser-engraved crack(3D-ILC) method was introduced to prefabricate two parallel internal cracks within the samples without any damage to the surface. The samples were subjected to UF. The mechanism of UF was elucidated by analyzing the characteristics of fracture surfaces. The crack propagation path under different ultrasonic parameters was obtained by numerical simulation based on the Paris fatigue model and compared to the experimental results of UF. The results show that the 3D-ILC method is a powerful tool for UF research.Under the action of an ultrasonic field, the fracture surface shows the characteristics of beach marks and contains powder locally, indicating that the UF mechanism includes high-cycle fatigue fracture, shear and friction, and temperature load. The two internal cracks become close under UF. The numerical result obtained by the Paris fatigue model also shows the attraction of the two cracks, consistent with the test results. The 3D-ILC method provides a new tool for the experimental study of UF. Compared to the conventional numerical methods based on the analysis of stress-strain and plastic zone, numerical simulation can be a good alternative method to obtain the crack path under UF. 展开更多
关键词 Three-dimensional internal laser-engraved crack(3D-ILC) Interaction of cracks Ultrasonic fatigue Penny-shaped crack Fracture mechanics high-cycle fatigue
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部