期刊文献+
共找到36,636篇文章
< 1 2 250 >
每页显示 20 50 100
Interactive Dynamic Graph Convolution with Temporal Attention for Traffic Flow Forecasting
1
作者 Zitong Zhao Zixuan Zhang Zhenxing Niu 《Computers, Materials & Continua》 2026年第1期1049-1064,共16页
Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating In... Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating Interactive Dynamic Graph Convolution Network(IDGCN)with Temporal Multi-Head Trend-Aware Attention.Its core innovation lies in IDGCN,which uniquely splits sequences into symmetric intervals for interactive feature sharing via dynamic graphs,and a novel attention mechanism incorporating convolutional operations to capture essential local traffic trends—addressing a critical gap in standard attention for continuous data.For 15-and 60-min forecasting on METR-LA,AIDGCN achieves MAEs of 0.75%and 0.39%,and RMSEs of 1.32%and 0.14%,respectively.In the 60-min long-term forecasting of the PEMS-BAY dataset,the AIDGCN out-performs the MRA-BGCN method by 6.28%,4.93%,and 7.17%in terms of MAE,RMSE,and MAPE,respectively.Experimental results demonstrate the superiority of our pro-posed model over state-of-the-art methods. 展开更多
关键词 Traffic flow prediction interactive dynamic graph convolution graph convolution temporal multi-head trend-aware attention self-attention mechanism
在线阅读 下载PDF
A Privacy-Preserving Convolutional Neural Network Inference Framework for AIoT Applications
2
作者 Haoran Wang Shuhong Yang +2 位作者 Kuan Shao Tao Xiao Zhenyong Zhang 《Computers, Materials & Continua》 2026年第1期1354-1371,共18页
With the rapid development of the Artificial Intelligence of Things(AIoT),convolutional neural networks(CNNs)have demonstrated potential and remarkable performance in AIoT applications due to their excellent performan... With the rapid development of the Artificial Intelligence of Things(AIoT),convolutional neural networks(CNNs)have demonstrated potential and remarkable performance in AIoT applications due to their excellent performance in various inference tasks.However,the users have concerns about privacy leakage for the use of AI and the performance and efficiency of computing on resource-constrained IoT edge devices.Therefore,this paper proposes an efficient privacy-preserving CNN framework(i.e.,EPPA)based on the Fully Homomorphic Encryption(FHE)scheme for AIoT application scenarios.In the plaintext domain,we verify schemes with different activation structures to determine the actual activation functions applicable to the corresponding ciphertext domain.Within the encryption domain,we integrate batch normalization(BN)into the convolutional layers to simplify the computation process.For nonlinear activation functions,we use composite polynomials for approximate calculation.Regarding the noise accumulation caused by homomorphic multiplication operations,we realize the refreshment of ciphertext noise through minimal“decryption-encryption”interactions,instead of adopting bootstrapping operations.Additionally,in practical implementation,we convert three-dimensional convolution into two-dimensional convolution to reduce the amount of computation in the encryption domain.Finally,we conduct extensive experiments on four IoT datasets,different CNN architectures,and two platforms with different resource configurations to evaluate the performance of EPPA in detail. 展开更多
关键词 Artificial Intelligence of Things(AIoT) convolutional neural network PRIVACY-PRESERVING fully homomorphic encryption
在线阅读 下载PDF
An Integrated Approach to Condition-Based Maintenance Decision-Making of Planetary Gearboxes: Combining Temporal Convolutional Network Auto Encoders with Wiener Process
3
作者 Bo Zhu Enzhi Dong +3 位作者 Zhonghua Cheng Xianbiao Zhan Kexin Jiang Rongcai Wang 《Computers, Materials & Continua》 2026年第1期661-686,共26页
With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance s... With the increasing complexity of industrial automation,planetary gearboxes play a vital role in largescale equipment transmission systems,directly impacting operational efficiency and safety.Traditional maintenance strategies often struggle to accurately predict the degradation process of equipment,leading to excessive maintenance costs or potential failure risks.However,existing prediction methods based on statistical models are difficult to adapt to nonlinear degradation processes.To address these challenges,this study proposes a novel condition-based maintenance framework for planetary gearboxes.A comprehensive full-lifecycle degradation experiment was conducted to collect raw vibration signals,which were then processed using a temporal convolutional network autoencoder with multi-scale perception capability to extract deep temporal degradation features,enabling the collaborative extraction of longperiod meshing frequencies and short-term impact features from the vibration signals.Kernel principal component analysis was employed to fuse and normalize these features,enhancing the characterization of degradation progression.A nonlinear Wiener process was used to model the degradation trajectory,with a threshold decay function introduced to dynamically adjust maintenance strategies,and model parameters optimized through maximum likelihood estimation.Meanwhile,the maintenance strategy was optimized to minimize costs per unit time,determining the optimal maintenance timing and preventive maintenance threshold.The comprehensive indicator of degradation trends extracted by this method reaches 0.756,which is 41.2%higher than that of traditional time-domain features;the dynamic threshold strategy reduces the maintenance cost per unit time to 55.56,which is 8.9%better than that of the static threshold optimization.Experimental results demonstrate significant reductions in maintenance costs while enhancing system reliability and safety.This study realizes the organic integration of deep learning and reliability theory in the maintenance of planetary gearboxes,provides an interpretable solution for the predictive maintenance of complex mechanical systems,and promotes the development of condition-based maintenance strategies for planetary gearboxes. 展开更多
关键词 Temporal convolutional network autoencoder full lifecycle degradation experiment nonlinear Wiener process condition-based maintenance decision-making fault monitoring
在线阅读 下载PDF
A Convolutional Neural Network-Based Deep Support Vector Machine for Parkinson’s Disease Detection with Small-Scale and Imbalanced Datasets
4
作者 Kwok Tai Chui Varsha Arya +2 位作者 Brij B.Gupta Miguel Torres-Ruiz Razaz Waheeb Attar 《Computers, Materials & Continua》 2026年第1期1410-1432,共23页
Parkinson’s disease(PD)is a debilitating neurological disorder affecting over 10 million people worldwide.PD classification models using voice signals as input are common in the literature.It is believed that using d... Parkinson’s disease(PD)is a debilitating neurological disorder affecting over 10 million people worldwide.PD classification models using voice signals as input are common in the literature.It is believed that using deep learning algorithms further enhances performance;nevertheless,it is challenging due to the nature of small-scale and imbalanced PD datasets.This paper proposed a convolutional neural network-based deep support vector machine(CNN-DSVM)to automate the feature extraction process using CNN and extend the conventional SVM to a DSVM for better classification performance in small-scale PD datasets.A customized kernel function reduces the impact of biased classification towards the majority class(healthy candidates in our consideration).An improved generative adversarial network(IGAN)was designed to generate additional training data to enhance the model’s performance.For performance evaluation,the proposed algorithm achieves a sensitivity of 97.6%and a specificity of 97.3%.The performance comparison is evaluated from five perspectives,including comparisons with different data generation algorithms,feature extraction techniques,kernel functions,and existing works.Results reveal the effectiveness of the IGAN algorithm,which improves the sensitivity and specificity by 4.05%–4.72%and 4.96%–5.86%,respectively;and the effectiveness of the CNN-DSVM algorithm,which improves the sensitivity by 1.24%–57.4%and specificity by 1.04%–163%and reduces biased detection towards the majority class.The ablation experiments confirm the effectiveness of individual components.Two future research directions have also been suggested. 展开更多
关键词 convolutional neural network data generation deep support vector machine feature extraction generative artificial intelligence imbalanced dataset medical diagnosis Parkinson’s disease small-scale dataset
在线阅读 下载PDF
SEFormer:A Lightweight CNN-Transformer Based on Separable Multiscale Depthwise Convolution and Efficient Self-Attention for Rotating Machinery Fault Diagnosis 被引量:1
5
作者 Hongxing Wang Xilai Ju +1 位作者 Hua Zhu Huafeng Li 《Computers, Materials & Continua》 SCIE EI 2025年第1期1417-1437,共21页
Traditional data-driven fault diagnosis methods depend on expert experience to manually extract effective fault features of signals,which has certain limitations.Conversely,deep learning techniques have gained promine... Traditional data-driven fault diagnosis methods depend on expert experience to manually extract effective fault features of signals,which has certain limitations.Conversely,deep learning techniques have gained prominence as a central focus of research in the field of fault diagnosis by strong fault feature extraction ability and end-to-end fault diagnosis efficiency.Recently,utilizing the respective advantages of convolution neural network(CNN)and Transformer in local and global feature extraction,research on cooperating the two have demonstrated promise in the field of fault diagnosis.However,the cross-channel convolution mechanism in CNN and the self-attention calculations in Transformer contribute to excessive complexity in the cooperative model.This complexity results in high computational costs and limited industrial applicability.To tackle the above challenges,this paper proposes a lightweight CNN-Transformer named as SEFormer for rotating machinery fault diagnosis.First,a separable multiscale depthwise convolution block is designed to extract and integrate multiscale feature information from different channel dimensions of vibration signals.Then,an efficient self-attention block is developed to capture critical fine-grained features of the signal from a global perspective.Finally,experimental results on the planetary gearbox dataset and themotor roller bearing dataset prove that the proposed framework can balance the advantages of robustness,generalization and lightweight compared to recent state-of-the-art fault diagnosis models based on CNN and Transformer.This study presents a feasible strategy for developing a lightweight rotating machinery fault diagnosis framework aimed at economical deployment. 展开更多
关键词 CNN-Transformer separable multiscale depthwise convolution efficient self-attention fault diagnosis
在线阅读 下载PDF
Occluded Gait Emotion Recognition Based on Multi-Scale Suppression Graph Convolutional Network
6
作者 Yuxiang Zou Ning He +2 位作者 Jiwu Sun Xunrui Huang Wenhua Wang 《Computers, Materials & Continua》 SCIE EI 2025年第1期1255-1276,共22页
In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accurac... In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accuracy significantly declines when the data is occluded.To enhance the accuracy of gait emotion recognition under occlusion,this paper proposes a Multi-scale Suppression Graph ConvolutionalNetwork(MS-GCN).TheMS-GCN consists of three main components:Joint Interpolation Module(JI Moudle),Multi-scale Temporal Convolution Network(MS-TCN),and Suppression Graph Convolutional Network(SGCN).The JI Module completes the spatially occluded skeletal joints using the(K-Nearest Neighbors)KNN interpolation method.The MS-TCN employs convolutional kernels of various sizes to comprehensively capture the emotional information embedded in the gait,compensating for the temporal occlusion of gait information.The SGCN extracts more non-prominent human gait features by suppressing the extraction of key body part features,thereby reducing the negative impact of occlusion on emotion recognition results.The proposed method is evaluated on two comprehensive datasets:Emotion-Gait,containing 4227 real gaits from sources like BML,ICT-Pollick,and ELMD,and 1000 synthetic gaits generated using STEP-Gen technology,and ELMB,consisting of 3924 gaits,with 1835 labeled with emotions such as“Happy,”“Sad,”“Angry,”and“Neutral.”On the standard datasets Emotion-Gait and ELMB,the proposed method achieved accuracies of 0.900 and 0.896,respectively,attaining performance comparable to other state-ofthe-artmethods.Furthermore,on occlusion datasets,the proposedmethod significantly mitigates the performance degradation caused by occlusion compared to other methods,the accuracy is significantly higher than that of other methods. 展开更多
关键词 KNN interpolation multi-scale temporal convolution suppression graph convolutional network gait emotion recognition human skeleton
在线阅读 下载PDF
Investigation of spatiotemporal distribution and formation mechanisms of ozone pollution in eastern Chinese cities applying convolutional neural network 被引量:1
7
作者 Qiaoli Wang Dongping Sheng +7 位作者 Chengzhi Wu Xiaojie Ou Shengdong Yao Jingkai Zhao Feili Li Wei Li Jianmeng Chen 《Journal of Environmental Sciences》 2025年第2期126-138,共13页
Severe ground-level ozone(O_(3))pollution over major Chinese cities has become one of the most challenging problems,which have deleterious effects on human health and the sustainability of society.This study explored ... Severe ground-level ozone(O_(3))pollution over major Chinese cities has become one of the most challenging problems,which have deleterious effects on human health and the sustainability of society.This study explored the spatiotemporal distribution characteristics of ground-level O_(3) and its precursors based on conventional pollutant and meteorological monitoring data in Zhejiang Province from 2016 to 2021.Then,a high-performance convolutional neural network(CNN)model was established by expanding the moment and the concentration variations to general factors.Finally,the response mechanism of O_(3) to the variation with crucial influencing factors is explored by controlling variables and interpolating target variables.The results indicated that the annual average MDA8-90th concentrations in Zhejiang Province are higher in the northern and lower in the southern.When the wind direction(WD)ranges from east to southwest and the wind speed(WS)ranges between 2 and 3 m/sec,higher O_(3) concentration prone to occur.At different temperatures(T),the O_(3) concentration showed a trend of first increasing and subsequently decreasing with increasing NO_(2) concentration,peaks at the NO_(2) concentration around 0.02mg/m^(3).The sensitivity of NO_(2) to O_(3) formation is not easily affected by temperature,barometric pressure and dew point temperature.Additionally,there is a minimum IRNO_(2) at each temperature when the NO_(2) concentration is 0.03 mg/m^(3),and this minimum IRNO_(2) decreases with increasing temperature.The study explores the response mechanism of O_(3) with the change of driving variables,which can provide a scientific foundation and methodological support for the targeted management of O_(3) pollution. 展开更多
关键词 OZONE Spatiotemporal distribution convolutional neural network Ozone formation rules Incremental reactivity
原文传递
Identification and distribution patterns of the ultra-deep small-scale strike-slip faults based on convolutional neural network in Tarim Basin,NW China 被引量:1
8
作者 Hao Li Jun Han +4 位作者 Cheng Huang Lian-Bo Zeng Bo Lin Ying-Tao Yao Yi-Chen Song 《Petroleum Science》 2025年第8期3152-3167,共16页
The isolated fracture-vug systems controlled by small-scale strike-slip faults within ultra-deep carbonate rocks of the Tarim Basin exhibit significant exploration potential.The study employs a novel training set inco... The isolated fracture-vug systems controlled by small-scale strike-slip faults within ultra-deep carbonate rocks of the Tarim Basin exhibit significant exploration potential.The study employs a novel training set incorporating innovative fault labels to train a U-Net-structured CNN model,enabling effective identification of small-scale strike-slip faults through seismic data interpretation.Based on the CNN faults,we analyze the distribution patterns of small-scale strike-slip faults.The small-scale strike-slip faults can be categorized into NNW-trending and NE-trending groups with strike lengths ranging 200–5000 m.The development intensity of small-scale strike-slip faults in the Lower Yingshan Member notably exceeds that in the Upper Member.The Lower and Upper Yingshan members are two distinct mechanical layers with contrasting brittleness characteristics,separated by a low-brittleness layer.The superior brittleness of the Lower Yingshan Member enhances the development intensity of small-scale strike-slip faults compared to the upper member,while the low-brittleness layer exerts restrictive effects on vertical fault propagation.Fracture-vug systems formed by interactions of two or more small-scale strike-slip faults demonstrate larger sizes than those controlled by individual faults.All fracture-vug system sizes show positive correlations with the vertical extents of associated small-scale strike-slip faults,particularly intersection and approaching fracture-vug systems exhibit accelerated size increases proportional to the vertical extents. 展开更多
关键词 Small-scale strike-slip faults convolutional neural network Fault label Isolated fracture-vug system Distribution patterns
原文传递
3D medical image segmentation using the serial-parallel convolutional neural network and transformer based on crosswindow self-attention 被引量:1
9
作者 Bin Yu Quan Zhou +3 位作者 Li Yuan Huageng Liang Pavel Shcherbakov Xuming Zhang 《CAAI Transactions on Intelligence Technology》 2025年第2期337-348,共12页
Convolutional neural network(CNN)with the encoder-decoder structure is popular in medical image segmentation due to its excellent local feature extraction ability but it faces limitations in capturing the global featu... Convolutional neural network(CNN)with the encoder-decoder structure is popular in medical image segmentation due to its excellent local feature extraction ability but it faces limitations in capturing the global feature.The transformer can extract the global information well but adapting it to small medical datasets is challenging and its computational complexity can be heavy.In this work,a serial and parallel network is proposed for the accurate 3D medical image segmentation by combining CNN and transformer and promoting feature interactions across various semantic levels.The core components of the proposed method include the cross window self-attention based transformer(CWST)and multi-scale local enhanced(MLE)modules.The CWST module enhances the global context understanding by partitioning 3D images into non-overlapping windows and calculating sparse global attention between windows.The MLE module selectively fuses features by computing the voxel attention between different branch features,and uses convolution to strengthen the dense local information.The experiments on the prostate,atrium,and pancreas MR/CT image datasets consistently demonstrate the advantage of the proposed method over six popular segmentation models in both qualitative evaluation and quantitative indexes such as dice similarity coefficient,Intersection over Union,95%Hausdorff distance and average symmetric surface distance. 展开更多
关键词 convolution neural network cross window self‐attention medical image segmentation transformer
在线阅读 下载PDF
TMC-GCN: Encrypted Traffic Mapping Classification Method Based on Graph Convolutional Networks 被引量:1
10
作者 Baoquan Liu Xi Chen +2 位作者 Qingjun Yuan Degang Li Chunxiang Gu 《Computers, Materials & Continua》 2025年第2期3179-3201,共23页
With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based... With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based on GNN can deal with encrypted traffic well. However, existing GNN-based approaches ignore the relationship between client or server packets. In this paper, we design a network traffic topology based on GCN, called Flow Mapping Graph (FMG). FMG establishes sequential edges between vertexes by the arrival order of packets and establishes jump-order edges between vertexes by connecting packets in different bursts with the same direction. It not only reflects the time characteristics of the packet but also strengthens the relationship between the client or server packets. According to FMG, a Traffic Mapping Classification model (TMC-GCN) is designed, which can automatically capture and learn the characteristics and structure information of the top vertex in FMG. The TMC-GCN model is used to classify the encrypted traffic. The encryption stream classification problem is transformed into a graph classification problem, which can effectively deal with data from different data sources and application scenarios. By comparing the performance of TMC-GCN with other classical models in four public datasets, including CICIOT2023, ISCXVPN2016, CICAAGM2017, and GraphDapp, the effectiveness of the FMG algorithm is verified. The experimental results show that the accuracy rate of the TMC-GCN model is 96.13%, the recall rate is 95.04%, and the F1 rate is 94.54%. 展开更多
关键词 Encrypted traffic classification deep learning graph neural networks multi-layer perceptron graph convolutional networks
在线阅读 下载PDF
Dynamic Multi-Graph Spatio-Temporal Graph Traffic Flow Prediction in Bangkok:An Application of a Continuous Convolutional Neural Network
11
作者 Pongsakon Promsawat Weerapan Sae-dan +2 位作者 Marisa Kaewsuwan Weerawat Sudsutad Aphirak Aphithana 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期579-607,共29页
The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u... The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets. 展开更多
关键词 Graph neural networks convolutional neural network deep learning dynamic multi-graph SPATIO-TEMPORAL
在线阅读 下载PDF
IDSSCNN-XgBoost:Improved Dual-Stream Shallow Convolutional Neural Network Based on Extreme Gradient Boosting Algorithm for Micro Expression Recognition
12
作者 Adnan Ahmad Zhao Li +1 位作者 Irfan Tariq Zhengran He 《Computers, Materials & Continua》 SCIE EI 2025年第1期729-749,共21页
Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been pr... Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been proposed.However,unlike DNNs,shallow convolutional neural networks often outperform deeper models in mitigating overfitting,particularly with small datasets.Still,many of these methods rely on a single feature for recognition,resulting in an insufficient ability to extract highly effective features.To address this limitation,in this paper,an Improved Dual-stream Shallow Convolutional Neural Network based on an Extreme Gradient Boosting Algorithm(IDSSCNN-XgBoost)is introduced for ME Recognition.The proposed method utilizes a dual-stream architecture where motion vectors(temporal features)are extracted using Optical Flow TV-L1 and amplify subtle changes(spatial features)via EulerianVideoMagnification(EVM).These features are processed by IDSSCNN,with an attention mechanism applied to refine the extracted effective features.The outputs are then fused,concatenated,and classified using the XgBoost algorithm.This comprehensive approach significantly improves recognition accuracy by leveraging the strengths of both temporal and spatial information,supported by the robust classification power of XgBoost.The proposed method is evaluated on three publicly available ME databases named Chinese Academy of Sciences Micro-expression Database(CASMEII),Spontaneous Micro-Expression Database(SMICHS),and Spontaneous Actions and Micro-Movements(SAMM).Experimental results indicate that the proposed model can achieve outstanding results compared to recent models.The accuracy results are 79.01%,69.22%,and 68.99%on CASMEII,SMIC-HS,and SAMM,and the F1-score are 75.47%,68.91%,and 63.84%,respectively.The proposed method has the advantage of operational efficiency and less computational time. 展开更多
关键词 ME recognition dual stream shallow convolutional neural network euler video magnification TV-L1 XgBoost
在线阅读 下载PDF
Detection of geohazards caused by human disturbance activities based on convolutional neural networks
13
作者 ZHANG Heng ZHANG Diandian +1 位作者 YUAN Da LIU Tao 《水利水电技术(中英文)》 北大核心 2025年第S1期731-738,共8页
Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the envir... Human disturbance activities is one of the main reasons for inducing geohazards.Ecological impact assessment metrics of roads are inconsistent criteria and multiple.From the perspective of visual observation,the environment damage can be shown through detecting the uncovered area of vegetation in the images along road.To realize this,an end-to-end environment damage detection model based on convolutional neural network is proposed.A 50-layer residual network is used to extract feature map.The initial parameters are optimized by transfer learning.An example is shown by this method.The dataset including cliff and landslide damage are collected by us along road in Shennongjia national forest park.Results show 0.4703 average precision(AP)rating for cliff damage and 0.4809 average precision(AP)rating for landslide damage.Compared with YOLOv3,our model shows a better accuracy in cliff and landslide detection although a certain amount of speed is sacrificed. 展开更多
关键词 convolutional neural network DETECTION environment damage CLIFF LANDSLIDE
在线阅读 下载PDF
A hybrid data-driven approach for rainfall-induced landslide susceptibility mapping:Physically-based probabilistic model with convolutional neural network 被引量:1
14
作者 Hong-Zhi Cui Bin Tong +2 位作者 Tao Wang Jie Dou Jian Ji 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期4933-4951,共19页
Landslide susceptibility mapping(LSM)plays a crucial role in assessing geological risks.The current LSM techniques face a significant challenge in achieving accurate results due to uncertainties associated with region... Landslide susceptibility mapping(LSM)plays a crucial role in assessing geological risks.The current LSM techniques face a significant challenge in achieving accurate results due to uncertainties associated with regional-scale geotechnical parameters.To explore rainfall-induced LSM,this study proposes a hybrid model that combines the physically-based probabilistic model(PPM)with convolutional neural network(CNN).The PPM is capable of effectively capturing the spatial distribution of landslides by incorporating the probability of failure(POF)considering the slope stability mechanism under rainfall conditions.This significantly characterizes the variation of POF caused by parameter uncertainties.CNN was used as a binary classifier to capture the spatial and channel correlation between landslide conditioning factors and the probability of landslide occurrence.OpenCV image enhancement technique was utilized to extract non-landslide points based on the POF of landslides.The proposed model comprehensively considers physical mechanics when selecting non-landslide samples,effectively filtering out samples that do not adhere to physical principles and reduce the risk of overfitting.The results indicate that the proposed PPM-CNN hybrid model presents a higher prediction accuracy,with an area under the curve(AUC)value of 0.85 based on the landslide case of the Niangniangba area of Gansu Province,China compared with the individual CNN model(AUC=0.61)and the PPM(AUC=0.74).This model can also consider the statistical correlation and non-normal probability distributions of model parameters.These results offer practical guidance for future research on rainfall-induced LSM at the regional scale. 展开更多
关键词 Rainfall landslides Landslide susceptibility mapping Hybrid model Physically-based model convolution neural network(CNN) Probability of failure(POF)
在线阅读 下载PDF
Non-existence of the nontrivial solution for a Sobolev type evolution inequality with nonlinear convolution term
15
作者 SU Jiahui LIU Dengming 《中山大学学报(自然科学版)(中英文)》 北大核心 2025年第5期146-153,共8页
An evolution inequality of Sobolev type involving a nonlinear convolution term is considered.By using the nonlinear capacity method and the contradiction argument,the non-existence of the nontrivial local weak solutio... An evolution inequality of Sobolev type involving a nonlinear convolution term is considered.By using the nonlinear capacity method and the contradiction argument,the non-existence of the nontrivial local weak solution is proved. 展开更多
关键词 Sobolev type evolution inequality nonlinear convolution term nontrivial solution nonexistence
在线阅读 下载PDF
Experiments on image data augmentation techniques for geological rock type classification with convolutional neural networks 被引量:2
16
作者 Afshin Tatar Manouchehr Haghighi Abbas Zeinijahromi 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期106-125,共20页
The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and hist... The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and historical context,DL offers a powerful complement by enhancing the speed,objectivity,and precision of the classification process.This research explores the significance of image data augmentation techniques in optimizing the performance of convolutional neural networks(CNNs)for geological image analysis,particularly in the classification of igneous,metamorphic,and sedimentary rock types from rock thin section(RTS)images.This study primarily focuses on classic image augmentation techniques and evaluates their impact on model accuracy and precision.Results demonstrate that augmentation techniques like Equalize significantly enhance the model's classification capabilities,achieving an F1-Score of 0.9869 for igneous rocks,0.9884 for metamorphic rocks,and 0.9929 for sedimentary rocks,representing improvements compared to the baseline original results.Moreover,the weighted average F1-Score across all classes and techniques is 0.9886,indicating an enhancement.Conversely,methods like Distort lead to decreased accuracy and F1-Score,with an F1-Score of 0.949 for igneous rocks,0.954 for metamorphic rocks,and 0.9416 for sedimentary rocks,exacerbating the performance compared to the baseline.The study underscores the practicality of image data augmentation in geological image classification and advocates for the adoption of DL methods in this domain for automation and improved results.The findings of this study can benefit various fields,including remote sensing,mineral exploration,and environmental monitoring,by enhancing the accuracy of geological image analysis both for scientific research and industrial applications. 展开更多
关键词 Deep learning(DL) Image analysis Image data augmentation convolutional neural networks(CNNs) Geological image analysis Rock classification Rock thin section(RTS)images
在线阅读 下载PDF
3D Hand Pose Estimation Using Semantic Dynamic Hypergraph Convolutional Networks
17
作者 WU Yalei LI Jinghua +2 位作者 KONG Dehui LI Qianxing YIN Baocai 《Journal of Shanghai Jiaotong university(Science)》 2025年第5期855-865,共11页
Due to self-occlusion and high degree of freedom,estimating 3D hand pose from a single RGB image is a great challenging problem.Graph convolutional networks(GCNs)use graphs to describe the physical connection relation... Due to self-occlusion and high degree of freedom,estimating 3D hand pose from a single RGB image is a great challenging problem.Graph convolutional networks(GCNs)use graphs to describe the physical connection relationships between hand joints and improve the accuracy of 3D hand pose regression.However,GCNs cannot effectively describe the relationships between non-adjacent hand joints.Recently,hypergraph convolutional networks(HGCNs)have received much attention as they can describe multi-dimensional relationships between nodes through hyperedges;therefore,this paper proposes a framework for 3D hand pose estimation based on HGCN,which can better extract correlated relationships between adjacent and non-adjacent hand joints.To overcome the shortcomings of predefined hypergraph structures,a kind of dynamic hypergraph convolutional network is proposed,in which hyperedges are constructed dynamically based on hand joint feature similarity.To better explore the local semantic relationships between nodes,a kind of semantic dynamic hypergraph convolution is proposed.The proposed method is evaluated on publicly available benchmark datasets.Qualitative and quantitative experimental results both show that the proposed HGCN and improved methods for 3D hand pose estimation are better than GCN,and achieve state-of-the-art performance compared with existing methods. 展开更多
关键词 hand pose estimation hypergraph convolution dynamic hypergraph convolution semantic dynamic hypergraph convolution
原文传递
Aspect-Level Sentiment Analysis of Bi-Graph Convolutional Networks Based on Enhanced Syntactic Structural Information
18
作者 Junpeng Hu Yegang Li 《Journal of Computer and Communications》 2025年第1期72-89,共18页
Aspect-oriented sentiment analysis is a meticulous sentiment analysis task that aims to analyse the sentiment polarity of specific aspects. Most of the current research builds graph convolutional networks based on dep... Aspect-oriented sentiment analysis is a meticulous sentiment analysis task that aims to analyse the sentiment polarity of specific aspects. Most of the current research builds graph convolutional networks based on dependent syntactic trees, which improves the classification performance of the models to some extent. However, the technical limitations of dependent syntactic trees can introduce considerable noise into the model. Meanwhile, it is difficult for a single graph convolutional network to aggregate both semantic and syntactic structural information of nodes, which affects the final sentence classification. To cope with the above problems, this paper proposes a bi-channel graph convolutional network model. The model introduces a phrase structure tree and transforms it into a hierarchical phrase matrix. The adjacency matrix of the dependent syntactic tree and the hierarchical phrase matrix are combined as the initial matrix of the graph convolutional network to enhance the syntactic information. The semantic information feature representations of the sentences are obtained by the graph convolutional network with a multi-head attention mechanism and fused to achieve complementary learning of dual-channel features. Experimental results show that the model performs well and improves the accuracy of sentiment classification on three public benchmark datasets, namely Rest14, Lap14 and Twitter. 展开更多
关键词 Aspect-Level Sentiment Analysis Sentiment Knowledge Multi-Head Attention Mechanism Graph convolutional Networks
在线阅读 下载PDF
Plant Disease Detection and Classification Using Hybrid Model Based on Convolutional Auto Encoder and Convolutional Neural Network
19
作者 Tajinder Kumar Sarbjit Kaur +4 位作者 Purushottam Sharma Ankita Chhikara Xiaochun Cheng Sachin Lalar Vikram Verma 《Computers, Materials & Continua》 2025年第6期5219-5234,共16页
During its growth stage,the plant is exposed to various diseases.Detection and early detection of crop diseases is amajor challenge in the horticulture industry.Crop infections can harmtotal crop yield and reduce farm... During its growth stage,the plant is exposed to various diseases.Detection and early detection of crop diseases is amajor challenge in the horticulture industry.Crop infections can harmtotal crop yield and reduce farmers’income if not identified early.Today’s approved method involves a professional plant pathologist to diagnose the disease by visual inspection of the afflicted plant leaves.This is an excellent use case for Community Assessment and Treatment Services(CATS)due to the lengthy manual disease diagnosis process and the accuracy of identification is directly proportional to the skills of pathologists.An alternative to conventional Machine Learning(ML)methods,which require manual identification of parameters for exact results,is to develop a prototype that can be classified without pre-processing.To automatically diagnose tomato leaf disease,this research proposes a hybrid model using the Convolutional Auto-Encoders(CAE)network and the CNN-based deep learning architecture of DenseNet.To date,none of the modern systems described in this paper have a combined model based on DenseNet,CAE,and ConvolutionalNeuralNetwork(CNN)todiagnose the ailments of tomato leaves automatically.Themodelswere trained on a dataset obtained from the Plant Village repository.The dataset consisted of 9920 tomato leaves,and the model-tomodel accuracy ratio was 98.35%.Unlike other approaches discussed in this paper,this hybrid strategy requires fewer training components.Therefore,the training time to classify plant diseases with the trained algorithm,as well as the training time to automatically detect the ailments of tomato leaves,is significantly reduced. 展开更多
关键词 Tomato leaf disease deep learning DenseNet-121 convolutional autoencoder convolutional neural network
在线阅读 下载PDF
Classification of EEG signals in depression by fusing temporal convolution and feature recalibration
20
作者 SUN Fanglin ZHAI Fengwen JIN Jing 《Journal of Measurement Science and Instrumentation》 2025年第4期547-557,共11页
Aiming at the problem of insufficient feature extraction in single scale neural network model and the problem that convolutional neural network cannot process sequential tasks in the classification of EEG signals in d... Aiming at the problem of insufficient feature extraction in single scale neural network model and the problem that convolutional neural network cannot process sequential tasks in the classification of EEG signals in depression,a hybrid model(BFTCNet)of dualbranch convolutional neural network(Bi_CNN)and temporal convolutional network(TCN)based on feature recalibration(FR)was proposed to classify EEG signals of depressed patients and healthy controls.Firstly,Bi_CNN module was used to extract the mixed EEG features between different frequency bands and different channels.Secondly,FR module was used to enhance the features extracted by Bi_CNN.Finally,TCN with dilated causal convolution was used for the sequence learning to capture the temporal dependency between features.In this study,128 EEG channels of resting-state(closed-eye)EEG data from the public dataset MODMA were used as experimental data,including 29 healthy controls and 24 depression patients.The performance of the model was evaluated by the 10-fold cross validation method.The proposed BFTCNet achieves a classification accuracy of 95.98%,F1 score value of 95.47%,sensitivity and specificity of 94.21%and 97.50%,respectively.Compared with the single-scale network model EEGNet-8,2,the classification accuracy and F1 value are improved by 1.5%and 1.48%,respectively.Meanwhile,the ablation experiment proved that each sub-module had its contribution to the improvement of the model’s classification ability. 展开更多
关键词 multi-channel EEG signal dual-branch convolutional neural network feature recalibration temporal convolutional network
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部