Ultra-low emission of nitrogen oxide(NO_(x))is an irreversible trend for the development of waste-to-energy industry.But traditional approaches to remove NO_(x) face significant challenge s,such as low denitration eff...Ultra-low emission of nitrogen oxide(NO_(x))is an irreversible trend for the development of waste-to-energy industry.But traditional approaches to remove NO_(x) face significant challenge s,such as low denitration efficiency,complex denitration system,and high investment and operating cost.Here we put forward a novel polymer non-catalytic reduction(PNCR)technology that utilized a new type of polymer agent to remove NO_(x),and the proposed PNCR technology was applied to the existing waste-to-energy plant to test the denitration performance.The PNCR technology demonstrated excellent denitration performance with a NO_(x) emission concentration of<100 mg/Nm^(3) and high denitration efficiency of>75%at the temperature range of 800-900℃,which showed the application feasibility even on the complex and unstable industrial operating conditions.In addition,PNCR and hybrid polymer/selective non-catalytic reduction(PNCR/SNCR)technology possessed remarkable economic advantages including low investment fee and low operating cost of<10 CNY per ton of municipal solid waste(MSW)compared with selective catalytic reduction(SCR)technology.The excellent denitration performance of PNCR technology forebodes a broad industrial application prospect in the field of flue gas cleaning for waste-to-energy plants.展开更多
In this paper,a wideband true time delay line for X-band is designed to overcome the beam dispersion problem in a high-resolution spaceborne synthetic aperture radar phased array antenna system.The delay line loads th...In this paper,a wideband true time delay line for X-band is designed to overcome the beam dispersion problem in a high-resolution spaceborne synthetic aperture radar phased array antenna system.The delay line loads the electromagnetic bandgap structure on the upper surface of the substrate integrated waveguide.This is equivalent to including an additional inductance-capacitance for energy storage,which realizes the slow-wave effect.A microstrip line-SIW tapered transition structure is introduced to achieve a low loss and a large bandwidth.In the frequency band between 8-12 GHz,the measured results show that the delay multiplier of the delay line reaches 4 times,i.e.,delay line’s delay time is 4 times larger than 50Ωmicrostrip line with same length.Furthermore,the delay fluctuation,i.e.,the difference between the maximum and minimum delay as a percentage of the standard delay is only 2.5%,the insertion loss is less than-2.5 dB,and the return loss is less than-15 dB.Compared with the existing delay lines,the proposed delay line has the advantages of high delay efficiency,low delay error,wide bandwidth and low loss,which has good practical value and application prospects.展开更多
Trochoidal milling is known for its advantages in machining difficult-to-machine materials as it facilitates chip removal and tool cooling.However,the conventional trochoidal tool path presents challenges such as lowe...Trochoidal milling is known for its advantages in machining difficult-to-machine materials as it facilitates chip removal and tool cooling.However,the conventional trochoidal tool path presents challenges such as lower machining efficiency and longer machining time due to its time-varying cutter-workpiece engagement angle and a high percentage of non-cutting tool paths.To address these issues,this paper introduces a parameter-variant trochoidal-like(PVTR)tool path planning method for chatter-free and high-efficiency milling.This method ensures a constant engagement angle for each tool path period by adjusting the trochoidal radius and step.Initially,the nonlinear equation for the PVTR toolpath is established.Then,a segmented recurrence method is proposed to plan tool paths based on the desired engagement angle.The impact of trochoidal tool path parameters on the engagement angle is analyzed and coupled this information with the milling stability model based on spindle speed and engagement angle to determine the desired engagement angle throughout the machining process.Finally,several experimental tests are carried out using the bull-nose end mill to validate the feasibility and effectiveness of the proposed method.展开更多
BACKGROUND In 2017,our institution implemented a high efficiency(HE)pathway for lower limb orthopedic surgery.The employed strategy included patient selection,surgical instrument standardization,preoperative surgical ...BACKGROUND In 2017,our institution implemented a high efficiency(HE)pathway for lower limb orthopedic surgery.The employed strategy included patient selection,surgical instrument standardization,preoperative surgical nerve blocks,avoidance of general anesthesia and bypassing phase one recovery.We conducted a historic cohort study whose primary outcome was the postoperative recovery time between the HE and traditional(T)pathway.AIM To determine whether the implementation of a HE pathway was correlated with a reduction in postoperative recovery time.METHODS Patients who had unilateral elective lower limb orthopedic procedures through the T and HE pathway were screened between 2017 to 2019.Patients were at least 18 years old,and American Society of Anesthesiologists(ASA)Physical Status I to III without major systemic comorbidities were included.Propensity score was generated using multivariable regression taking age,body mass index,sex,ASA class and surgical type as covariates using nearest neighbour methods between the two pathways.Mann Whitney U test were used to analyzed total postoperative time.RESULTS There was an associated reduction in total postoperative recovery time of 63 minutes(95%CI:-69 to-57)in the HE group.The operating room time and total length of stay also had an associated decrease of 20 minutes(95%CI:-23 to-17)and 84 minutes(95%CI:-92 to-75)respectively.CONCLUSION Utilizing multifaceted strategies to improve perioperative efficiency was associated with a reduction in the postoperative recovery time in our retrospective study.This model can be a potential strategy to deal with surgical backlog in the face of ongoing human resource challenges.展开更多
Chinese cabbage(Brassica rapa subsp.pekinensis)is a widely cultivated vegetable crop in Asia with significant economic importance(Li et al.,2024;Yu et al.,2024).As a potyvirus with the broad host range,turnip mosaic v...Chinese cabbage(Brassica rapa subsp.pekinensis)is a widely cultivated vegetable crop in Asia with significant economic importance(Li et al.,2024;Yu et al.,2024).As a potyvirus with the broad host range,turnip mosaic virus(TuMV)is a major pathogen affecting Chinese cabbages,leading to severe yield losses(Li et al.,2019).Traditional control measures have shown limited efficacy,and the long-term use of chemical pesticides has led to significant issues such as environmental pollution and pathogen resistance(Samara et al.,2021;Lu et al.,2022).Biologicallyderived pesticides have garnered considerable attention owing to their eco-friendly attributes(Ayilara et al.,2023).γ-Aminobutyric acid(GABA),initially discovered in potato tubers,has been proven to regulate immune responses and enhance resistance to fungal and bacterial pathogens by modulating reactive oxygen species and stress-related hormone signals(Tarkowski et al.,2020;Wang et al.,2025).But biologically-derived agents typically face challenges such as large particle size and instability,which limit their practical application and bioavailability(Daraban et al.,2023).展开更多
The delayed nitrogen application technology is a crucial method for achieving high yield and efficiency in wheat cultivation.Specifically,more nitrogen is supplied to the middle and late growth stages of wheat by adju...The delayed nitrogen application technology is a crucial method for achieving high yield and efficiency in wheat cultivation.Specifically,more nitrogen is supplied to the middle and late growth stages of wheat by adjusting the application time and proportion of nitrogen fertilizer.This approach helps improve the tiller-bearing percentage and increase the number of grains per ear and the thousand-grain weight,while also reducing nitrogen loss and enhancing fertilizer use efficiency.This paper systematically elaborated on the high-yield and high-efficiency cultivation technology system with delayed nitrogen application for wheat,covering variety selection,soil management,sowing technology,the principle and implementation methods of delayed nitrogen application,integrated water and fertilizer management,field management,and comprehensive pest and disease control.Considering the ecological characteristics of major wheat-growing regions in China,tailored technical solutions were proposed,and operational key points of critical technological steps were introduced in detail.Through scientific variety distribution,precise nitrogen management,and integrated pest control,wheat yield and quality can be enhanced while achieving cost saving,improved efficiency,and ecological environmental protection.This paper provides systematic theoretical guidance and practical references for promoting thedelayed nitrogen application technology in wheat,thereby supporting the sustainable development of China s wheat industry.展开更多
The manufacturing industry is the core support for the development of the real economy.While promoting rapid economic growth,it also brings severe resource and environmental challenges.China's manufacturing indust...The manufacturing industry is the core support for the development of the real economy.While promoting rapid economic growth,it also brings severe resource and environmental challenges.China's manufacturing industry has ranked first in the world in terms of energy consumption,accounting for 56%of China's total energy consumption.Its electricity consumption exceeds 50%of the total social electricity consumption,and its carbon emissions reach 1.81 billion tons,accounting for 34% of the national total.Against this backdrop,enhancing the sustainability of high-end equipment manufacturing industries represented by aerospace has become a major strategic need for China's modernization,and it also provides strong support for solving global environmental problems.展开更多
The agricultural sector, encompassing agriculture, forestry, and land use, significantly contributes to global greenhouse gas(GHG) emissions, accounting for 23% of the total(IPCC 2019). It faces substantial challenges...The agricultural sector, encompassing agriculture, forestry, and land use, significantly contributes to global greenhouse gas(GHG) emissions, accounting for 23% of the total(IPCC 2019). It faces substantial challenges due to population growth and the urgent need to reduce its GHG emissions. Livestock husbandry, a crucial component of agriculture, accounts for a significant proportion of agricultural GHG emissions(Nugrahaeningtyas et al. 2024). Reducing emissions from livestock is essential not only for addressing climate change but also for protecting the ecological environment and achieving sustainable development. This is a critical task for the future of our planet and the well-being of future generations.展开更多
Superelastic martensitic transformation(MT)confers a considerable elastocaloric response to shape memory alloys,but the significant hysteretic loss cripples the energy conversion efficiency.In the present work,large e...Superelastic martensitic transformation(MT)confers a considerable elastocaloric response to shape memory alloys,but the significant hysteretic loss cripples the energy conversion efficiency.In the present work,large elastocaloric effect with high refrigeration efficiency is realized in a polycrystalline Co_(50)V_(35)Ga_(15)Heusler alloy.Experimental results show that the studied alloy undergoes a paramagnetic type MT from L2_(1)cubic austenite to D0_(22)tetragonal martensite with a small thermal hysteresis(ΔT_(hys))of~3 K.By carefully examining the strain rate dependence of superelastic response,it is also found that the stress hysteresis(Δσ_(hys))consists of two components including intrinsic stress hysteresis(Δσ_(hys)^(int.))caused by inherent attribute of MT and extrinsic stress hysteresis(Δσ_(hys)^(ext.))aroused by applied strain rate.Accordingly,we put forward a strain relaxation equation to separate the relative contributions betweenΔσ_(hys)^(int.)andΔσ_(hys)^(ext.)quantitatively,which demonstrates that a smallΔT_(hys)is conducive to substantial decrease inΔσ_(hys)^(int.).Moreover,associated with stress-induced superelastic MT,large reversible adiabatic temperature changes(ΔT_(ad))higher than 11 K are achieved under an applied strain of 6.5%over a temperature range of at least 60 K.With the combination of a large elastocaloric cooling capacity and a low energy dissipation,significant improvements in refrigeration efficiency can be obtained in a wide strain range,being superior to those reported in most of typical elastocaloric materials near room temperature.展开更多
Assessment of SDG11.3.1 indicator of the United Nations Sustainable Development Goals(SDGs)is a valuable tool for policymakers in urban planning.This study aims to enhance the accuracy of the SDG11.3.1 evaluation and ...Assessment of SDG11.3.1 indicator of the United Nations Sustainable Development Goals(SDGs)is a valuable tool for policymakers in urban planning.This study aims to enhance the accuracy of the SDG11.3.1 evaluation and explore the impact of varying precision levels in urban built-up area on the indicator’s assessment outcomes.We developed an algorithm to generate accurate urban built-up area data products based on China’s Geographical Condition Monitoring data with a 2 m resolution.The study evaluates urban land-use efficiency in China from 2015 to 2020 across different geographical units using both the research product and data derived from other studies utilizing medium and low-resolution imagery.The results indicate:(1)A significant improvement in the accuracy of our urban built-up area data,with the SDG11.3.1 evaluation results demonstrating a more precise reflection of spatiotemporal characteristics.The indicator shows a positive correlation with the accuracy level of the built-up area data;(2)From 2015 to 2020,Chinese prefecture-level cities have undergone faster urbanization in terms of land expansion relative to population growth,leading to less optimal land resource utilization.Only in extra-large cities does urban population growth show a relatively balanced pattern.However,urban popula tion growth in other regions and cities of various sizes lags behind land urbanization.Notably,Northeast China and small to medium cities encounter significant challenges in urban population growth.The comprehensive framework developed for evaluating SDG11.3.1 with high-precision urban built-up area data can be adapted to different national regions,yielding more accurate SDG11.3.1 outcomes.Our urban area and built-up area data products provide crucial inputs for calculating at least four indicators related to SDG11.展开更多
In this study,high-performance D18:L8-BO bulk heterojunction organic solar cells(OSCs)were prepared by employing a hot-solution strategy to optimize the active layer morphology during the film solidification process.B...In this study,high-performance D18:L8-BO bulk heterojunction organic solar cells(OSCs)were prepared by employing a hot-solution strategy to optimize the active layer morphology during the film solidification process.By heating the chloroform(CF)solution to 70℃(slightly above the boiling point of CF,~61.2℃),an optimal balance between solvent evaporation and molecular self-assembly was achieved,resulting in enhanced crystallinity,favorable π-π stacking,and ideal nanoscale phase separation.These improvements significantly boost the power conversion efficiency from 17.74%(for the device processed at a room temperature of 30℃)to 19.56%.Moreover,the in-situ grazing-incidence wide-angle X-ray scattering technology was utilized to monitor the crystallization and morphology evolution of the active layer,offering real-time insights into molecule self-assembly and phase separation dynamics during active layer solidification.This work not only provides a simple and scalable approach for fabricating high-efficiency OSCs but also offers fundamental insights into the influence of solution temperature on active layer morphology evolution dynamics,paving the way for large-scale industrial production of organic solar cells.展开更多
The distributions of light and nitrogen within a plant's canopy reflect the growth adaptation of crops to the environment and are conducive to improving the carbon assimilation ability.So can the yield in crop pro...The distributions of light and nitrogen within a plant's canopy reflect the growth adaptation of crops to the environment and are conducive to improving the carbon assimilation ability.So can the yield in crop production be maximized by improving the light and nitrogen distributions without adding any additional inputs?In this study,the effects of different nitrogen application rates and planting densities on the canopy light and nitrogen distributions of two highyielding maize cultivars(XY335 and DH618)and the regulatory effects of canopy physiological characteristics on radiation use efficiency(RUE)and yield were studied based on high-yield field experiments in Qitai,Xinjiang Uygur Autonomous Region,China,during 2019 and 2020.The results showed that the distribution of photosynthetically active photon flux density(PPFD)in the maize canopy decreased from top to bottom,while the vertical distribution of specific leaf nitrogen(SLN)initially increased and then decreased from top to bottom in the canopy.When SLN began to decrease,the PPDF values of XY335 and DH618 were 0.5 and 0.3,respectively,corresponding to 40.6 and49.3%of the total leaf area index(LAI).Nitrogen extinction coefficient(K_(N))/light extinction coefficient(K_(L))ratio in the middle and lower canopy of XY335(0.32)was 0.08 higher than that of DH618(0.24).The yield and RUE of XY335(17.2 t ha^(-1)and 1.8g MJ^(-1))were 7.0%(1.1 t ha^(-1))and 13.7%(0.2 g MJ^(-1))higher than those of DH618(16.1 t ha^(-1)and 1.6 g MJ^(-1)).Therefore,better light conditions(where the proportion of LAI in the upper and middle canopy was small)improved the light distribution when SLN started to decline,thus helping to mobilize the nitrogen distribution and maintain a high K_(N)and K_(N)/K_(L)ratio.In addition,K_(N)/K_(L)was a key parameter for yield improvement when the maize nutrient requirements were met at 360 kg N ha^(-1).At this level,an appropriately optimized high planting density could promote nitrogen utilization and produce higher yields and greater efficiency.The results of this study will be important for achieving high maize yields and the high efficiency cultivation and breeding of maize in the future.展开更多
A novel Eu^(3+)-doped fluorapatite red phosphor Ca_(2)Y_(8)(BO_(4))_(2)(SiO_(4))_(4)F_(2)Eu^(3+)with pure phase was synthesized in this study.Density functional theory(DFT)calculation and diffuse reflection spectrum a...A novel Eu^(3+)-doped fluorapatite red phosphor Ca_(2)Y_(8)(BO_(4))_(2)(SiO_(4))_(4)F_(2)Eu^(3+)with pure phase was synthesized in this study.Density functional theory(DFT)calculation and diffuse reflection spectrum analysis reveal its potential as a matrix for phosphors excited by ultraviolet light.Eu^(3+)has a^(7)F_(0)→^(5)L_(6)transition at 394 nm,and the prepared phosphor exhibits a high emission intensity at 614 nm,which may be attributed to the^(5)D_(0)-^(7)F_(2)energy transition at the lower symmetry site of Eu^(3+).The optimal doping concentration of the phosphor is determined to be 11 mol%,with concentration quenching attributed to the exchange interaction mechanism.The overall color purity of the phosphor is up to 99.88%,with an internal quantum efficiency as high as 91.15%.Notably,Ca_(2)Y_(8)(BO_(4))_(2)(SiO_(4))_(4)F_(2):11 mol%Eu^(3+)(CYBSF:11 mol%Eu^(3+))phosphors exhibit good thermal stability,with a thermal quenching temperature(T1/2)of 552 K and the intensity of emission at 423 K still at 88.89%of that at 298 K.The activation energy of the phosphor is up to 0.30287 eV.Its comprehensive luminescence performance surpasses that of commercial red phosphor,making it suitable for near ultraviolet excited warm white light emitting diode(NUV-WLED)with a high color rendering index(Ra=82)and a correlated color temperature(CCT)of 4339 K.Moreover,the phosphor achieves latent fingerprint visualization and anti-counterfeiting ink on different material surfaces:glass,aluminum foil,plastic and paper.Overall,the fluorapatite CYBSF:11 mol%Eu^(3+)phosphor holds great potential for multimodal applications due to its high quantum efficiency and good thermal stability.展开更多
The adsorption of pollutants can not only promote the direct surface reaction,but also modify the catalyst itself to improve its photoelectric characteristics,which is rarely studied for water treatment with inorganic...The adsorption of pollutants can not only promote the direct surface reaction,but also modify the catalyst itself to improve its photoelectric characteristics,which is rarely studied for water treatment with inorganic photocatalyst.A highly crystalline BiOBr(c-BiOBr)was synthesized by a two-step preparation process.Owing to the calcination,the highly crystalline enhanced the interface interaction between pollutant and c-BiOBr.The complex of organic pollutant and[Bi_(2)O_(2)]^(2+)could promote the active electron transfer from the adsorbed pollutant to c-BiOBr for the direct pollutant degradation by holes(h^(+)).Moreover,the pollutant adsorption actually modified c-BiOBr and promoted more unpaired electrons,which would coupling with the photoexcitation to promote generate more O_(2)^(•-).The molecular modification effect derived from pollutant adsorption significantly improved the removal of pollutants.This work strongly deepens the understanding of the molecularmodification effect from the pollutant adsorption and develops a novel and efficient approach for water treatment.展开更多
Fischer-Tropsch synthesis offers a promising route to convert carbon-rich resources such as coal,natural gas,and biomass into clean fuels and high-value chemicals via syngas.Catalyst development is crucial for optimiz...Fischer-Tropsch synthesis offers a promising route to convert carbon-rich resources such as coal,natural gas,and biomass into clean fuels and high-value chemicals via syngas.Catalyst development is crucial for optimizing the process,with cobalt-and iron-based catalysts being widely used in industrial applications.Iron-based catalysts,in particular,are favored due to their low cost,broad temperature range,and high water-gas shift reaction activity,making them ideal for syngas derived from coal and biomass with a low H_(2)/CO ratio.However,despite their long history of industrial use,iron-based catalysts face two significant challenges.First,the presence of multiple iron phases-metallic iron,iron oxides,and iron carbides-complicates the understanding of the reaction mechanism due to dynamic phase transformations.Second,the high water-gas shift activity of these catalysts leads to increased CO_(2) selectivity,thereby reducing overall carbon efficiency.In Fischer-Tropsch synthesis,CO_(2) can arise as primary CO_(2) from CO disproportionation(the Boudouard reaction)and as secondary CO_(2) from the water-gas shift reaction.The accumulation of CO_(2) formation further compromises overall carbon efficiency,which is particularly undesirable given the current focus on minimizing carbon emissions and achieving carbon neutrality.This review focus on the ongoing advancements of iron-based catalysts for Fischer-Tropsch synthesis,with particular emphasis on overcoming these two critical challenges for iron-based catalysts:regulating the active phases and minimizing CO_(2) selectivity.Addressing these challenges is essential for enhancing the overall catalytic efficiency and selectivity of iron-based catalysts.In this review,recent efforts to suppress CO_(2) selectivity of iron-based catalysts,including catalyst hydrophobic modification and graphene confinement,are explored for their potential to stabilize active phases and prevent unwanted side reactions.This innovative approach offers new opportunities for developing catalysts with high activity,low CO_(2) selectivity,and enhanced stability,which are key factors for enhancing both the efficiency and sustainability for Fischer-Tropsch synthesis.Such advancements are crucial for advancing more efficient and sustainable Fischer-Tropsch synthesis technologies,supporting the global push for net-zero emissions goals,and contributing to carbon reduction efforts worldwide.展开更多
The utilization of ironsand for preparing oxidized pellets poses challenges,including slow oxidation and low consolidation strength.The effects and function mechanisms of high-pressure grinding roll(HPGR)pretreatment ...The utilization of ironsand for preparing oxidized pellets poses challenges,including slow oxidation and low consolidation strength.The effects and function mechanisms of high-pressure grinding roll(HPGR)pretreatment on the oxidation and consolidation of ironsand pellets were investigated,and the energy utilization efficiency of HPGR with different roller pressure intensities was evaluated.The results indicate that HPGR pretreatment at 8 MPa improves the ironsand properties,with the specific surface area increasing by 740 cm^(2) g^(-1) and mechanical energy storage increasing by 2.5 kJ mol^(-1),which is conducive to oxidation and crystalline connection of particles.As roller pressure intensity increases to 16 MPa,more mechanical energy of HPGR is applied for crystal activation,with mechanical energy storage further rising by 18.1 kJ mol^(-1).The apparent activation energy for pellet oxidation initially decreases and then increases,reaching a minimum at 12 MPa.Simultaneously,the roasted pellets porosity decreases by 2.8%,while the compressive strength increases by 789 N.At higher roller pressure intensity,the densely connected structure between particles impedes gas diffusion within the pellets,diminishing the beneficial effects of HPGR on pellet oxidation.Moreover,excessive roller pressure intensity decreases the HPGR energy utilization efficiency.The optimal HPGR roller pressure intensity for ironsand is 12 MPa,at which the specific surface area increases by 790 cm^(2) g^(-1),mechanical energy storage increases by 10.6 kJ mol^(-1),the compressive strength of roasted pellets rises to 2816 N,and the appropriate preheating and roasting temperatures decrease by 250 and 125°C,respectively.展开更多
Abundant efforts have been devoted to improving the efficiency of organic light-emitting diodes(OLEDs),however,approaches to control the device efficiency roll-off are still extremely limited,especially in nondoped bl...Abundant efforts have been devoted to improving the efficiency of organic light-emitting diodes(OLEDs),however,approaches to control the device efficiency roll-off are still extremely limited,especially in nondoped blue OLEDs.In this work,three blue emitters(TAT,TAMT and TAMT-CN)with"hot exciton"properties are designed and synthesized based on[1,2,4]triazolo[1,5-a]pyridine(TP)as a regulating unit as well as anthracene-triphenylamine(An-TPA)as the chromophore.By adjusting the linkage mode and modifying the TP unit,the excited state properties,carrier transfer abilities,horizontal orientation,and device efficiency roll-off were precisely controlled.Among these materials,emitters that directly connect the fused TP unit exhibit balanced charge-transporting ability,higher photoluminescent quantum yield and improved horizontal orientation,resulting in better electroluminescence(EL)performance in non-doped blue OLEDs.As a result,non-doped blue OLEDs exhibit excellent performance with external quantum efficiencies of over 6%,brightness of over 30,000 cd/m2and EL peaks of around 476 nm.More importantly,the device based on TAMT-CN exhibits an ultra-low efficiency roll-off of 2.97%at a high brightness of10,000 cd/m2.The accessible molecular unit and feasible design strategy in this work are of great significance for designing highly efficient and ultra-low efficiency roll-off non-doped blue OLEDs.展开更多
Advanced oxidation processes are promising for degradation of the highly chemical stability and refractory methylisothiazolinone(MIT) bactericides in relevant industrial wastewater.In order to assemble a low cost and ...Advanced oxidation processes are promising for degradation of the highly chemical stability and refractory methylisothiazolinone(MIT) bactericides in relevant industrial wastewater.In order to assemble a low cost and high performance electrochemical oxidation system for wastewater treatment,granular active carbon(GAC) was decorated by doping Ce,Sn,Sb to synthesize Sn-Sb-Ce/GAC using sol-gel method as particle electrode filled into a three-dimensional(3D) electrochemical reactor.Scanning electron microscopy(SEM),energy-dispersive spectroscopy(EDS) and X-ray diffraction(XRD) experiments revealed that the Sn-Sb-Ce/GAC particle electrode crystal particles were compact and uniform,and the surface structure was improved.The ten cyclic experiments indicated that the Sn-Sb-Ce/GAC particle electrode had high stability and low dissolution of the loaded active substance.The degradation mechanism of MIT was studied under the optimal working conditions of 3D electrode system with GAC of 5 g/L,current density of 20 mA/cm^(2),initial pH 5,electrolyte concentration of Na_(2)SO_(4)0.02 mol/L and reaction time of 120 min.The indirect electrochemical degradation of MIT was dominated by active substance pathway that active chlorine rather than free radicals(·OH) played the main role.Comparing with conventional two-dimensional(2D) electrode system,the 3D electrochemical system has larger active electrode area,higher treatment efficiency and lower energy consumption than the former.The 3D electrochemical system could remove 96.5% of MIT from the actual high-salt reverse osmosis concentrate wastewater in 30 min.It has a certain removal effect on UV_(254)in wastewater,but has a better removal effect on fluorescent substances.This study proposed a new strategy to develop transition metal and rare earth metal particle electrodes using carbon-based materials for high efficient electrocatalytic oxidation in the electrochemical treatment system.展开更多
C/SiO_(x)anode with higher capacity and lower lithiation potential has been recognized as a nextgeneration alternative to graphite for high-energy-density lithium-ion batteries.However,C/SiO_(x)suffers from low initia...C/SiO_(x)anode with higher capacity and lower lithiation potential has been recognized as a nextgeneration alternative to graphite for high-energy-density lithium-ion batteries.However,C/SiO_(x)suffers from low initial Coulombic efficiency(ICE),which significantly hinders its practical application.Herein,we reported a straightforward iodine redox chemistry strategy to realize highly reversible Li storage behavior and remarkably enhanced ICE of high-capacity C/SiO_(x)anode toward long-life lithium-ion batteries.Specifically,I2is introduced into porous C/SiO_(x)via simple fumigation to synthesize their composite(C/SiO_(x)@I),in which I_(2)can effectively inhibit the irreversible lithiation reactions of SiO_(x)through redox reaction.Further,redox reaction intermediates of LiI_(3)and LiIO_(3)can inhibit the decomposition of electrolyte and LiPF6,thereby reducing the thickness of the solid-electrolyte interphase film.Consequently,the obtained C/SiO_(x)@I exhibits a considerable capacity of 1241 mAh g^(-1)with an improved ICE of 88.5%at 0.1 A g^(-1)and impressive cyclability,showing capacity retention of 95%after 700 cycles at5.0 A g^(-1).Besides,the C/SiO_(x)@I with a 12%addition ratio can greatly enhance the capacity of graphite from 352 to 454 mAh g^(-1),with negligible impact on its ICE.When the addition ratio is 9%,the energy density of the 18,650 cylindrical battery composed of graphite and Li[Ni_(0.8)Co_(0.1)Mn_(0.1)]O_(2)can be enhanced by approximately 25 Wh kg^(-1).This study opens a new avenue for developing high ICE in SiO_(x)-based anodes for high-energy-density lithium-ion batteries.展开更多
Alkaline water electrolysis poses significant potential for large-sc ale indus trial hydrogen generation,but is impeded by the absence of an efficient electrocatalyst capable of operating at high current densities whi...Alkaline water electrolysis poses significant potential for large-sc ale indus trial hydrogen generation,but is impeded by the absence of an efficient electrocatalyst capable of operating at high current densities while maintaining with minimal overpotential.Herein,we construct a mechanically stable and highly active RuSe_(2)/MXene heterojunction electrocatalyst.A typical SC-Ti_(3)C_(2)T_(x)MXene substrate was successfully prepared by supercritical CO_(2)(SC-CO_(2))etching,combined by subsequent DMSO intercalation treatment.Further,the RuSe_(2)nanoparticles were uniformly deposited on the surface of SC-Ti_(3)C_(2)T_(x).Theoretical calculations and experimental results demonstrate that fluorine-rich MXene exhibits stable binding with the active 1T phase RuSe_(2).The as-prepared representative RuSe_(2)@SC-Ti_(3)C_(2)T_(x)-3 heterostructure showed exceptional alkaline hydrogen evolution performance,demonstrating an overpotential of 15 mV at 10 mA cm^(-2)and a Tafel slope of 21.84 mV dec^(-1),which presents excellent HER performance and stability at high-current-density conditions.Moreover,the overpotential under the current density of 500 mA cm^(-2)is merely 182 mV,and the HER efficiency remains unaffected even after 5000 cycles and 120 h of continuous testing.展开更多
基金supported by the National Natural Science Foundation of China(No.92367107)。
文摘Ultra-low emission of nitrogen oxide(NO_(x))is an irreversible trend for the development of waste-to-energy industry.But traditional approaches to remove NO_(x) face significant challenge s,such as low denitration efficiency,complex denitration system,and high investment and operating cost.Here we put forward a novel polymer non-catalytic reduction(PNCR)technology that utilized a new type of polymer agent to remove NO_(x),and the proposed PNCR technology was applied to the existing waste-to-energy plant to test the denitration performance.The PNCR technology demonstrated excellent denitration performance with a NO_(x) emission concentration of<100 mg/Nm^(3) and high denitration efficiency of>75%at the temperature range of 800-900℃,which showed the application feasibility even on the complex and unstable industrial operating conditions.In addition,PNCR and hybrid polymer/selective non-catalytic reduction(PNCR/SNCR)technology possessed remarkable economic advantages including low investment fee and low operating cost of<10 CNY per ton of municipal solid waste(MSW)compared with selective catalytic reduction(SCR)technology.The excellent denitration performance of PNCR technology forebodes a broad industrial application prospect in the field of flue gas cleaning for waste-to-energy plants.
基金Supported by the National Natural Science Foundation of China(61971401)。
文摘In this paper,a wideband true time delay line for X-band is designed to overcome the beam dispersion problem in a high-resolution spaceborne synthetic aperture radar phased array antenna system.The delay line loads the electromagnetic bandgap structure on the upper surface of the substrate integrated waveguide.This is equivalent to including an additional inductance-capacitance for energy storage,which realizes the slow-wave effect.A microstrip line-SIW tapered transition structure is introduced to achieve a low loss and a large bandwidth.In the frequency band between 8-12 GHz,the measured results show that the delay multiplier of the delay line reaches 4 times,i.e.,delay line’s delay time is 4 times larger than 50Ωmicrostrip line with same length.Furthermore,the delay fluctuation,i.e.,the difference between the maximum and minimum delay as a percentage of the standard delay is only 2.5%,the insertion loss is less than-2.5 dB,and the return loss is less than-15 dB.Compared with the existing delay lines,the proposed delay line has the advantages of high delay efficiency,low delay error,wide bandwidth and low loss,which has good practical value and application prospects.
基金supported by the National Natural Science Foundation of China(Grant Nos.U22A20202 and 52275477).
文摘Trochoidal milling is known for its advantages in machining difficult-to-machine materials as it facilitates chip removal and tool cooling.However,the conventional trochoidal tool path presents challenges such as lower machining efficiency and longer machining time due to its time-varying cutter-workpiece engagement angle and a high percentage of non-cutting tool paths.To address these issues,this paper introduces a parameter-variant trochoidal-like(PVTR)tool path planning method for chatter-free and high-efficiency milling.This method ensures a constant engagement angle for each tool path period by adjusting the trochoidal radius and step.Initially,the nonlinear equation for the PVTR toolpath is established.Then,a segmented recurrence method is proposed to plan tool paths based on the desired engagement angle.The impact of trochoidal tool path parameters on the engagement angle is analyzed and coupled this information with the milling stability model based on spindle speed and engagement angle to determine the desired engagement angle throughout the machining process.Finally,several experimental tests are carried out using the bull-nose end mill to validate the feasibility and effectiveness of the proposed method.
文摘BACKGROUND In 2017,our institution implemented a high efficiency(HE)pathway for lower limb orthopedic surgery.The employed strategy included patient selection,surgical instrument standardization,preoperative surgical nerve blocks,avoidance of general anesthesia and bypassing phase one recovery.We conducted a historic cohort study whose primary outcome was the postoperative recovery time between the HE and traditional(T)pathway.AIM To determine whether the implementation of a HE pathway was correlated with a reduction in postoperative recovery time.METHODS Patients who had unilateral elective lower limb orthopedic procedures through the T and HE pathway were screened between 2017 to 2019.Patients were at least 18 years old,and American Society of Anesthesiologists(ASA)Physical Status I to III without major systemic comorbidities were included.Propensity score was generated using multivariable regression taking age,body mass index,sex,ASA class and surgical type as covariates using nearest neighbour methods between the two pathways.Mann Whitney U test were used to analyzed total postoperative time.RESULTS There was an associated reduction in total postoperative recovery time of 63 minutes(95%CI:-69 to-57)in the HE group.The operating room time and total length of stay also had an associated decrease of 20 minutes(95%CI:-23 to-17)and 84 minutes(95%CI:-92 to-75)respectively.CONCLUSION Utilizing multifaceted strategies to improve perioperative efficiency was associated with a reduction in the postoperative recovery time in our retrospective study.This model can be a potential strategy to deal with surgical backlog in the face of ongoing human resource challenges.
基金supported by the National Natural Science Foundation of China(Grant Nos.32402564,32330096,32372631)Hebei Natural Science Foundation(Grant No.C2024204246)+1 种基金the Pinduoduo-China Agricultural University Research Fund(Grant No.PC2023B02018)the 2115 Talent Development Program of China Agricultural University.
文摘Chinese cabbage(Brassica rapa subsp.pekinensis)is a widely cultivated vegetable crop in Asia with significant economic importance(Li et al.,2024;Yu et al.,2024).As a potyvirus with the broad host range,turnip mosaic virus(TuMV)is a major pathogen affecting Chinese cabbages,leading to severe yield losses(Li et al.,2019).Traditional control measures have shown limited efficacy,and the long-term use of chemical pesticides has led to significant issues such as environmental pollution and pathogen resistance(Samara et al.,2021;Lu et al.,2022).Biologicallyderived pesticides have garnered considerable attention owing to their eco-friendly attributes(Ayilara et al.,2023).γ-Aminobutyric acid(GABA),initially discovered in potato tubers,has been proven to regulate immune responses and enhance resistance to fungal and bacterial pathogens by modulating reactive oxygen species and stress-related hormone signals(Tarkowski et al.,2020;Wang et al.,2025).But biologically-derived agents typically face challenges such as large particle size and instability,which limit their practical application and bioavailability(Daraban et al.,2023).
基金Supported by The Key Science and Technology Project of Shangqiu City(2024056).
文摘The delayed nitrogen application technology is a crucial method for achieving high yield and efficiency in wheat cultivation.Specifically,more nitrogen is supplied to the middle and late growth stages of wheat by adjusting the application time and proportion of nitrogen fertilizer.This approach helps improve the tiller-bearing percentage and increase the number of grains per ear and the thousand-grain weight,while also reducing nitrogen loss and enhancing fertilizer use efficiency.This paper systematically elaborated on the high-yield and high-efficiency cultivation technology system with delayed nitrogen application for wheat,covering variety selection,soil management,sowing technology,the principle and implementation methods of delayed nitrogen application,integrated water and fertilizer management,field management,and comprehensive pest and disease control.Considering the ecological characteristics of major wheat-growing regions in China,tailored technical solutions were proposed,and operational key points of critical technological steps were introduced in detail.Through scientific variety distribution,precise nitrogen management,and integrated pest control,wheat yield and quality can be enhanced while achieving cost saving,improved efficiency,and ecological environmental protection.This paper provides systematic theoretical guidance and practical references for promoting thedelayed nitrogen application technology in wheat,thereby supporting the sustainable development of China s wheat industry.
基金the support of the National Natural Science Foundation of China(Nos.52205476 and 52175415)the Natural Science Foundation of Jiangsu Province(No.BK20242040)+1 种基金the Fundamental Research Funds for the Central Universities(No.NG2024008)the Fund of Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology(No.1005ZAA20003-14)。
文摘The manufacturing industry is the core support for the development of the real economy.While promoting rapid economic growth,it also brings severe resource and environmental challenges.China's manufacturing industry has ranked first in the world in terms of energy consumption,accounting for 56%of China's total energy consumption.Its electricity consumption exceeds 50%of the total social electricity consumption,and its carbon emissions reach 1.81 billion tons,accounting for 34% of the national total.Against this backdrop,enhancing the sustainability of high-end equipment manufacturing industries represented by aerospace has become a major strategic need for China's modernization,and it also provides strong support for solving global environmental problems.
文摘The agricultural sector, encompassing agriculture, forestry, and land use, significantly contributes to global greenhouse gas(GHG) emissions, accounting for 23% of the total(IPCC 2019). It faces substantial challenges due to population growth and the urgent need to reduce its GHG emissions. Livestock husbandry, a crucial component of agriculture, accounts for a significant proportion of agricultural GHG emissions(Nugrahaeningtyas et al. 2024). Reducing emissions from livestock is essential not only for addressing climate change but also for protecting the ecological environment and achieving sustainable development. This is a critical task for the future of our planet and the well-being of future generations.
基金supported by the National Natural Science Foundation of China(Nos.52261035,52201223,52371006,52371194)Applied Basic Projects of Yunnan province(No.202101BA070001-233).
文摘Superelastic martensitic transformation(MT)confers a considerable elastocaloric response to shape memory alloys,but the significant hysteretic loss cripples the energy conversion efficiency.In the present work,large elastocaloric effect with high refrigeration efficiency is realized in a polycrystalline Co_(50)V_(35)Ga_(15)Heusler alloy.Experimental results show that the studied alloy undergoes a paramagnetic type MT from L2_(1)cubic austenite to D0_(22)tetragonal martensite with a small thermal hysteresis(ΔT_(hys))of~3 K.By carefully examining the strain rate dependence of superelastic response,it is also found that the stress hysteresis(Δσ_(hys))consists of two components including intrinsic stress hysteresis(Δσ_(hys)^(int.))caused by inherent attribute of MT and extrinsic stress hysteresis(Δσ_(hys)^(ext.))aroused by applied strain rate.Accordingly,we put forward a strain relaxation equation to separate the relative contributions betweenΔσ_(hys)^(int.)andΔσ_(hys)^(ext.)quantitatively,which demonstrates that a smallΔT_(hys)is conducive to substantial decrease inΔσ_(hys)^(int.).Moreover,associated with stress-induced superelastic MT,large reversible adiabatic temperature changes(ΔT_(ad))higher than 11 K are achieved under an applied strain of 6.5%over a temperature range of at least 60 K.With the combination of a large elastocaloric cooling capacity and a low energy dissipation,significant improvements in refrigeration efficiency can be obtained in a wide strain range,being superior to those reported in most of typical elastocaloric materials near room temperature.
基金funded by the National Key Research and De-velopment Program of China(Grant No.2023YFC3804001)the Natural Resources Planning and Management Project(Grant No.A2417,A2418)the Fundamental Scientific Research Funds for Central Public Wel-fare Research Institutes(Grant No.AR2409).
文摘Assessment of SDG11.3.1 indicator of the United Nations Sustainable Development Goals(SDGs)is a valuable tool for policymakers in urban planning.This study aims to enhance the accuracy of the SDG11.3.1 evaluation and explore the impact of varying precision levels in urban built-up area on the indicator’s assessment outcomes.We developed an algorithm to generate accurate urban built-up area data products based on China’s Geographical Condition Monitoring data with a 2 m resolution.The study evaluates urban land-use efficiency in China from 2015 to 2020 across different geographical units using both the research product and data derived from other studies utilizing medium and low-resolution imagery.The results indicate:(1)A significant improvement in the accuracy of our urban built-up area data,with the SDG11.3.1 evaluation results demonstrating a more precise reflection of spatiotemporal characteristics.The indicator shows a positive correlation with the accuracy level of the built-up area data;(2)From 2015 to 2020,Chinese prefecture-level cities have undergone faster urbanization in terms of land expansion relative to population growth,leading to less optimal land resource utilization.Only in extra-large cities does urban population growth show a relatively balanced pattern.However,urban popula tion growth in other regions and cities of various sizes lags behind land urbanization.Notably,Northeast China and small to medium cities encounter significant challenges in urban population growth.The comprehensive framework developed for evaluating SDG11.3.1 with high-precision urban built-up area data can be adapted to different national regions,yielding more accurate SDG11.3.1 outcomes.Our urban area and built-up area data products provide crucial inputs for calculating at least four indicators related to SDG11.
基金financially supported by the National Natural Science Foundation of China(61705003)。
文摘In this study,high-performance D18:L8-BO bulk heterojunction organic solar cells(OSCs)were prepared by employing a hot-solution strategy to optimize the active layer morphology during the film solidification process.By heating the chloroform(CF)solution to 70℃(slightly above the boiling point of CF,~61.2℃),an optimal balance between solvent evaporation and molecular self-assembly was achieved,resulting in enhanced crystallinity,favorable π-π stacking,and ideal nanoscale phase separation.These improvements significantly boost the power conversion efficiency from 17.74%(for the device processed at a room temperature of 30℃)to 19.56%.Moreover,the in-situ grazing-incidence wide-angle X-ray scattering technology was utilized to monitor the crystallization and morphology evolution of the active layer,offering real-time insights into molecule self-assembly and phase separation dynamics during active layer solidification.This work not only provides a simple and scalable approach for fabricating high-efficiency OSCs but also offers fundamental insights into the influence of solution temperature on active layer morphology evolution dynamics,paving the way for large-scale industrial production of organic solar cells.
基金supported by the National Natural Science Foundation of China(32172118)the National Key Research and Development Program of China(2016YFD0300110 and 2016YFD0300101)+1 种基金the Basic Scientific Research Fund of Chinese Academy of Agricultural Sciences,China(S2022ZD05)the Agricultural Science and Technology Innovation Program,China(CAAS-ZDRW202004)。
文摘The distributions of light and nitrogen within a plant's canopy reflect the growth adaptation of crops to the environment and are conducive to improving the carbon assimilation ability.So can the yield in crop production be maximized by improving the light and nitrogen distributions without adding any additional inputs?In this study,the effects of different nitrogen application rates and planting densities on the canopy light and nitrogen distributions of two highyielding maize cultivars(XY335 and DH618)and the regulatory effects of canopy physiological characteristics on radiation use efficiency(RUE)and yield were studied based on high-yield field experiments in Qitai,Xinjiang Uygur Autonomous Region,China,during 2019 and 2020.The results showed that the distribution of photosynthetically active photon flux density(PPFD)in the maize canopy decreased from top to bottom,while the vertical distribution of specific leaf nitrogen(SLN)initially increased and then decreased from top to bottom in the canopy.When SLN began to decrease,the PPDF values of XY335 and DH618 were 0.5 and 0.3,respectively,corresponding to 40.6 and49.3%of the total leaf area index(LAI).Nitrogen extinction coefficient(K_(N))/light extinction coefficient(K_(L))ratio in the middle and lower canopy of XY335(0.32)was 0.08 higher than that of DH618(0.24).The yield and RUE of XY335(17.2 t ha^(-1)and 1.8g MJ^(-1))were 7.0%(1.1 t ha^(-1))and 13.7%(0.2 g MJ^(-1))higher than those of DH618(16.1 t ha^(-1)and 1.6 g MJ^(-1)).Therefore,better light conditions(where the proportion of LAI in the upper and middle canopy was small)improved the light distribution when SLN started to decline,thus helping to mobilize the nitrogen distribution and maintain a high K_(N)and K_(N)/K_(L)ratio.In addition,K_(N)/K_(L)was a key parameter for yield improvement when the maize nutrient requirements were met at 360 kg N ha^(-1).At this level,an appropriately optimized high planting density could promote nitrogen utilization and produce higher yields and greater efficiency.The results of this study will be important for achieving high maize yields and the high efficiency cultivation and breeding of maize in the future.
基金supported by the National Natural Science Foundation of China(52372013)Natural Science Foundation of Shanghai(22ZR1460600)。
文摘A novel Eu^(3+)-doped fluorapatite red phosphor Ca_(2)Y_(8)(BO_(4))_(2)(SiO_(4))_(4)F_(2)Eu^(3+)with pure phase was synthesized in this study.Density functional theory(DFT)calculation and diffuse reflection spectrum analysis reveal its potential as a matrix for phosphors excited by ultraviolet light.Eu^(3+)has a^(7)F_(0)→^(5)L_(6)transition at 394 nm,and the prepared phosphor exhibits a high emission intensity at 614 nm,which may be attributed to the^(5)D_(0)-^(7)F_(2)energy transition at the lower symmetry site of Eu^(3+).The optimal doping concentration of the phosphor is determined to be 11 mol%,with concentration quenching attributed to the exchange interaction mechanism.The overall color purity of the phosphor is up to 99.88%,with an internal quantum efficiency as high as 91.15%.Notably,Ca_(2)Y_(8)(BO_(4))_(2)(SiO_(4))_(4)F_(2):11 mol%Eu^(3+)(CYBSF:11 mol%Eu^(3+))phosphors exhibit good thermal stability,with a thermal quenching temperature(T1/2)of 552 K and the intensity of emission at 423 K still at 88.89%of that at 298 K.The activation energy of the phosphor is up to 0.30287 eV.Its comprehensive luminescence performance surpasses that of commercial red phosphor,making it suitable for near ultraviolet excited warm white light emitting diode(NUV-WLED)with a high color rendering index(Ra=82)and a correlated color temperature(CCT)of 4339 K.Moreover,the phosphor achieves latent fingerprint visualization and anti-counterfeiting ink on different material surfaces:glass,aluminum foil,plastic and paper.Overall,the fluorapatite CYBSF:11 mol%Eu^(3+)phosphor holds great potential for multimodal applications due to its high quantum efficiency and good thermal stability.
基金supported by National Natural Science Foundation of China (Nos.52100032,51838005)Shandong Province Postdoctoral Program for Innovative Talent Support Plan (No.SDBX2022003)the Introduced Innovative R&D Team Project under the“The Pearl River Talent Recruitment Program”of Guangdong Province (2019ZT08L387).
文摘The adsorption of pollutants can not only promote the direct surface reaction,but also modify the catalyst itself to improve its photoelectric characteristics,which is rarely studied for water treatment with inorganic photocatalyst.A highly crystalline BiOBr(c-BiOBr)was synthesized by a two-step preparation process.Owing to the calcination,the highly crystalline enhanced the interface interaction between pollutant and c-BiOBr.The complex of organic pollutant and[Bi_(2)O_(2)]^(2+)could promote the active electron transfer from the adsorbed pollutant to c-BiOBr for the direct pollutant degradation by holes(h^(+)).Moreover,the pollutant adsorption actually modified c-BiOBr and promoted more unpaired electrons,which would coupling with the photoexcitation to promote generate more O_(2)^(•-).The molecular modification effect derived from pollutant adsorption significantly improved the removal of pollutants.This work strongly deepens the understanding of the molecularmodification effect from the pollutant adsorption and develops a novel and efficient approach for water treatment.
文摘Fischer-Tropsch synthesis offers a promising route to convert carbon-rich resources such as coal,natural gas,and biomass into clean fuels and high-value chemicals via syngas.Catalyst development is crucial for optimizing the process,with cobalt-and iron-based catalysts being widely used in industrial applications.Iron-based catalysts,in particular,are favored due to their low cost,broad temperature range,and high water-gas shift reaction activity,making them ideal for syngas derived from coal and biomass with a low H_(2)/CO ratio.However,despite their long history of industrial use,iron-based catalysts face two significant challenges.First,the presence of multiple iron phases-metallic iron,iron oxides,and iron carbides-complicates the understanding of the reaction mechanism due to dynamic phase transformations.Second,the high water-gas shift activity of these catalysts leads to increased CO_(2) selectivity,thereby reducing overall carbon efficiency.In Fischer-Tropsch synthesis,CO_(2) can arise as primary CO_(2) from CO disproportionation(the Boudouard reaction)and as secondary CO_(2) from the water-gas shift reaction.The accumulation of CO_(2) formation further compromises overall carbon efficiency,which is particularly undesirable given the current focus on minimizing carbon emissions and achieving carbon neutrality.This review focus on the ongoing advancements of iron-based catalysts for Fischer-Tropsch synthesis,with particular emphasis on overcoming these two critical challenges for iron-based catalysts:regulating the active phases and minimizing CO_(2) selectivity.Addressing these challenges is essential for enhancing the overall catalytic efficiency and selectivity of iron-based catalysts.In this review,recent efforts to suppress CO_(2) selectivity of iron-based catalysts,including catalyst hydrophobic modification and graphene confinement,are explored for their potential to stabilize active phases and prevent unwanted side reactions.This innovative approach offers new opportunities for developing catalysts with high activity,low CO_(2) selectivity,and enhanced stability,which are key factors for enhancing both the efficiency and sustainability for Fischer-Tropsch synthesis.Such advancements are crucial for advancing more efficient and sustainable Fischer-Tropsch synthesis technologies,supporting the global push for net-zero emissions goals,and contributing to carbon reduction efforts worldwide.
基金financially supported by the General Program of National Natural Science Foundation of China(No.52174330)Hunan Provincial Innovation Foundation for Postgraduate(No.QL20220069)Postgraduate Innovative Project of Central South University(No.1053320214756).
文摘The utilization of ironsand for preparing oxidized pellets poses challenges,including slow oxidation and low consolidation strength.The effects and function mechanisms of high-pressure grinding roll(HPGR)pretreatment on the oxidation and consolidation of ironsand pellets were investigated,and the energy utilization efficiency of HPGR with different roller pressure intensities was evaluated.The results indicate that HPGR pretreatment at 8 MPa improves the ironsand properties,with the specific surface area increasing by 740 cm^(2) g^(-1) and mechanical energy storage increasing by 2.5 kJ mol^(-1),which is conducive to oxidation and crystalline connection of particles.As roller pressure intensity increases to 16 MPa,more mechanical energy of HPGR is applied for crystal activation,with mechanical energy storage further rising by 18.1 kJ mol^(-1).The apparent activation energy for pellet oxidation initially decreases and then increases,reaching a minimum at 12 MPa.Simultaneously,the roasted pellets porosity decreases by 2.8%,while the compressive strength increases by 789 N.At higher roller pressure intensity,the densely connected structure between particles impedes gas diffusion within the pellets,diminishing the beneficial effects of HPGR on pellet oxidation.Moreover,excessive roller pressure intensity decreases the HPGR energy utilization efficiency.The optimal HPGR roller pressure intensity for ironsand is 12 MPa,at which the specific surface area increases by 790 cm^(2) g^(-1),mechanical energy storage increases by 10.6 kJ mol^(-1),the compressive strength of roasted pellets rises to 2816 N,and the appropriate preheating and roasting temperatures decrease by 250 and 125°C,respectively.
基金the financial support from the National Natural Science Foundation of China(Nos.52273187 and 51973107)the Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme 2019(No.GDUPS2019)。
文摘Abundant efforts have been devoted to improving the efficiency of organic light-emitting diodes(OLEDs),however,approaches to control the device efficiency roll-off are still extremely limited,especially in nondoped blue OLEDs.In this work,three blue emitters(TAT,TAMT and TAMT-CN)with"hot exciton"properties are designed and synthesized based on[1,2,4]triazolo[1,5-a]pyridine(TP)as a regulating unit as well as anthracene-triphenylamine(An-TPA)as the chromophore.By adjusting the linkage mode and modifying the TP unit,the excited state properties,carrier transfer abilities,horizontal orientation,and device efficiency roll-off were precisely controlled.Among these materials,emitters that directly connect the fused TP unit exhibit balanced charge-transporting ability,higher photoluminescent quantum yield and improved horizontal orientation,resulting in better electroluminescence(EL)performance in non-doped blue OLEDs.As a result,non-doped blue OLEDs exhibit excellent performance with external quantum efficiencies of over 6%,brightness of over 30,000 cd/m2and EL peaks of around 476 nm.More importantly,the device based on TAMT-CN exhibits an ultra-low efficiency roll-off of 2.97%at a high brightness of10,000 cd/m2.The accessible molecular unit and feasible design strategy in this work are of great significance for designing highly efficient and ultra-low efficiency roll-off non-doped blue OLEDs.
基金the financial supports from Major Science and Technology project of China Power Engineering Consulting Group Co., Ltd. "Research on Green and digital Intelligent Technology of Sewage Treatment Plant" (No. CEEC2023-ZDYF-09)Technology Innovation Ability Improvement Project of Shandong Province, China (No. 2022TSGC1247)。
文摘Advanced oxidation processes are promising for degradation of the highly chemical stability and refractory methylisothiazolinone(MIT) bactericides in relevant industrial wastewater.In order to assemble a low cost and high performance electrochemical oxidation system for wastewater treatment,granular active carbon(GAC) was decorated by doping Ce,Sn,Sb to synthesize Sn-Sb-Ce/GAC using sol-gel method as particle electrode filled into a three-dimensional(3D) electrochemical reactor.Scanning electron microscopy(SEM),energy-dispersive spectroscopy(EDS) and X-ray diffraction(XRD) experiments revealed that the Sn-Sb-Ce/GAC particle electrode crystal particles were compact and uniform,and the surface structure was improved.The ten cyclic experiments indicated that the Sn-Sb-Ce/GAC particle electrode had high stability and low dissolution of the loaded active substance.The degradation mechanism of MIT was studied under the optimal working conditions of 3D electrode system with GAC of 5 g/L,current density of 20 mA/cm^(2),initial pH 5,electrolyte concentration of Na_(2)SO_(4)0.02 mol/L and reaction time of 120 min.The indirect electrochemical degradation of MIT was dominated by active substance pathway that active chlorine rather than free radicals(·OH) played the main role.Comparing with conventional two-dimensional(2D) electrode system,the 3D electrochemical system has larger active electrode area,higher treatment efficiency and lower energy consumption than the former.The 3D electrochemical system could remove 96.5% of MIT from the actual high-salt reverse osmosis concentrate wastewater in 30 min.It has a certain removal effect on UV_(254)in wastewater,but has a better removal effect on fluorescent substances.This study proposed a new strategy to develop transition metal and rare earth metal particle electrodes using carbon-based materials for high efficient electrocatalytic oxidation in the electrochemical treatment system.
基金financially supported by the National Natural Science Foundation of China(No.51962027,and 52262039)the Major Science and Technology Project of Inner Mongolia Autonomous Region(2021ZD0016)+3 种基金the National Key R&D Program of China(2020YFC1909105)the Fundamental Research Funds for Inner Mongolia University of Science&Technology(NO.2024QNJS071,2023QNJS052 and 2024QNJS064)the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(No.NJYT24002)the Central Guidance Fund for Local Scientific and Technological Development(2024ZY0012)。
文摘C/SiO_(x)anode with higher capacity and lower lithiation potential has been recognized as a nextgeneration alternative to graphite for high-energy-density lithium-ion batteries.However,C/SiO_(x)suffers from low initial Coulombic efficiency(ICE),which significantly hinders its practical application.Herein,we reported a straightforward iodine redox chemistry strategy to realize highly reversible Li storage behavior and remarkably enhanced ICE of high-capacity C/SiO_(x)anode toward long-life lithium-ion batteries.Specifically,I2is introduced into porous C/SiO_(x)via simple fumigation to synthesize their composite(C/SiO_(x)@I),in which I_(2)can effectively inhibit the irreversible lithiation reactions of SiO_(x)through redox reaction.Further,redox reaction intermediates of LiI_(3)and LiIO_(3)can inhibit the decomposition of electrolyte and LiPF6,thereby reducing the thickness of the solid-electrolyte interphase film.Consequently,the obtained C/SiO_(x)@I exhibits a considerable capacity of 1241 mAh g^(-1)with an improved ICE of 88.5%at 0.1 A g^(-1)and impressive cyclability,showing capacity retention of 95%after 700 cycles at5.0 A g^(-1).Besides,the C/SiO_(x)@I with a 12%addition ratio can greatly enhance the capacity of graphite from 352 to 454 mAh g^(-1),with negligible impact on its ICE.When the addition ratio is 9%,the energy density of the 18,650 cylindrical battery composed of graphite and Li[Ni_(0.8)Co_(0.1)Mn_(0.1)]O_(2)can be enhanced by approximately 25 Wh kg^(-1).This study opens a new avenue for developing high ICE in SiO_(x)-based anodes for high-energy-density lithium-ion batteries.
基金financially supported by the China Postdoctoral Science Foundation(Nos.2021TQ0300 and 2021M702946)Henan Science and Technology Department(Nos.242102231034 and 242301420040)+1 种基金the joint project from Henan Province,the China-National Natural Science Foundation(No.U2004208)the Central Plains Science and Technology Innovation Leading Talent Project(No.234200510008)
文摘Alkaline water electrolysis poses significant potential for large-sc ale indus trial hydrogen generation,but is impeded by the absence of an efficient electrocatalyst capable of operating at high current densities while maintaining with minimal overpotential.Herein,we construct a mechanically stable and highly active RuSe_(2)/MXene heterojunction electrocatalyst.A typical SC-Ti_(3)C_(2)T_(x)MXene substrate was successfully prepared by supercritical CO_(2)(SC-CO_(2))etching,combined by subsequent DMSO intercalation treatment.Further,the RuSe_(2)nanoparticles were uniformly deposited on the surface of SC-Ti_(3)C_(2)T_(x).Theoretical calculations and experimental results demonstrate that fluorine-rich MXene exhibits stable binding with the active 1T phase RuSe_(2).The as-prepared representative RuSe_(2)@SC-Ti_(3)C_(2)T_(x)-3 heterostructure showed exceptional alkaline hydrogen evolution performance,demonstrating an overpotential of 15 mV at 10 mA cm^(-2)and a Tafel slope of 21.84 mV dec^(-1),which presents excellent HER performance and stability at high-current-density conditions.Moreover,the overpotential under the current density of 500 mA cm^(-2)is merely 182 mV,and the HER efficiency remains unaffected even after 5000 cycles and 120 h of continuous testing.