In this work,a series of experiments are carried out to investigate the effect of charge/discharge rates(1,2,3 and 4 C)and state of charges(SOCs,namely 0%,50%,75%and 100%)on thermal runaway(TR)and fire behavior of lit...In this work,a series of experiments are carried out to investigate the effect of charge/discharge rates(1,2,3 and 4 C)and state of charges(SOCs,namely 0%,50%,75%and 100%)on thermal runaway(TR)and fire behavior of lithium iron phosphate(LFP)batteries.The TR process caused by overheating LFP batteries is usually divided into four stages,with high temperatures and fire risks.High-rate charge and discharge damage the internal morphology and structural stability of materials seriously.The TR behavior of battery is fully aggravated,which is further manifested by the advanced opening of the safety vent,release of gas and occurrence of TR.With the increase of charging rate,the deteriorated TR characteristics can be discerned,such as the lower TR temperature,the shorter TR time,and the more serious TR consequences.Such changes can be assigned to the decline of battery stability.In addition,the battery SOC greatly impacts safety,especially the flame temperature and the severity of consequences.As for the 100%SOC battery cycled at 4 C,there is still a high risk of thermal runaway propagation at the position 1 m far away from the battery.This work helps to realize the TR and fire features of battery in-depth,enlightening the safety protection of battery.展开更多
Based on a homemade novel dielectric barrier discharge actuator with a rotating high-voltage electrode, this study investigates the influence of electrode rotating speed on the discharge characteristics, and the mecha...Based on a homemade novel dielectric barrier discharge actuator with a rotating high-voltage electrode, this study investigates the influence of electrode rotating speed on the discharge characteristics, and the mechanisms of discharge process under rotary conditions are discussed. The results demonstrate that when the high-voltage electrode is rotating,the distribution patterns of dielectric barrier discharge and the parameters of micro-discharge channels exhibit significant changes. Under a low rotating speed, the discharge patterns present as a series of separated discharge channels, resulting in uniform charge distribution but uneven electric field distribution in the gap. As the rotating speed increases, the electric field and the discharge channels will be affected by the rotation, so the electric field is more evenly distributed in the gap, and the discharge mode changes to a quasi-uniform discharge. With increasing distance from the rotation axis, the electric field strength gradually decreases, and the electric field force experienced by the micro-discharge channels during its formation weakens. Consequently, the average size of the micro-discharge channels increases, indicating that these channels are gradually stretched. The rotation of the electrode generates a significant number of accumulated charges, impacting the number of micro-discharge channels. The number of micro-discharge channels at the center of the electrode increases with rotating speed;however, due to channel stretching, the average size of the micro-discharge channels at the edge of the electrode also increases, leading to a decrease in their overall quantity. The research results reveal the significant impact of the electrode rotation on the characteristics of discharge channels, providing a theoretical basis for further optimal design of the rotating dielectric barrier discharge in various application.展开更多
Breakage is an important step in the resource processing chain.However,the mechanical crushing methods commonly used today suffer from low energy efficiency and high dust levels.Promoting environmental protection and ...Breakage is an important step in the resource processing chain.However,the mechanical crushing methods commonly used today suffer from low energy efficiency and high dust levels.Promoting environmental protection and improving energy efficiency are crucial to advancing China’s circular economy.Mining companies are actively exploring novel and innovative technologies to significantly cut down on operating costs and minimize emissions of dust and pollutants generated during processing.Recently,high voltage pulse discharge(HVPD)technology has received widespread attention and has been reported to have good application prospects in resource processing.This paper presents an extensive review of the operational principles of HVPD and the unique characteristics it engenders,such as non-polluting,selective material fragmentation,pre-weakening,pre-concentration,and enhanced permeability of coal seams.Additionally,this review explores the potential and obstacles confronting HVPD in industrial contexts,offering fresh insights for HVPD optimization and providing guidance and prospects for industrial deployment and further development.展开更多
A macro-tidal tropical estuary with high fluvial discharge is characterized by both fragility and remarkable dynamism.This study utilizes the Salween River Delta(SRD)as a case example to examine the interplay between ...A macro-tidal tropical estuary with high fluvial discharge is characterized by both fragility and remarkable dynamism.This study utilizes the Salween River Delta(SRD)as a case example to examine the interplay between morphology and vegetation under similar tidal conditions.Our analysis of correlations and inferences revealed several significant trends in the SRD:(1)an overall expansion of land area and intertidal vegetation,with the most pronounced changes occurring in the eastern sector;(2)the predominance of river discharge influencing the southwestern and northern sectors,contrasted with the primary impact of storm surges in the eastern sector;and(3)three distinct causal relationships among estuarine morphology,vegetation,storm surges,and river discharge:a direct model where river discharge shapes estuarine morphology,a progressive model in which river discharge affects vegetation distribution,subsequently influencing estuarine morphology,and a hybrid model where storm surges directly impact vegetation and indirectly modify its distribution through changes in estuarine morphology.The stability of sediment supply and the role of intertidal vegetation are crucial for the continuous seaward advance,providing a vital foundation for the protection and development of estuarine deltas.展开更多
The influences of intense magnetic pinch effect caused by electromagnetic field with high frequency on discharge channel expansion and plasma configuration change are discussed. The change of Lorentz force exerting on...The influences of intense magnetic pinch effect caused by electromagnetic field with high frequency on discharge channel expansion and plasma configuration change are discussed. The change of Lorentz force exerting on charged particles in discharge channel is calculated under the electromagnetic field with high frequency. Through the theoretical analysis and experimental study, the forming process of discharge channel is conjectured. And it is considered that the changes of discharge channel, such as the decrease of diameter and increase of energy density, coming from the intense magnetic pinch effect in high frequency electromagnetic field, are the main reasons for a series of special phenomena on the machined surface in micro EDM.展开更多
The effects of surface treatment, particle size distribution,rare earth composition and B additive on the high rate discharge performance of hydrogen storage alloys were investigated. It is found that the activity, di...The effects of surface treatment, particle size distribution,rare earth composition and B additive on the high rate discharge performance of hydrogen storage alloys were investigated. It is found that the activity, discharge capacity and high rate dischargeability of the alloys are improved after physical and chemical modification as a result of the increase of the surface area and formation of the electrocatalysis layers, which increase both the electrochemical reaction rate on the alloy surface and H diffusion rate in the alloy bulk. It is also found that both the over-coarse and over-fine particle size increase the contact resistance of the electrode, resulting in a decrease of discharge capacity, deterioration of high rate dischargeability and lower discharge plateau. In another word, a suitable particle size distribution can enhance the alloy activity, discharge capacity and high rate dischargeability. In addition, the high rate dischargeability is enhanced by increasing La content and decreasing Ce content of the alloy composition because of enlargement of the unit cell volume and the improvement of the surface activity. Moreover, B additive resultes in the formation of the second phase, and makes the alloys easier pulverization, which greatly improves the activity, discharge capacity and high rate dischargeability.展开更多
The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characte...The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characteristics and theoretic analysis between two electrodes are also discussed based on discharge waveform. By using composite cooling liquid which has strong washing ability, the efficiency in the first stable cutting phase has reached more than 200 mm^2/min, and the roughness of the surface has reached Ra〈0.8 μm after the fourth cutting with more than 50 mm^2/min average cutting efficiency. It is pointed out that cutting situation of the wire cut electrical discharge machine with high wire traveling speed (HSWEDM) is better than the wire cut electrical discharge machine with low wire traveling speed (LSWEDM) in the condition of improving the cooling liquid washing ability. The machining indices of HSWEDM will be increased remarkably by using the composite cooling liquid.展开更多
According to theoretical analysis, a general characteristic of the ground vibration induced by high dam flood discharge is that the dominant frequency ranges over several narrow frequency bands, which is verified by o...According to theoretical analysis, a general characteristic of the ground vibration induced by high dam flood discharge is that the dominant frequency ranges over several narrow frequency bands, which is verified by observations from the Xiangjiaba Hydropower Station. Nonlinear base isolation is used to reduce the structure vibration under ground excitation and the advantage of the isolation application is that the low-frequency resonance problem does not need to be considered due to its excitation characteristics, which significantly facilitate the isolation design. In order to obtain the response probabilistic distribution of a nonlinear system, the state space split technique is modified. As only a few degrees of freedom are subjected to the random noise, the probabilistic distribution of the response without involving stochastic excitation is represented by the δ function. Then, the sampling property of the δ function is employed to reduce the dimension of the Fokker-Planck-Kolmogorov (FPK) equation and the low-dimensional FPK equation is solvable with existing methods. Numerical results indicate that the proposed approach is effective and accurate. Moreover, the response probabilistic distributions are more reasonable and scientific than the peak responses calculated by conventional time and frequency domain methods.展开更多
The physicochemical properties and creepage discharge characteristics of aged high temperature Vulca nized(HTV)silicone rubber materials were investigated by ultraviolet radiati on(UV)aging method in this study.The ex...The physicochemical properties and creepage discharge characteristics of aged high temperature Vulca nized(HTV)silicone rubber materials were investigated by ultraviolet radiati on(UV)aging method in this study.The experimental results show that as the aging time increases,the creepage discharge flashover voltage increases first and then decreases.But the aging time has little effect on the creepage discharge inception voltage.With the aging time prolonged,the discharge endurance time of HTV silicone rubber is shortened,and the creepage discharge development velocity is accelerated.In the short time of applying voltage to aging material,the magnitude of discharge in creases rapidly.According to the partial discharge characteristic parameters of creepage discharge,the whole creepage discharge process is partitioned into four stages.Compared with unaged HTV silicone rubber,the aged HTV silicone rubber has less fluctuation in performance parameters and a clear trend.The study found that UV aging not only affects the physicochemical and hydrophobic properties of the HTV silicone rubber,but also accelerates the development of creepage discharge under AC voltage.展开更多
Carbon-based electric double layer capacitors(EDLCs)hold tremendous potentials due to their high-power performance and excellent cycle stability.However,the practical use of EDLCs is limited by the low energy density ...Carbon-based electric double layer capacitors(EDLCs)hold tremendous potentials due to their high-power performance and excellent cycle stability.However,the practical use of EDLCs is limited by the low energy density in aqueous electrolyte and sluggish diffusion kinetics in organic or/and ionic liquids electrolyte.Herein,3D carbon frameworks(3DCFs)constructed by interconnected nanocages(10-20 nm)with an ultrathin wall of ca.2 nm have been fabricated,which possess high specific surface area,hierarchical porosity and good conductive network.After deoxidization,the deoxidized 3DCF(3DCFDO)exhibits a record low IR drop of 0.064 V at 100 A g^−1 and ultrafast charge/discharge rate up to 10 V s^−1.The related device can be charged up to 77.4%of its maximum capacitance in 0.65 s at 100 A g^−1 in 6 M KOH.It has been found that the 3DCF-DO has a great affinity to EMIMBF4,resulting in a high specific capacitance of 174 F g^−1 at 1 A g^−1,and a high energy density of 34 Wh kg^−1 at an ultrahigh power density of 150 kW kg^−1 at 4 V after a fast charge in 1.11 s.This work provides a facile fabrication of novel 3D carbon frameworks for supercapacitors with ultrafast charge/discharge rate and high energy-power density.展开更多
Objective In order to find early latent faults and prevent catastrophic failures, diagnosis of insulation condition by measuring technique of partial discharge(PD) in gas insulated switchgear (GIS) is applied in this ...Objective In order to find early latent faults and prevent catastrophic failures, diagnosis of insulation condition by measuring technique of partial discharge(PD) in gas insulated switchgear (GIS) is applied in this paper, which is one of the most basic ways for diagnosis of insulation condition. Methods Ultra high frequency(UHF) PD detection method by using internal sensors has been proved efficient, because it may avoid the disturbance of corona, but the sensor installation of this method will be limited by the structure and operation condition of GIS. There are some of electromagnetic (E-M) waves leak from the place of insulation spacer, therefore, the external sensors UHF measuring PD technique is applied, which isn't limited by the operation condition of GIS. Results This paper analyzes propagated electromagnetic (E-M) waves of partial discharge pulse excited by using the finite-difference time-domain (FDTD) method. The signal collected at the outer point is more complex than that of the inner point, and the signals' amplitude of outer is about half of the inner, because it propagates through spacer and insulation slot. Set up UHF PD measuring system. The typical PD in 252kV GIS bus bar was measured using PD detection UHF technique with external sensors. Finally, compare the results of UHF measuring technique using external sensors with the results of FDTD method simulation and the traditional IEC60270 method detection. Conclusion The results of experiment shows that the UHF technique can realize the diagnosis of insulation condition, the results of FDTD method simulation and the result UHF method detection can demonstrate each other, which gives references to further researches and application for UHF PD measuring technique.展开更多
The discharge characteristics of capacitively coupled argon plasmas driven by very high frequency discharge are studied.The mean electron temperature and electron density are calculated by using the Ar spectral lines ...The discharge characteristics of capacitively coupled argon plasmas driven by very high frequency discharge are studied.The mean electron temperature and electron density are calculated by using the Ar spectral lines at different values of power(20 W-70 W)and four different frequencies(13.56 MHz,40.68 MHz,94.92 MHz,and 100 MHz).The mean electron temperature decreases with the increase of power at a fixed frequency.The mean electron temperature varies non-linearly with frequency increasing at constant power.At 40.68 MHz,the mean electron temperature is the largest.The electron density increases with the increase of power at a fixed frequency.In the cases of driving frequencies of 94.92 MHz and 100 MHz,the obtained electron temperatures are almost the same,so are the electron densities.Particle-in-cell/Monte-Carlo collision(PIC/MCC)method developed within the Vsim 8.0 simulation package is used to simulate the electron density,the potential distribution,and the electron energy probability function(EEPF)under the experimental condition.The sheath width increases with the power increasing.The EEPF of 13.56 MHz and 40.68 MHz are both bi-Maxwellian with a large population of low-energy electrons.The EEPF of 94.92 MHz and 100 MHz are almost the same and both are nearly Maxwellian.展开更多
Removal of single component and binary mixtures of benzene and m-xylene using a multi-pin-mesh reactor was studied to find the decomposition characteristics, carbon balance and CO2 selectivity. The decomposition rate ...Removal of single component and binary mixtures of benzene and m-xylene using a multi-pin-mesh reactor was studied to find the decomposition characteristics, carbon balance and CO2 selectivity. The decomposition rate of benzene in mixture was approximately 16% lower than that of single component benzene. However, the decomposition rate of m-xylene in mixture was slightly higher than that of single component m-xylene. Carbon balance of the mixture decomposition process achieved a lower level than that of single component benzene/m-xylene. Increase in the specific input energy was helpful to improve CO2 selectivity in the single component decomposition process, while the specific input energy had a negligible effect on CO2 selectivity in the mixture decomposition process. By changing the oxygen content in background gas, we found that different types of radicals showed different reaction activities toward benzene and m-xylene. Benzene was more likely to react with nitrogen-containing radicals, while m-xylene was more likely to react with oxygen-containing radicals.展开更多
The mathematic models to simulate the multiaquifer well using the discharge allocation based on explicit transmissivity-weighted or the implicit transmissivity and the hydraulic gradient(TJ method),can not describe th...The mathematic models to simulate the multiaquifer well using the discharge allocation based on explicit transmissivity-weighted or the implicit transmissivity and the hydraulic gradient(TJ method),can not describe the actual well,especially with vertical flow along the wellbore.In order to improve the accuracy of the results,two improved approaches are established,by coupling the ideas of"High Kv in Wellblock"into the aforementioned methods on discharge allocation to consider the vertical flow展开更多
A certain number of charges are deposited on the surface of high-voltage solar array because of effects of space plasma,high-energy charged particles,and solar illumination,hence the surface is charged.Phenomena of el...A certain number of charges are deposited on the surface of high-voltage solar array because of effects of space plasma,high-energy charged particles,and solar illumination,hence the surface is charged.Phenomena of electrostatic discharge(ESD) occur on the surface when the deposited charges exceed a threshold amount.In this paper,the mechanism of this ESD is discussed.The ground simulation experiment of the ESD using spacecraft material under surface charging is described,and a novel ESD protecting method for high-voltage solar array,i.e.an active protecting method based on the local strong electric field array is proposed.The results show that the reversal potential gradient field between the cover surface and the substrate materials of high-voltage solar array is a triggering factor for the ESD on the array.The threshold voltage for the ESD occurring on the surface is about 500 V.The charged particles could be deflected using the electric field active protecting method,and hence the ESD on the surface is avoided even when the voltage on the conductor array increases to a certain value.These results pave the way for further developing the protecting measures for high-voltage solar arrays.展开更多
Surface-treated MmNi3.55Co0.75Mn0.4Al0.3 alloy as negative electrode material of nickel-metal hydride battery was employed to improve the high-rate dischargeability. Surface treatment was realized by dipping and stirr...Surface-treated MmNi3.55Co0.75Mn0.4Al0.3 alloy as negative electrode material of nickel-metal hydride battery was employed to improve the high-rate dischargeability. Surface treatment was realized by dipping and stirring the alloy into a HCl aqueous solution with various concentrations at room temperature. The microstructure of the alloy before and after surface treatment was analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical properties before and after surface treatment were compared, and the alloy treated in 0.025 mol/L HCl solution showed the optimal high-rate dischargeability.展开更多
A direct current glow discharge source structure operating at high pressure based on the micro-slot hollow cathode is presented in this article. A 100 μm width slot cathode was fabricated of copper, and a stable DC g...A direct current glow discharge source structure operating at high pressure based on the micro-slot hollow cathode is presented in this article. A 100 μm width slot cathode was fabricated of copper, and a stable DC glow discharge with an area of 0.5 mm^2 was produced in noble gases (He, Ne) and air over a wide pressure range (kPa - 10 kPa). The current-voltage characteristics and the near UV radiation emission of the discharge were studied.展开更多
Grafting of polystyrene (PS) onto titanium dioxide powder was investigated. The graft polymerization reaction was induced by high frequency discharge produced N2 plasma treatment of the surfaces of titanium dioxide....Grafting of polystyrene (PS) onto titanium dioxide powder was investigated. The graft polymerization reaction was induced by high frequency discharge produced N2 plasma treatment of the surfaces of titanium dioxide. IR, XPS and TGA results show that PS was grafted on the titanium dioxide powder. And the crystal structure of the titanium dioxide powder observed by XRD was unchanged after plasma treatment.展开更多
Spark discharge generated by a nanosecond positive high-voltage pulse over a water surface at atmospheric pressure in air was studied using a high speed camera system. Faint streamers form near the pin electrode and p...Spark discharge generated by a nanosecond positive high-voltage pulse over a water surface at atmospheric pressure in air was studied using a high speed camera system. Faint streamers form near the pin electrode and propagate towards the water surface. The time for the streamer propagating across the air gap was estimated to be about 50 ns to 60 ns with a propagation velocity of ~1.3 × 10^5 m/s. It was found that the water conductivity and the gap distance have no significant effect on the propagation velocity of the streamer. After the streamers touch the water surface a brilliant spark channel forms across the air gap. The maximum diameter at the middle of the spark channel is about 1 mm, and approximately contracts with a radical velocity of about 2.0× 10^3 m/s. No significant dependence of the maximum diameter and decay velocity of the spark channel on the water conductivity and the gap distance were recognized in the present work. The maximum conduction current for a gap distance of 5 mm is significantly larger than that for a gap distance of 10 mm at the same water conductivity, and shows an increasing tendency with increasing water conductivity for a fixed gap distance. Based on the maximum conduction current, the effect of water conductivity and gap distance on the electron density of the spark discharge plasma at the peak current was investigated. Within the range studied, the electron density in the spark channel is about 10^15 cm^-3 and increases with water conductivity at a fixed gap distance.展开更多
A new type of Ni/MgO catalyst was prepared using atmospheric high-frequency discharge cold plasma. The influences of conventional method, plasma method, and plasma plus calcination method on the catalytic activity wer...A new type of Ni/MgO catalyst was prepared using atmospheric high-frequency discharge cold plasma. The influences of conventional method, plasma method, and plasma plus calcination method on the catalytic activity were studied and the CO2 reforming of methane was chosen as the probe reaction. The catalysts were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray photoelectron spectroscopy, and CO2 temperature-programmed surface reaction techniques. The results suggested that the nickel-based catalyst prepared by plasma plus calcination method possessed a smaller particle size and a higher dispersion of active component, better low-temperature activity and enhanced anti-coking ability. The conversion of CO2 and CH4 was 90.70% and 89.37%, respectively, and the reaction lasted for 36 h without obvious deactivation under 101.325 kPa and 750°C with CO2/CH4 = 1/1.展开更多
基金supported by the National Key Research and Development Plan(2023YFC3009900)the National Natural Science Foundation of China(52104197,52272396,52474233)+3 种基金Hongkong Scholar Program(XJ2022022)Research Grants Council of the Hong Kong Special Administrative Region(City U11214221)Natural Science Foundation of the Jiangsu Higher Education Institutions(21KJB620001)the Open Fund of the State Key Laboratory of Fire Science(SKLFS)Program(HZ2022-KF04)。
文摘In this work,a series of experiments are carried out to investigate the effect of charge/discharge rates(1,2,3 and 4 C)and state of charges(SOCs,namely 0%,50%,75%and 100%)on thermal runaway(TR)and fire behavior of lithium iron phosphate(LFP)batteries.The TR process caused by overheating LFP batteries is usually divided into four stages,with high temperatures and fire risks.High-rate charge and discharge damage the internal morphology and structural stability of materials seriously.The TR behavior of battery is fully aggravated,which is further manifested by the advanced opening of the safety vent,release of gas and occurrence of TR.With the increase of charging rate,the deteriorated TR characteristics can be discerned,such as the lower TR temperature,the shorter TR time,and the more serious TR consequences.Such changes can be assigned to the decline of battery stability.In addition,the battery SOC greatly impacts safety,especially the flame temperature and the severity of consequences.As for the 100%SOC battery cycled at 4 C,there is still a high risk of thermal runaway propagation at the position 1 m far away from the battery.This work helps to realize the TR and fire features of battery in-depth,enlightening the safety protection of battery.
基金Project supported by the National Natural Science Foundation of China (Grant No. 52377135)。
文摘Based on a homemade novel dielectric barrier discharge actuator with a rotating high-voltage electrode, this study investigates the influence of electrode rotating speed on the discharge characteristics, and the mechanisms of discharge process under rotary conditions are discussed. The results demonstrate that when the high-voltage electrode is rotating,the distribution patterns of dielectric barrier discharge and the parameters of micro-discharge channels exhibit significant changes. Under a low rotating speed, the discharge patterns present as a series of separated discharge channels, resulting in uniform charge distribution but uneven electric field distribution in the gap. As the rotating speed increases, the electric field and the discharge channels will be affected by the rotation, so the electric field is more evenly distributed in the gap, and the discharge mode changes to a quasi-uniform discharge. With increasing distance from the rotation axis, the electric field strength gradually decreases, and the electric field force experienced by the micro-discharge channels during its formation weakens. Consequently, the average size of the micro-discharge channels increases, indicating that these channels are gradually stretched. The rotation of the electrode generates a significant number of accumulated charges, impacting the number of micro-discharge channels. The number of micro-discharge channels at the center of the electrode increases with rotating speed;however, due to channel stretching, the average size of the micro-discharge channels at the edge of the electrode also increases, leading to a decrease in their overall quantity. The research results reveal the significant impact of the electrode rotation on the characteristics of discharge channels, providing a theoretical basis for further optimal design of the rotating dielectric barrier discharge in various application.
基金Foundation item:Project(2023YFC2909000) supported by the National Key R&D Program for Young Scientists,ChinaProject(2023JH3/10200010) supported by the Excellent Youth Natural Science Foundation of Liaoning Province,China+3 种基金Project (XLYC2203167) supported by the Liaoning Revitalization Talents Program,ChinaProject(RC231175) supported by the Mid-career and Young Scientific and Technological Talents Program of Shenyang,ChinaProject(2023A03003-2) supported by the Key Special Program of Xinjiang,ChinaProject(N2301026) supported by the Fundamental Research Funds for the Central Universities,China。
文摘Breakage is an important step in the resource processing chain.However,the mechanical crushing methods commonly used today suffer from low energy efficiency and high dust levels.Promoting environmental protection and improving energy efficiency are crucial to advancing China’s circular economy.Mining companies are actively exploring novel and innovative technologies to significantly cut down on operating costs and minimize emissions of dust and pollutants generated during processing.Recently,high voltage pulse discharge(HVPD)technology has received widespread attention and has been reported to have good application prospects in resource processing.This paper presents an extensive review of the operational principles of HVPD and the unique characteristics it engenders,such as non-polluting,selective material fragmentation,pre-weakening,pre-concentration,and enhanced permeability of coal seams.Additionally,this review explores the potential and obstacles confronting HVPD in industrial contexts,offering fresh insights for HVPD optimization and providing guidance and prospects for industrial deployment and further development.
基金National Natural Science Foundation of China,No.41906148,No.42271086Rejuvenating Yunnan Talents Support Plan Young Talent Program,No.XDYC-QNRC-2023-0322。
文摘A macro-tidal tropical estuary with high fluvial discharge is characterized by both fragility and remarkable dynamism.This study utilizes the Salween River Delta(SRD)as a case example to examine the interplay between morphology and vegetation under similar tidal conditions.Our analysis of correlations and inferences revealed several significant trends in the SRD:(1)an overall expansion of land area and intertidal vegetation,with the most pronounced changes occurring in the eastern sector;(2)the predominance of river discharge influencing the southwestern and northern sectors,contrasted with the primary impact of storm surges in the eastern sector;and(3)three distinct causal relationships among estuarine morphology,vegetation,storm surges,and river discharge:a direct model where river discharge shapes estuarine morphology,a progressive model in which river discharge affects vegetation distribution,subsequently influencing estuarine morphology,and a hybrid model where storm surges directly impact vegetation and indirectly modify its distribution through changes in estuarine morphology.The stability of sediment supply and the role of intertidal vegetation are crucial for the continuous seaward advance,providing a vital foundation for the protection and development of estuarine deltas.
基金Supported by the National Natural Science Foundation of China(50635040)~~
文摘The influences of intense magnetic pinch effect caused by electromagnetic field with high frequency on discharge channel expansion and plasma configuration change are discussed. The change of Lorentz force exerting on charged particles in discharge channel is calculated under the electromagnetic field with high frequency. Through the theoretical analysis and experimental study, the forming process of discharge channel is conjectured. And it is considered that the changes of discharge channel, such as the decrease of diameter and increase of energy density, coming from the intense magnetic pinch effect in high frequency electromagnetic field, are the main reasons for a series of special phenomena on the machined surface in micro EDM.
文摘The effects of surface treatment, particle size distribution,rare earth composition and B additive on the high rate discharge performance of hydrogen storage alloys were investigated. It is found that the activity, discharge capacity and high rate dischargeability of the alloys are improved after physical and chemical modification as a result of the increase of the surface area and formation of the electrocatalysis layers, which increase both the electrochemical reaction rate on the alloy surface and H diffusion rate in the alloy bulk. It is also found that both the over-coarse and over-fine particle size increase the contact resistance of the electrode, resulting in a decrease of discharge capacity, deterioration of high rate dischargeability and lower discharge plateau. In another word, a suitable particle size distribution can enhance the alloy activity, discharge capacity and high rate dischargeability. In addition, the high rate dischargeability is enhanced by increasing La content and decreasing Ce content of the alloy composition because of enlargement of the unit cell volume and the improvement of the surface activity. Moreover, B additive resultes in the formation of the second phase, and makes the alloys easier pulverization, which greatly improves the activity, discharge capacity and high rate dischargeability.
基金Provincial Key Laboratory of Precision and Micro-Manufacturing Technology of Jiangsu,China(No.Z0601-052-02).
文摘The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characteristics and theoretic analysis between two electrodes are also discussed based on discharge waveform. By using composite cooling liquid which has strong washing ability, the efficiency in the first stable cutting phase has reached more than 200 mm^2/min, and the roughness of the surface has reached Ra〈0.8 μm after the fourth cutting with more than 50 mm^2/min average cutting efficiency. It is pointed out that cutting situation of the wire cut electrical discharge machine with high wire traveling speed (HSWEDM) is better than the wire cut electrical discharge machine with low wire traveling speed (LSWEDM) in the condition of improving the cooling liquid washing ability. The machining indices of HSWEDM will be increased remarkably by using the composite cooling liquid.
基金National Key R&D Program of China under Grant No.2016YFC0401705Science Fund for Creative Research Groups of the National Natural Science Foundation of China Grant No.51621092+3 种基金the National Natural Science Foundation of China Grant No.51579173,No.51379140,No.51309177 and No.51509180the Fund for Key Research Area Innovation Groups of China Ministry of Science and Technology Grant No.2014RA4031the Program of Introducing Talents of Discipline to Universities Grant No.B14012the Tianjin Innovation Team Foundation of Key Research Areas Grant No.2014TDA001
文摘According to theoretical analysis, a general characteristic of the ground vibration induced by high dam flood discharge is that the dominant frequency ranges over several narrow frequency bands, which is verified by observations from the Xiangjiaba Hydropower Station. Nonlinear base isolation is used to reduce the structure vibration under ground excitation and the advantage of the isolation application is that the low-frequency resonance problem does not need to be considered due to its excitation characteristics, which significantly facilitate the isolation design. In order to obtain the response probabilistic distribution of a nonlinear system, the state space split technique is modified. As only a few degrees of freedom are subjected to the random noise, the probabilistic distribution of the response without involving stochastic excitation is represented by the δ function. Then, the sampling property of the δ function is employed to reduce the dimension of the Fokker-Planck-Kolmogorov (FPK) equation and the low-dimensional FPK equation is solvable with existing methods. Numerical results indicate that the proposed approach is effective and accurate. Moreover, the response probabilistic distributions are more reasonable and scientific than the peak responses calculated by conventional time and frequency domain methods.
基金supported by the program for Major Project of the Natural Science Foundation of Qinghai Province(No.2016-ZJ-925Q)Chinese National Programs for Fundamental Research(No.2011CB209400)and(VSN 201602),(2017-K-23)
文摘The physicochemical properties and creepage discharge characteristics of aged high temperature Vulca nized(HTV)silicone rubber materials were investigated by ultraviolet radiati on(UV)aging method in this study.The experimental results show that as the aging time increases,the creepage discharge flashover voltage increases first and then decreases.But the aging time has little effect on the creepage discharge inception voltage.With the aging time prolonged,the discharge endurance time of HTV silicone rubber is shortened,and the creepage discharge development velocity is accelerated.In the short time of applying voltage to aging material,the magnitude of discharge in creases rapidly.According to the partial discharge characteristic parameters of creepage discharge,the whole creepage discharge process is partitioned into four stages.Compared with unaged HTV silicone rubber,the aged HTV silicone rubber has less fluctuation in performance parameters and a clear trend.The study found that UV aging not only affects the physicochemical and hydrophobic properties of the HTV silicone rubber,but also accelerates the development of creepage discharge under AC voltage.
基金the financial support from the National Natural Science Foundation of China(51672033,U1610255,U1703251).
文摘Carbon-based electric double layer capacitors(EDLCs)hold tremendous potentials due to their high-power performance and excellent cycle stability.However,the practical use of EDLCs is limited by the low energy density in aqueous electrolyte and sluggish diffusion kinetics in organic or/and ionic liquids electrolyte.Herein,3D carbon frameworks(3DCFs)constructed by interconnected nanocages(10-20 nm)with an ultrathin wall of ca.2 nm have been fabricated,which possess high specific surface area,hierarchical porosity and good conductive network.After deoxidization,the deoxidized 3DCF(3DCFDO)exhibits a record low IR drop of 0.064 V at 100 A g^−1 and ultrafast charge/discharge rate up to 10 V s^−1.The related device can be charged up to 77.4%of its maximum capacitance in 0.65 s at 100 A g^−1 in 6 M KOH.It has been found that the 3DCF-DO has a great affinity to EMIMBF4,resulting in a high specific capacitance of 174 F g^−1 at 1 A g^−1,and a high energy density of 34 Wh kg^−1 at an ultrahigh power density of 150 kW kg^−1 at 4 V after a fast charge in 1.11 s.This work provides a facile fabrication of novel 3D carbon frameworks for supercapacitors with ultrafast charge/discharge rate and high energy-power density.
文摘Objective In order to find early latent faults and prevent catastrophic failures, diagnosis of insulation condition by measuring technique of partial discharge(PD) in gas insulated switchgear (GIS) is applied in this paper, which is one of the most basic ways for diagnosis of insulation condition. Methods Ultra high frequency(UHF) PD detection method by using internal sensors has been proved efficient, because it may avoid the disturbance of corona, but the sensor installation of this method will be limited by the structure and operation condition of GIS. There are some of electromagnetic (E-M) waves leak from the place of insulation spacer, therefore, the external sensors UHF measuring PD technique is applied, which isn't limited by the operation condition of GIS. Results This paper analyzes propagated electromagnetic (E-M) waves of partial discharge pulse excited by using the finite-difference time-domain (FDTD) method. The signal collected at the outer point is more complex than that of the inner point, and the signals' amplitude of outer is about half of the inner, because it propagates through spacer and insulation slot. Set up UHF PD measuring system. The typical PD in 252kV GIS bus bar was measured using PD detection UHF technique with external sensors. Finally, compare the results of UHF measuring technique using external sensors with the results of FDTD method simulation and the traditional IEC60270 method detection. Conclusion The results of experiment shows that the UHF technique can realize the diagnosis of insulation condition, the results of FDTD method simulation and the result UHF method detection can demonstrate each other, which gives references to further researches and application for UHF PD measuring technique.
基金Project supported by the National Natural Science Foundation of China(Grant No.11665021)the Natural Science Foundation of Gansu Province,China(Grant No.20JR10RA078).
文摘The discharge characteristics of capacitively coupled argon plasmas driven by very high frequency discharge are studied.The mean electron temperature and electron density are calculated by using the Ar spectral lines at different values of power(20 W-70 W)and four different frequencies(13.56 MHz,40.68 MHz,94.92 MHz,and 100 MHz).The mean electron temperature decreases with the increase of power at a fixed frequency.The mean electron temperature varies non-linearly with frequency increasing at constant power.At 40.68 MHz,the mean electron temperature is the largest.The electron density increases with the increase of power at a fixed frequency.In the cases of driving frequencies of 94.92 MHz and 100 MHz,the obtained electron temperatures are almost the same,so are the electron densities.Particle-in-cell/Monte-Carlo collision(PIC/MCC)method developed within the Vsim 8.0 simulation package is used to simulate the electron density,the potential distribution,and the electron energy probability function(EEPF)under the experimental condition.The sheath width increases with the power increasing.The EEPF of 13.56 MHz and 40.68 MHz are both bi-Maxwellian with a large population of low-energy electrons.The EEPF of 94.92 MHz and 100 MHz are almost the same and both are nearly Maxwellian.
基金supported by National Natural Science Foundation of China (No.50678031)
文摘Removal of single component and binary mixtures of benzene and m-xylene using a multi-pin-mesh reactor was studied to find the decomposition characteristics, carbon balance and CO2 selectivity. The decomposition rate of benzene in mixture was approximately 16% lower than that of single component benzene. However, the decomposition rate of m-xylene in mixture was slightly higher than that of single component m-xylene. Carbon balance of the mixture decomposition process achieved a lower level than that of single component benzene/m-xylene. Increase in the specific input energy was helpful to improve CO2 selectivity in the single component decomposition process, while the specific input energy had a negligible effect on CO2 selectivity in the mixture decomposition process. By changing the oxygen content in background gas, we found that different types of radicals showed different reaction activities toward benzene and m-xylene. Benzene was more likely to react with nitrogen-containing radicals, while m-xylene was more likely to react with oxygen-containing radicals.
文摘The mathematic models to simulate the multiaquifer well using the discharge allocation based on explicit transmissivity-weighted or the implicit transmissivity and the hydraulic gradient(TJ method),can not describe the actual well,especially with vertical flow along the wellbore.In order to improve the accuracy of the results,two improved approaches are established,by coupling the ideas of"High Kv in Wellblock"into the aforementioned methods on discharge allocation to consider the vertical flow
基金Project supported by National Natural Science Foundation of China(51177173), Elec- tromagnetic Environment Effect Key Laboratory Foundation(9140C87010313 JB34004).
文摘A certain number of charges are deposited on the surface of high-voltage solar array because of effects of space plasma,high-energy charged particles,and solar illumination,hence the surface is charged.Phenomena of electrostatic discharge(ESD) occur on the surface when the deposited charges exceed a threshold amount.In this paper,the mechanism of this ESD is discussed.The ground simulation experiment of the ESD using spacecraft material under surface charging is described,and a novel ESD protecting method for high-voltage solar array,i.e.an active protecting method based on the local strong electric field array is proposed.The results show that the reversal potential gradient field between the cover surface and the substrate materials of high-voltage solar array is a triggering factor for the ESD on the array.The threshold voltage for the ESD occurring on the surface is about 500 V.The charged particles could be deflected using the electric field active protecting method,and hence the ESD on the surface is avoided even when the voltage on the conductor array increases to a certain value.These results pave the way for further developing the protecting measures for high-voltage solar arrays.
基金supported by Hi-Tech Research and Development Program (863) of China (2006AA11A159)
文摘Surface-treated MmNi3.55Co0.75Mn0.4Al0.3 alloy as negative electrode material of nickel-metal hydride battery was employed to improve the high-rate dischargeability. Surface treatment was realized by dipping and stirring the alloy into a HCl aqueous solution with various concentrations at room temperature. The microstructure of the alloy before and after surface treatment was analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical properties before and after surface treatment were compared, and the alloy treated in 0.025 mol/L HCl solution showed the optimal high-rate dischargeability.
基金National Natural Science Foundation of China (No. 50007003)
文摘A direct current glow discharge source structure operating at high pressure based on the micro-slot hollow cathode is presented in this article. A 100 μm width slot cathode was fabricated of copper, and a stable DC glow discharge with an area of 0.5 mm^2 was produced in noble gases (He, Ne) and air over a wide pressure range (kPa - 10 kPa). The current-voltage characteristics and the near UV radiation emission of the discharge were studied.
文摘Grafting of polystyrene (PS) onto titanium dioxide powder was investigated. The graft polymerization reaction was induced by high frequency discharge produced N2 plasma treatment of the surfaces of titanium dioxide. IR, XPS and TGA results show that PS was grafted on the titanium dioxide powder. And the crystal structure of the titanium dioxide powder observed by XRD was unchanged after plasma treatment.
基金supported in part by National Natural Science Foundation of China(No.11275040)the Fundamental Research Funds for the Chinese Central Universities(DUT11ZD(G)06) and (DUT13ZD(G)05)
文摘Spark discharge generated by a nanosecond positive high-voltage pulse over a water surface at atmospheric pressure in air was studied using a high speed camera system. Faint streamers form near the pin electrode and propagate towards the water surface. The time for the streamer propagating across the air gap was estimated to be about 50 ns to 60 ns with a propagation velocity of ~1.3 × 10^5 m/s. It was found that the water conductivity and the gap distance have no significant effect on the propagation velocity of the streamer. After the streamers touch the water surface a brilliant spark channel forms across the air gap. The maximum diameter at the middle of the spark channel is about 1 mm, and approximately contracts with a radical velocity of about 2.0× 10^3 m/s. No significant dependence of the maximum diameter and decay velocity of the spark channel on the water conductivity and the gap distance were recognized in the present work. The maximum conduction current for a gap distance of 5 mm is significantly larger than that for a gap distance of 10 mm at the same water conductivity, and shows an increasing tendency with increasing water conductivity for a fixed gap distance. Based on the maximum conduction current, the effect of water conductivity and gap distance on the electron density of the spark discharge plasma at the peak current was investigated. Within the range studied, the electron density in the spark channel is about 10^15 cm^-3 and increases with water conductivity at a fixed gap distance.
基金supported by the National Natural Science Foundation of China(No.11075113)the Doctoral R&D Foundation of Yibin University(2010B12)
文摘A new type of Ni/MgO catalyst was prepared using atmospheric high-frequency discharge cold plasma. The influences of conventional method, plasma method, and plasma plus calcination method on the catalytic activity were studied and the CO2 reforming of methane was chosen as the probe reaction. The catalysts were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray photoelectron spectroscopy, and CO2 temperature-programmed surface reaction techniques. The results suggested that the nickel-based catalyst prepared by plasma plus calcination method possessed a smaller particle size and a higher dispersion of active component, better low-temperature activity and enhanced anti-coking ability. The conversion of CO2 and CH4 was 90.70% and 89.37%, respectively, and the reaction lasted for 36 h without obvious deactivation under 101.325 kPa and 750°C with CO2/CH4 = 1/1.