In recent years,the research on superconductivity in one-dimensional(1D)materials has been attracting increasing attention due to its potential applications in low-dimensional nanodevices.However,the critical temperat...In recent years,the research on superconductivity in one-dimensional(1D)materials has been attracting increasing attention due to its potential applications in low-dimensional nanodevices.However,the critical temperature(T_(c))of 1D superconductors is low.In this work,we theoretically investigate the possible high T_(c) superconductivity of(5,5)carbon nanotube(CNT).The pristine(5,5)CNT is a Dirac semimetal and can be modulated into a semiconductor by full hydrogenation.Interestingly,by further hole doping,it can be regulated into a metallic state with the sp3-hybridized𝜎electrons metalized,and a giant Kohn anomaly appears in the optical phonons.The two factors together enhance the electron–phonon coupling,and lead to high-T_(c) superconductivity.When the hole doping concentration of hydrogenated-(5,5)CNT is 2.5 hole/cell,the calculated T_(c) is 82.3 K,exceeding the boiling point of liquid nitrogen.Therefore,the predicted hole-doped hydrogenated-(5,5)CNT provides a new platform for 1D high-T_(c) superconductivity and may have potential applications in 1D nanodevices.展开更多
Rechargeable Zn/Sn-air batteries have received considerable attention as promising energy storage devices.However,the electrochemical performance of these batteries is significantly constrained by the sluggish electro...Rechargeable Zn/Sn-air batteries have received considerable attention as promising energy storage devices.However,the electrochemical performance of these batteries is significantly constrained by the sluggish electrocatalytic reaction kinetics at the cathode.The integration of light energy into Zn/Sn-air batteries is a promising strategy for enhancing their performance.However,the photothermal and photoelectric effects generate heat in the battery under prolonged solar irradiation,leading to air cathode instability.This paper presents the first design and synthesis of Ni_(2)-1,5-diamino-4,8-dihydroxyanthraquinone(Ni_(2)DDA),an electronically conductiveπ-d conjugated metal-organic framework(MOF).Ni_(2)DDA exhibits both photoelectric and photothermal effects,with an optical band gap of~1.14 eV.Under illumination,Ni_(2)DDA achieves excellent oxygen evolution reaction performance(with an overpotential of 245 mV vs.reversible hydrogen electrode at 10 mA cm^(−2))and photothermal stability.These properties result from the synergy between the photoelectric and photothermal effects of Ni_(2)DDA.Upon integration into Zn/Sn-air batteries,Ni_(2)DDA ensures excellent cycling stability under light and exhibits remarkable performance in high-temperature environments up to 80℃.This study experimentally confirms the stable operation of photo-assisted Zn/Sn-air batteries under high-temperature conditions for the first time and provides novel insights into the application of electronically conductive MOFs in photoelectrocatalysis and photothermal catalysis.展开更多
CO_(2)flooding enhanced oil recovery(CO_(2)-EOR)represents a significant technology in the low permeability reservoir.With the fractures and heterogeneity in low permeability reservoirs,CO_(2)-EOR is susceptible to pe...CO_(2)flooding enhanced oil recovery(CO_(2)-EOR)represents a significant technology in the low permeability reservoir.With the fractures and heterogeneity in low permeability reservoirs,CO_(2)-EOR is susceptible to pessimistic gas channeling.Consequently,there is a need to develop conformance control materials that can be used in CO_(2)-EOR.Herein,to address the challenges of low strength and poor stability of polymer gel in high temperature and low permeability reservoirs,a new organic/metal ion composite crosslinking polymer gel(AR-Gel)is reported,which is formed by low hydrolysis and medium to high molecular weight polymer(CX-305),organic crosslinking agent(phenolic resin),and aluminium citrate(AI(Ⅲ)).The crosslinking of AI(Ⅲ)with carboxyl group and organic/metal ion double crosslinking can construct a more complex and stable polymer gel structure on the basis of traditional chemical crosslinking,to cope with the harsh conditions such as high temperature.The structure-activity relationship of AR-Gel was revealed by rheology behavior and micro-morphology.The applicability of AR-Gel in reservoir was investigated,as was its strength and stability in supercritical CO_(2).The anti-gas channeling and enhanced oil recovery of AR-Gel were investigated using low permeability fractured cores,and the field process parameters were provided.The gel can be used to meet supercritical CO_(2)reservoirs at 110℃and 20,000 mg/L salinity,with long-term stability over 60 days.The plugging rate of AR-Gel for fractured co re was 97%,with subsequent CO_(2)flooding re sulting in an enhanced oil recovery by 34.5%.ARGel can effectively control CO_(2)gas channeling and enhanced oil recovery.It offers a new material with high strength and temperature resistance,which is particularly beneficial in the CO_(2)flooding for the conformance control of oil field.展开更多
The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle o...The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle on the fracture surface roughness plays an important role in estimating the damage degree and stability of deep rock mass.In this paper,the variations of fracture surface roughness of granite after different heating and thermal cycles were investigated using the joint roughness coefficient method(JRC),three-dimensional(3D)roughness parameters,and fractal dimension(D),and the mechanism of damage and deterioration of granite were revealed.The experimental results show an increase in the roughness of the granite fracture surface as temperature and cycle number were incremented.The variations of JRC,height parameter,inclination parameter and area parameter with the temperature conformed to the Boltzmann's functional distribution,while the D decreased linearly as the temperature increased.Besides,the anisotropy index(Ip)of the granite fracture surface increased as the temperature increased,and the larger parameter values of roughness characterization at different temperatures were attained mainly in directions of 20°–40°,60°–100°and 140°–160°.The fracture aperture of granite after fracture followed the Gauss distribution and the average aperture increased with increasing temperature,which increased from 0.665 mm at 25℃to 1.058 mm at 800℃.High temperature caused an uneven thermal expansion,water evaporation,and oxidation of minerals within the granite,which promoted the growth and expansion of microfractures,and reduced interparticle bonding strength.In particular,the damage was exacerbated by the expansion and cracking of the quartz phase transition after T>500℃.Thermal cycles contributed to the accumulation of this damage and further weakened the interparticle bonding forces,resulting in a significant increase in the roughness,anisotropy,and aperture of the fracture surface after five cycles.展开更多
Polymer dielectrics possessing excellent electrical insulation and high thermal conductivity are pivotal for dielectric capacitors at elevated temperatures.However,the integration of electrical insulation and thermal ...Polymer dielectrics possessing excellent electrical insulation and high thermal conductivity are pivotal for dielectric capacitors at elevated temperatures.However,the integration of electrical insulation and thermal conductivity in polymers remains a challenge.In this work,we present a feasible strategy to integrate high electrical insulation and high thermal conductivity by bonding carbon quantum dots(CQDs)with the diamine monomer of polyetherimide(PEI).The CQDs with Coulomb blockade effect serve as traps for the migrating of electrons in the dielectrics,while the bonding networks formed by CQDs and PEI further deepen the traps and augment trap density.As a result,the hybrid dielectrics(PEI-NH_(2)-CQDs)exhibit nearly an order of magnitude higher electrical resistivity than that of pure PEI,leading to an 80%increase in discharge energy density with an energy efficiency of 90%at 200℃ compared to pure counterpart.Additionally,this all-organic dielectric achieves a significantly increased thermal conductivity of 0.65 W m^(-1) K^(-1) compared to 0.26 W m^(-1) K^(-1) of PEI,which supports its cyclic stability at elevated temperatures.We also demonstrate the kilogram-scale production of CQDs,synthesizing over 8 kg in a single batch,paving the way for large-scale production of reliable PEI-NH_(2)-CQDs dielectrics.展开更多
The deterioration of aqueous zinc-ion batteries(AZIBs)is confronted with challenges such as unregulated Zn^(2+)diffusion,dendrite growth and severe decay in battery performance under harsh environments.Here,a design c...The deterioration of aqueous zinc-ion batteries(AZIBs)is confronted with challenges such as unregulated Zn^(2+)diffusion,dendrite growth and severe decay in battery performance under harsh environments.Here,a design concept of eutectic electrolyte is presented by mixing long chain polymer molecules,polyethylene glycol dimethyl ether(PEGDME),with H_(2)O based on zinc trifluoromethyl sulfonate(Zn(OTf)2),to reconstruct the Zn^(2+)solvated structure and in situ modified the adsorption layer on Zn electrode surface.Molecular dynamics simulations(MD),density functional theory(DFT)calculations were combined with experiment to prove that the long-chain polymer-PEGDME could effectively reduce side reactions,change the solvation structure of the electrolyte and priority absorbed on Zn(002),achieving a stable dendrite-free Zn anode.Due to the comprehensive regulation of solvation structure and zinc deposition by PEGDME,it can stably cycle for over 3200 h at room temperature at 0.5 mA/cm^(2)and 0.5 mAh/cm^(2).Even at high-temperature environments of 60℃,it can steadily work for more than 800 cycles(1600 h).Improved cyclic stability and rate performance of aqueous Zn‖VO_(2)batteries in modified electrolyte were also achieved at both room and high temperatures.Beyond that,the demonstration of stable and high-capacity Zn‖VO_(2)pouch cells also implies its practical application.展开更多
Gallium nitride(GaN)single crystal with prominent electron mobility and heat resistance have great potential in the high temperature integrate electric power systems.However,the sluggish charge storage kinetics and in...Gallium nitride(GaN)single crystal with prominent electron mobility and heat resistance have great potential in the high temperature integrate electric power systems.However,the sluggish charge storage kinetics and inadequate energy densities are bottlenecks to its practical application.Herein,the self-supported GaN/Mn_(3)O_(4) integrated electrode is developed for both energy harvesting and storage under the high temperature environment.The experimental and theoretical calculations results reveal that such integrated structures with Mn-N heterointerface bring abundant active sites and reconstruct low-energy barrier channels for efficient charge transferring,reasonably optimizing the ions adsorption ability and strengthening the structural stability.Consequently,the assembled GaN based supercapacitors deliver the power density of 34.0 mW cm^(-2) with capacitance retention of 81.3%after 10000 cycles at 130℃.This work innovatively correlates the centimeter scale GaN single crystal with ideal theoretical capacity Mn_(3)O_(4) and provides an effective avenue for the follow-up energy storage applications of the wide bandgap semiconductor.展开更多
Oil shale is characterized by a dense structure,low proportion of pores and fissures,and low permeability.Pore-fracture systems serve as crucial channels for shale oil migration,directly influencing the production eff...Oil shale is characterized by a dense structure,low proportion of pores and fissures,and low permeability.Pore-fracture systems serve as crucial channels for shale oil migration,directly influencing the production efficiency of shale oil resources.Effectively stimulating oil shale reservoirs remains a challenging and active research topic.This investigation employed shale specimens obtained from the Longmaxi Formation.Scanning electron microscopy,fluid injection experiments,and fluid-structure interaction simulations were used to comprehensively analyze structural changes and fluid flow behavior under high temperatures from microscopic to macroscopic scales.Experimental results indicate that the temperature has little effect on the structure and permeability of shale before 300℃.However,there are two threshold temperatures within the range of 300 to 600℃that have significant effects on the structure and permeability of oil shale.The first threshold temperature is between 300 and 400℃,which causes the oil shale porosity,pore-fracture ratio,and permeability begin to increase.This is manifested by the decrease in micropores and mesopores,the increase in macropores,and the formation of a large number of isolated pores and fissures within the shale.The permeability increases but not significantly.The second threshold temperature is between 500 and 600℃,which increases the permeability of oil shale significantly.During this stage,micropores and mesopores are further reduced,and macropores are significantly enlarged.A large number of connected and penetrated pores and fissures are formed.More numerous and thicker streamlines appear inside the oil shale.The experimental results demonstrate that high temperatures significantly alter the microstructure and permeability of oil shale.At the same time,the experimental results can provide a reference for the research of in-situ heating techniques in oil shale reservoir transformation.展开更多
The active development of space industry necessitates the cre-ation of novel materials with unique properties,including shape memory alloys(SMAs).The development of ultra-high temperature SMAs(UHTSMAs)with operating t...The active development of space industry necessitates the cre-ation of novel materials with unique properties,including shape memory alloys(SMAs).The development of ultra-high temperature SMAs(UHTSMAs)with operating temperatures above 400℃is a significant challenge[1-3].It is known that reversible thermoelas-tic martensitic transformation(MT)is the basis for shape mem-ory behavior[4].Currently,there are several systems in which MT temperatures meet the above requirements,for example,RuNb[5],HfPd[6],TiPd[7].展开更多
Low-to medium-maturity oil shale resources display substantial reserves, offering promising prospects for in-situ conversion inChina. Investigating the evolution of the mechanical properties of the reservoir and capro...Low-to medium-maturity oil shale resources display substantial reserves, offering promising prospects for in-situ conversion inChina. Investigating the evolution of the mechanical properties of the reservoir and caprock under in-situ high-temperature and confine-ment conditions is of considerable importance. Compared to conventional mechanical experiments on rock samples after high-temperat-ure treatment, in-situ high-temperature experiments can more accurately characterize the behavior of rocks in practical engineering,thereby providing a more realistic reflection of their mechanical properties. In this study, an in-situ high-temperature triaxial compressiontesting machine is developed to conduct in-situ compression tests on sandstone at different temperatures(25, 200, 400, 500, and 650℃)and confining pressures(0, 10, and 20 MPa). Based on the experimental results, the temperature-dependent changes in compressivestrength, peak strain, elastic modulus, Poisson's ratio, cohesion, and internal friction angle are thoroughly analyzed and discussed. Resultsindicate that the mass of sandstone gradually decreases as the temperature increases. The thermal conductivity and thermal diffusivity ofsandstone exhibit a linear relationship with temperature. Peak stress decreases as the temperature rises, while it increases with higher con-fining pressures. Notably, the influence of confining pressure on peak stress diminishes at higher temperatures. Additionally, as the tem-perature rises, the Poisson's ratio of sandstone decreases. The internal friction angle also decreases with increasing temperature, with 400℃ acting as the threshold temperature. Interestingly, under uniaxial conditions, the damage stress of sandstone is less affected by tem-perature. However, when the confining pressure is 10 or 20 MPa, the damage stress decreases as the temperature increases. This study en-hances our understanding of the influence of in-situ high-temperature and confinement conditions on the mechanical properties of sand-stone strata. The study also provides valuable references and experimental data that support the development of low-to medium-maturityoil shale resources.展开更多
This work investigated the anisotropy tensile properties of Inconel 625 alloy fabricated by laser powder bed fusion (LPBF) under various tests temperature, focusing the anisotropy evolution during the high temperature...This work investigated the anisotropy tensile properties of Inconel 625 alloy fabricated by laser powder bed fusion (LPBF) under various tests temperature, focusing the anisotropy evolution during the high temperature. The microstructure contained columnar grains with (111) texture in the vertical plane (90° sample), while a large equiaxed grain with (100) texture was produced in the horizontal plane (0° sample). As for 45° sample, a large number of equiaxed grains and a few columnar grains with (111) texture can be observed. The sample produced at a 0° orientation demonstrates the highest tensile strength, whereas the 90° sample exhibits the greatest elongation. Conversely, the 45° sample displays the least favorable overall performance. As the tests temperature increased from room temperature to 600℃, the anisotropy rate of ultimate tensile strength, yield strength and ductility between 0° and 45° samples, decreased from 8.98 to 6.96%, 2.36 to 1.28%, 19.93 to 12.23%, as well as between 0° and 90° samples decreased from 4.87 to 4.03%, 11.88 to 7.21% and 14.11 to 6.89%, respectively, because of the recovery of oriented columnar grains.展开更多
To evaluate the tensile behavior of metal foils by resistance heating(RH)assisted tensile testing system accurately,this study proposed to embed a digital image correlation(DIC)system with laser speckles for the measu...To evaluate the tensile behavior of metal foils by resistance heating(RH)assisted tensile testing system accurately,this study proposed to embed a digital image correlation(DIC)system with laser speckles for the measurement of full-field strain distribution.Furthermore,the sample structures were optimized to achieve uniform temperature and strain distribution.An infrared camera was used to monitor the temperature distribution.Rectangular samples instead of dog-bone shaped samples were proposed.A model for calculating the temperature distribution was established to optimize the sample structure.The parameters that influence the temperature distribution and tensile behavior were studied.As results,compared to the strain measured by a non-contact extensometer,the maximum deviation of the strain measured by DIC was less than 6%when the nominal strain was larger than 0.013.It is confirmed that the proposed tensile testing system is reliable for measuring the temperature and full-field strain distributions.Sample shape influenced temperature distributions of smaller samples while it almost had no influence on the temperature distributions of larger samples.The temperature difference was not affected by the material type but by the sample size.The proposed rectangular shape was validated to be feasible for RH assisted tensile testing.The sample length was successfully optimized for a more uniform temperature distribution by the established model.Although the tensile deformation was not influenced by the sample shape,the temperature distribution resulted in a non-uniform strain distribution before achieving ultimate tensile strength.Longer effective sample length between two clamping jigs contributed to a more uniform temperature distribution and material deformation.A more accurate evaluation of high-temperature tensile behavior for metal foils can be achieved by the proposed RH assisted tensile testing system using rectangular samples with an optimized structure.展开更多
Nb-doped TiAl alloys exhibit excellent mechanical properties at high temperatures,and the underlying mechanism and optimal doping amount remain elusive.Molecular dynamics simulation is helpful to clarify these problem...Nb-doped TiAl alloys exhibit excellent mechanical properties at high temperatures,and the underlying mechanism and optimal doping amount remain elusive.Molecular dynamics simulation is helpful to clarify these problems,but most of the existing interatomic potentials are limited to the Ti-Al binary system and lack interatomic potentials for doped alloys.Here,an intera-tomic potential of Nb-Al-Ti ternary systems based on the modified embedded-atom method was developed.The ternary potential can accurately predict the structure and thermodynamic properties of the Nb-Al-Ti system.The potential shows that the optimal Nb content for high-temperature strength-ductility synergy of TiAl single crystals is 8%,consistent with the amount of miracle synthesis of TiAl single crystals.Tensile simulations further show that the developed potential can make an effective prediction at high temperatures,indicating the potential for the development and applications of high-temperature Nb-Al-Ti ternary systems.展开更多
The high temperature chemical reaction process of La2O3 in H3BO3-C system was studied by means of XRD and TG-DTA.The results showed that dehydration reaction of H3BO3 occurred in the temperature range of 82~390 ℃;La...The high temperature chemical reaction process of La2O3 in H3BO3-C system was studied by means of XRD and TG-DTA.The results showed that dehydration reaction of H3BO3 occurred in the temperature range of 82~390 ℃;La2O3 and B2O3 reacted to form LaB3O6,LaBO3,and B4C in the temperature range of 836~1400℃;at 1450 ℃,B4C and LaBO3 further reacted to form LaB4,and partial LaB4 and B reacted to form LaB6;at 1500 ℃,LaB4 and B reacting into LaB6 was the main reaction,and the content of LaB6 increased with prolonging time.展开更多
Ca2+ and calmodulin antagonist [trifluoperazine(TFP),N-(6-aminohexyl-chloro-1-naphthalenesulfonamide (W7)] pretreatments were conducted on two eggplant varieties Nongyouqie andErmingqie, which have different heat resi...Ca2+ and calmodulin antagonist [trifluoperazine(TFP),N-(6-aminohexyl-chloro-1-naphthalenesulfonamide (W7)] pretreatments were conducted on two eggplant varieties Nongyouqie andErmingqie, which have different heat resistance. The results showed that under 40C(day/night), Ca2+ immersion pretreatment enabled the eggplant seedlings to keep relatively higheractivities of superoxide dismutase(SOD) and peroxidase(POD), reduced the production rate ofsuperoxide anion O2_ and the content of malondialdehyde(MDA), alleviated the damage of reducedglutathione(GSH) and the accumulation of proline (Pro), whereas calmodulin antagonist TFP andW7 immersion pretreatments could lead to more rapid loss of SOD and POD activities, increasethe contents of MDA, Pro and production rate of O2_, aggravate the damage of GSH. Under the samestress condition, heat-resistant variety Nongyouqie was less injured compared to the heat-sensitive variety Erminqie. These data indicated that Ca2+-CaM signal transduction systemmight regulate the heat resistance of eggplant seedlings by controlling the activity of someantioxidant enzymes and the contents of antioxidant substance.展开更多
This paper reports the crystal growth of diamond from the Fe Ni–Carbon system with additive phosphorus at high pressures and high temperatures of 5.4–5.8 GPa and 1280–1360°C. Attributed to the presence of addi...This paper reports the crystal growth of diamond from the Fe Ni–Carbon system with additive phosphorus at high pressures and high temperatures of 5.4–5.8 GPa and 1280–1360°C. Attributed to the presence of additive phosphorus,the pressure and temperature condition, morphology, and color of diamond crystals change obviously. The pressure and temperature condition of diamond growth increases evidently with the increase of additive phosphorus content and results in the moving up of the V-shape region. The surfaces of the diamonds also become coarse as the additive phosphorus added in the growth system. Raman spectra indicate that diamonds grown from the Fe Ni-phosphorus-carbon system have more crystal defects and impurities. This work provides a new way to enrich the doping of diamond and improve the experimental exploration for future material applications.展开更多
The high-temperature mechanical properties of Ta-8W-2Hf alloy doped with Re(1wt%)and C(0.01wt%)were investigated at room temperature,1300℃,and 1500℃.Results show that fine and dispersed precipitates Ta2C are detecte...The high-temperature mechanical properties of Ta-8W-2Hf alloy doped with Re(1wt%)and C(0.01wt%)were investigated at room temperature,1300℃,and 1500℃.Results show that fine and dispersed precipitates Ta2C are detected in crystallized TaWHfReC alloy,which significantly enhance mechanical properties of the alloy.The strength of TaWHfReC alloy is much higher than that of TaWHf alloy,especially at 1300 and 1500℃.At 1300℃,the ultimate tensile strength of the TaWHf alloy is 322 MPa,while that of the TaWHfReC alloy reaches 392 MPa.When the temperature rises to 1500℃,precipitated-phase strengthening remains effective in the TaWHfReC alloy,achieving an ultimate tensile strength of 268 MPa.Additionally,at 1300℃,the elongation of the TaWHfReC alloy reaches 23.5%,which is nearly twice of that of the TaWHf alloy.The significant improvement in the mechanical properties of the TaWHfReC alloy at elevated temperatures is primarily attributed to the interaction between dislocations and the fine Ta2C precipitated phase.The fine and uniformly distributed particles effectively inhibit dislocation motion and exhibit a pronounced strengthening effect at high temperatures.展开更多
Electrocatalytic reduction of carbon dioxide(CO_(2))to carbon monoxide(CO)is an effective strategy to achieve carbon neutrality.High selective and low-cost catalysts for the electrocatalytic reduction of CO_(2)have re...Electrocatalytic reduction of carbon dioxide(CO_(2))to carbon monoxide(CO)is an effective strategy to achieve carbon neutrality.High selective and low-cost catalysts for the electrocatalytic reduction of CO_(2)have received increasing attention.In contrast to the conventional tube furnace method,the high-temperature shock(HTS)method enables ultra-fast thermal processing,superior atomic efficiency,and a streamlined synthesis protocol,offering a simplified method for the preparation of high-performance single-atom catalysts(SACs).The reports have shown that nickel-based SACs can be synthesized quickly and conveniently using the HTS method,making their application in CO_(2)reduction reactions(CO_(2)RR)a viable and promising avenue for further exploration.In this study,the effect of heating temperature,metal loading and different nitrogen(N)sources on the catalyst morphology,coordination environment and electrocatalytic performance were investigated.Under optimal conditions,0.05Ni-DCD-C-1050 showed excellent performance in reducing CO_(2)to CO,with CO selectivity close to 100%(−0.7 to−1.0 V vs RHE)and current density as high as 130 mA/cm^(2)(−1.1 V vs RHE)in a flow cell under alkaline environment.展开更多
High-temperature performance of energy storage dielectric polymers is desired for many electronics and electrical applications,but the trade-off between energy density and temperature stability remains fundamentally c...High-temperature performance of energy storage dielectric polymers is desired for many electronics and electrical applications,but the trade-off between energy density and temperature stability remains fundamentally challenging.Here,we report a general material design strategy to enhance energy storage performance at high temperatures by crosslinking a polar polymer and a high glass-transition temperature polymer as a crosslinked binary blend.Such crosslinked binary polymers display a temperature-insensitive and high energy density behavior of about6.2~8.5 J cm^(-3) up to 110℃,showing a significant enhancement in thermal resistant properties and consequently outperforming most of the other ferroelectric polymers.Further microstructural investigations reveal that the improved thermal stability stems from the confinement effect on conformational motion of the crosslinking network,which is evidenced by the increased rigid amorphous fraction and steady intermolecular distance of amorphous regions from temperature-dependent X-ray diffraction results.Our findings provide a general and straightforward strategy to attain temperature-stable,high-energy-density polymer-based dielectrics for energy storage capacitors.展开更多
The discovery of new superconducting materials,particularly those exhibiting high critical temperature(Tc),has been a vibrant area of study within the field of condensed matter physics.Conventional approaches primaril...The discovery of new superconducting materials,particularly those exhibiting high critical temperature(Tc),has been a vibrant area of study within the field of condensed matter physics.Conventional approaches primarily rely on physical intuition to search for potential superconductors within the existing databases.However,the known materials only scratch the surface of the extensive array of possibilities within the realm of materials.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.12074213 and 11574108)the Major Basic Program of Natural Science Foundation of Shandong Province (Grant No.ZR2021ZD01)the Natural Science Foundation of Shandong Province (Grant No.ZR2023MA082)。
文摘In recent years,the research on superconductivity in one-dimensional(1D)materials has been attracting increasing attention due to its potential applications in low-dimensional nanodevices.However,the critical temperature(T_(c))of 1D superconductors is low.In this work,we theoretically investigate the possible high T_(c) superconductivity of(5,5)carbon nanotube(CNT).The pristine(5,5)CNT is a Dirac semimetal and can be modulated into a semiconductor by full hydrogenation.Interestingly,by further hole doping,it can be regulated into a metallic state with the sp3-hybridized𝜎electrons metalized,and a giant Kohn anomaly appears in the optical phonons.The two factors together enhance the electron–phonon coupling,and lead to high-T_(c) superconductivity.When the hole doping concentration of hydrogenated-(5,5)CNT is 2.5 hole/cell,the calculated T_(c) is 82.3 K,exceeding the boiling point of liquid nitrogen.Therefore,the predicted hole-doped hydrogenated-(5,5)CNT provides a new platform for 1D high-T_(c) superconductivity and may have potential applications in 1D nanodevices.
基金supported by the National Natural Science Foundation of China(No.62464010)Spring City Plan-Special Program for Young Talents(K202005007)+2 种基金Yunnan Talents Support Plan for Young Talents(XDYC-QNRC-2022-0482)Yunnan Local Colleges Applied Basic Research Projects(202101BA070001-138)Frontier Research Team of Kunming University 2023.
文摘Rechargeable Zn/Sn-air batteries have received considerable attention as promising energy storage devices.However,the electrochemical performance of these batteries is significantly constrained by the sluggish electrocatalytic reaction kinetics at the cathode.The integration of light energy into Zn/Sn-air batteries is a promising strategy for enhancing their performance.However,the photothermal and photoelectric effects generate heat in the battery under prolonged solar irradiation,leading to air cathode instability.This paper presents the first design and synthesis of Ni_(2)-1,5-diamino-4,8-dihydroxyanthraquinone(Ni_(2)DDA),an electronically conductiveπ-d conjugated metal-organic framework(MOF).Ni_(2)DDA exhibits both photoelectric and photothermal effects,with an optical band gap of~1.14 eV.Under illumination,Ni_(2)DDA achieves excellent oxygen evolution reaction performance(with an overpotential of 245 mV vs.reversible hydrogen electrode at 10 mA cm^(−2))and photothermal stability.These properties result from the synergy between the photoelectric and photothermal effects of Ni_(2)DDA.Upon integration into Zn/Sn-air batteries,Ni_(2)DDA ensures excellent cycling stability under light and exhibits remarkable performance in high-temperature environments up to 80℃.This study experimentally confirms the stable operation of photo-assisted Zn/Sn-air batteries under high-temperature conditions for the first time and provides novel insights into the application of electronically conductive MOFs in photoelectrocatalysis and photothermal catalysis.
基金project was supported by the Fund of State Key Laboratory of Deep Oil and Gas,China University of Petroleum(East China)(No.SKLDOG2024-ZYRC-06)Key Program of National Natural Science Foundation of China(52130401)+1 种基金National Natural Science Foundation of China(52104055,52374058)Shandong Provincial Natural Science Foundation,China(ZR2021ME171,ZR2024YQ043)。
文摘CO_(2)flooding enhanced oil recovery(CO_(2)-EOR)represents a significant technology in the low permeability reservoir.With the fractures and heterogeneity in low permeability reservoirs,CO_(2)-EOR is susceptible to pessimistic gas channeling.Consequently,there is a need to develop conformance control materials that can be used in CO_(2)-EOR.Herein,to address the challenges of low strength and poor stability of polymer gel in high temperature and low permeability reservoirs,a new organic/metal ion composite crosslinking polymer gel(AR-Gel)is reported,which is formed by low hydrolysis and medium to high molecular weight polymer(CX-305),organic crosslinking agent(phenolic resin),and aluminium citrate(AI(Ⅲ)).The crosslinking of AI(Ⅲ)with carboxyl group and organic/metal ion double crosslinking can construct a more complex and stable polymer gel structure on the basis of traditional chemical crosslinking,to cope with the harsh conditions such as high temperature.The structure-activity relationship of AR-Gel was revealed by rheology behavior and micro-morphology.The applicability of AR-Gel in reservoir was investigated,as was its strength and stability in supercritical CO_(2).The anti-gas channeling and enhanced oil recovery of AR-Gel were investigated using low permeability fractured cores,and the field process parameters were provided.The gel can be used to meet supercritical CO_(2)reservoirs at 110℃and 20,000 mg/L salinity,with long-term stability over 60 days.The plugging rate of AR-Gel for fractured co re was 97%,with subsequent CO_(2)flooding re sulting in an enhanced oil recovery by 34.5%.ARGel can effectively control CO_(2)gas channeling and enhanced oil recovery.It offers a new material with high strength and temperature resistance,which is particularly beneficial in the CO_(2)flooding for the conformance control of oil field.
基金funding support from the National Natural Science Foundation of China(Grant No.52274082)the Program of Qingjiang Excellent Young Talents,Jiangxi University of Science and Technology(Grant No.JXUSTQJBJ2020003)the Innovation Fund Designated for Graduate Students of Jiangxi Province(Grant No.YC2023-B215).
文摘The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle on the fracture surface roughness plays an important role in estimating the damage degree and stability of deep rock mass.In this paper,the variations of fracture surface roughness of granite after different heating and thermal cycles were investigated using the joint roughness coefficient method(JRC),three-dimensional(3D)roughness parameters,and fractal dimension(D),and the mechanism of damage and deterioration of granite were revealed.The experimental results show an increase in the roughness of the granite fracture surface as temperature and cycle number were incremented.The variations of JRC,height parameter,inclination parameter and area parameter with the temperature conformed to the Boltzmann's functional distribution,while the D decreased linearly as the temperature increased.Besides,the anisotropy index(Ip)of the granite fracture surface increased as the temperature increased,and the larger parameter values of roughness characterization at different temperatures were attained mainly in directions of 20°–40°,60°–100°and 140°–160°.The fracture aperture of granite after fracture followed the Gauss distribution and the average aperture increased with increasing temperature,which increased from 0.665 mm at 25℃to 1.058 mm at 800℃.High temperature caused an uneven thermal expansion,water evaporation,and oxidation of minerals within the granite,which promoted the growth and expansion of microfractures,and reduced interparticle bonding strength.In particular,the damage was exacerbated by the expansion and cracking of the quartz phase transition after T>500℃.Thermal cycles contributed to the accumulation of this damage and further weakened the interparticle bonding forces,resulting in a significant increase in the roughness,anisotropy,and aperture of the fracture surface after five cycles.
基金supported by the National Natural Science Foundation of China(52172265)Excellent Youth Science Foundation of Hunan Province(2022JJ20067)+1 种基金The Science and Technology Innovation Program of Hunan Province(2022RC1074)Central South University Innovation-Driven Research Program(2023CXQD010).
文摘Polymer dielectrics possessing excellent electrical insulation and high thermal conductivity are pivotal for dielectric capacitors at elevated temperatures.However,the integration of electrical insulation and thermal conductivity in polymers remains a challenge.In this work,we present a feasible strategy to integrate high electrical insulation and high thermal conductivity by bonding carbon quantum dots(CQDs)with the diamine monomer of polyetherimide(PEI).The CQDs with Coulomb blockade effect serve as traps for the migrating of electrons in the dielectrics,while the bonding networks formed by CQDs and PEI further deepen the traps and augment trap density.As a result,the hybrid dielectrics(PEI-NH_(2)-CQDs)exhibit nearly an order of magnitude higher electrical resistivity than that of pure PEI,leading to an 80%increase in discharge energy density with an energy efficiency of 90%at 200℃ compared to pure counterpart.Additionally,this all-organic dielectric achieves a significantly increased thermal conductivity of 0.65 W m^(-1) K^(-1) compared to 0.26 W m^(-1) K^(-1) of PEI,which supports its cyclic stability at elevated temperatures.We also demonstrate the kilogram-scale production of CQDs,synthesizing over 8 kg in a single batch,paving the way for large-scale production of reliable PEI-NH_(2)-CQDs dielectrics.
基金supported by the National Natural Science Foundation of China(Nos.22208221,22178221)the Natural Science Foundation of Guangdong Province(Nos.2024A1515011078,2024A1515011507)+1 种基金the Shenzhen Science and Technology Program(Nos.JCYJ20220818095805012,JCYJ20230808105109019)the Start-up Research Funding of Shenzhen University(No.868-000001032522).
文摘The deterioration of aqueous zinc-ion batteries(AZIBs)is confronted with challenges such as unregulated Zn^(2+)diffusion,dendrite growth and severe decay in battery performance under harsh environments.Here,a design concept of eutectic electrolyte is presented by mixing long chain polymer molecules,polyethylene glycol dimethyl ether(PEGDME),with H_(2)O based on zinc trifluoromethyl sulfonate(Zn(OTf)2),to reconstruct the Zn^(2+)solvated structure and in situ modified the adsorption layer on Zn electrode surface.Molecular dynamics simulations(MD),density functional theory(DFT)calculations were combined with experiment to prove that the long-chain polymer-PEGDME could effectively reduce side reactions,change the solvation structure of the electrolyte and priority absorbed on Zn(002),achieving a stable dendrite-free Zn anode.Due to the comprehensive regulation of solvation structure and zinc deposition by PEGDME,it can stably cycle for over 3200 h at room temperature at 0.5 mA/cm^(2)and 0.5 mAh/cm^(2).Even at high-temperature environments of 60℃,it can steadily work for more than 800 cycles(1600 h).Improved cyclic stability and rate performance of aqueous Zn‖VO_(2)batteries in modified electrolyte were also achieved at both room and high temperatures.Beyond that,the demonstration of stable and high-capacity Zn‖VO_(2)pouch cells also implies its practical application.
基金supported by NSFC(Grant No.52202265,52302004,52472010,62434010)the Taishan Scholars Program of Shandong Province(tsqn202306330)+1 种基金Shenzhen Science and Technology Program(JCYJ20230807094009018)Xiaomi Young Talents Program(2023XM06).
文摘Gallium nitride(GaN)single crystal with prominent electron mobility and heat resistance have great potential in the high temperature integrate electric power systems.However,the sluggish charge storage kinetics and inadequate energy densities are bottlenecks to its practical application.Herein,the self-supported GaN/Mn_(3)O_(4) integrated electrode is developed for both energy harvesting and storage under the high temperature environment.The experimental and theoretical calculations results reveal that such integrated structures with Mn-N heterointerface bring abundant active sites and reconstruct low-energy barrier channels for efficient charge transferring,reasonably optimizing the ions adsorption ability and strengthening the structural stability.Consequently,the assembled GaN based supercapacitors deliver the power density of 34.0 mW cm^(-2) with capacitance retention of 81.3%after 10000 cycles at 130℃.This work innovatively correlates the centimeter scale GaN single crystal with ideal theoretical capacity Mn_(3)O_(4) and provides an effective avenue for the follow-up energy storage applications of the wide bandgap semiconductor.
基金supported by the Chongqing Natural Science Foundation of Chongqing,China(No.CSTB2022NSCQ-MSX0333)the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJZD-K202401205)+1 种基金Chongqing Three Gorges University Graduate Research and Innovation Project Funding(No.YJSKY24045)Chongqing Engineering Research Center of Disaster Prevention&Control for Banks and Structures in Three Gorges Reservoir Area(No.SXAPGC24YB14,No.SXAPGC24YB03,No.SXAPGC24YB12)。
文摘Oil shale is characterized by a dense structure,low proportion of pores and fissures,and low permeability.Pore-fracture systems serve as crucial channels for shale oil migration,directly influencing the production efficiency of shale oil resources.Effectively stimulating oil shale reservoirs remains a challenging and active research topic.This investigation employed shale specimens obtained from the Longmaxi Formation.Scanning electron microscopy,fluid injection experiments,and fluid-structure interaction simulations were used to comprehensively analyze structural changes and fluid flow behavior under high temperatures from microscopic to macroscopic scales.Experimental results indicate that the temperature has little effect on the structure and permeability of shale before 300℃.However,there are two threshold temperatures within the range of 300 to 600℃that have significant effects on the structure and permeability of oil shale.The first threshold temperature is between 300 and 400℃,which causes the oil shale porosity,pore-fracture ratio,and permeability begin to increase.This is manifested by the decrease in micropores and mesopores,the increase in macropores,and the formation of a large number of isolated pores and fissures within the shale.The permeability increases but not significantly.The second threshold temperature is between 500 and 600℃,which increases the permeability of oil shale significantly.During this stage,micropores and mesopores are further reduced,and macropores are significantly enlarged.A large number of connected and penetrated pores and fissures are formed.More numerous and thicker streamlines appear inside the oil shale.The experimental results demonstrate that high temperatures significantly alter the microstructure and permeability of oil shale.At the same time,the experimental results can provide a reference for the research of in-situ heating techniques in oil shale reservoir transformation.
基金supported by the National Natural Science Foundation of China(Nos.52201207 and 52271169)the Fundamental Research Funds for the Central University(No.3072024LJ1002).
文摘The active development of space industry necessitates the cre-ation of novel materials with unique properties,including shape memory alloys(SMAs).The development of ultra-high temperature SMAs(UHTSMAs)with operating temperatures above 400℃is a significant challenge[1-3].It is known that reversible thermoelas-tic martensitic transformation(MT)is the basis for shape mem-ory behavior[4].Currently,there are several systems in which MT temperatures meet the above requirements,for example,RuNb[5],HfPd[6],TiPd[7].
基金financially supported by the Beijing Natural Science Foundation,China (No.JQ21028)the National Natural Science Foundation of China (Nos.52311530070,52278326,and 52004015)+2 种基金the Major National Science and Technology Project for Deep Earth,China (No.2024ZD1003805)the Project from PetroChina RIPED:the Study on the evolution law of Mineral Structure and Rock Mechanical Properties Under Ultra-High Temperature Conditions (No.2022-KFKT-02)the Fundamental Research Funds for the Central Universities of China (No.FRF-IDRY-20-003,Interdisciplinary Research Project for Young Teachers of USTB)。
文摘Low-to medium-maturity oil shale resources display substantial reserves, offering promising prospects for in-situ conversion inChina. Investigating the evolution of the mechanical properties of the reservoir and caprock under in-situ high-temperature and confine-ment conditions is of considerable importance. Compared to conventional mechanical experiments on rock samples after high-temperat-ure treatment, in-situ high-temperature experiments can more accurately characterize the behavior of rocks in practical engineering,thereby providing a more realistic reflection of their mechanical properties. In this study, an in-situ high-temperature triaxial compressiontesting machine is developed to conduct in-situ compression tests on sandstone at different temperatures(25, 200, 400, 500, and 650℃)and confining pressures(0, 10, and 20 MPa). Based on the experimental results, the temperature-dependent changes in compressivestrength, peak strain, elastic modulus, Poisson's ratio, cohesion, and internal friction angle are thoroughly analyzed and discussed. Resultsindicate that the mass of sandstone gradually decreases as the temperature increases. The thermal conductivity and thermal diffusivity ofsandstone exhibit a linear relationship with temperature. Peak stress decreases as the temperature rises, while it increases with higher con-fining pressures. Notably, the influence of confining pressure on peak stress diminishes at higher temperatures. Additionally, as the tem-perature rises, the Poisson's ratio of sandstone decreases. The internal friction angle also decreases with increasing temperature, with 400℃ acting as the threshold temperature. Interestingly, under uniaxial conditions, the damage stress of sandstone is less affected by tem-perature. However, when the confining pressure is 10 or 20 MPa, the damage stress decreases as the temperature increases. This study en-hances our understanding of the influence of in-situ high-temperature and confinement conditions on the mechanical properties of sand-stone strata. The study also provides valuable references and experimental data that support the development of low-to medium-maturityoil shale resources.
基金supported by the National Natural Science Foundation of China(Grant Nos.52205140,52175129)the Outstanding Youth Foundation of Hunan Province(Grant No.2023JJ20041)the Science and Technology Innovation Program of Hunan Province(2023RC3241).
文摘This work investigated the anisotropy tensile properties of Inconel 625 alloy fabricated by laser powder bed fusion (LPBF) under various tests temperature, focusing the anisotropy evolution during the high temperature. The microstructure contained columnar grains with (111) texture in the vertical plane (90° sample), while a large equiaxed grain with (100) texture was produced in the horizontal plane (0° sample). As for 45° sample, a large number of equiaxed grains and a few columnar grains with (111) texture can be observed. The sample produced at a 0° orientation demonstrates the highest tensile strength, whereas the 90° sample exhibits the greatest elongation. Conversely, the 45° sample displays the least favorable overall performance. As the tests temperature increased from room temperature to 600℃, the anisotropy rate of ultimate tensile strength, yield strength and ductility between 0° and 45° samples, decreased from 8.98 to 6.96%, 2.36 to 1.28%, 19.93 to 12.23%, as well as between 0° and 90° samples decreased from 4.87 to 4.03%, 11.88 to 7.21% and 14.11 to 6.89%, respectively, because of the recovery of oriented columnar grains.
基金supported by Japan Society for the Promotion of Science(JSPS KAKENHI Grant number JP19H02476,JP20K21074)30^(th)ISIJ Research Promotion Grant and The Light Metal Educational Foundation。
文摘To evaluate the tensile behavior of metal foils by resistance heating(RH)assisted tensile testing system accurately,this study proposed to embed a digital image correlation(DIC)system with laser speckles for the measurement of full-field strain distribution.Furthermore,the sample structures were optimized to achieve uniform temperature and strain distribution.An infrared camera was used to monitor the temperature distribution.Rectangular samples instead of dog-bone shaped samples were proposed.A model for calculating the temperature distribution was established to optimize the sample structure.The parameters that influence the temperature distribution and tensile behavior were studied.As results,compared to the strain measured by a non-contact extensometer,the maximum deviation of the strain measured by DIC was less than 6%when the nominal strain was larger than 0.013.It is confirmed that the proposed tensile testing system is reliable for measuring the temperature and full-field strain distributions.Sample shape influenced temperature distributions of smaller samples while it almost had no influence on the temperature distributions of larger samples.The temperature difference was not affected by the material type but by the sample size.The proposed rectangular shape was validated to be feasible for RH assisted tensile testing.The sample length was successfully optimized for a more uniform temperature distribution by the established model.Although the tensile deformation was not influenced by the sample shape,the temperature distribution resulted in a non-uniform strain distribution before achieving ultimate tensile strength.Longer effective sample length between two clamping jigs contributed to a more uniform temperature distribution and material deformation.A more accurate evaluation of high-temperature tensile behavior for metal foils can be achieved by the proposed RH assisted tensile testing system using rectangular samples with an optimized structure.
基金the National Key Research and Development Program of China(Grant No.2019YF40705400)National Natural Science Foundation of China(Grant Nos.51535005,51731006,and 51771093)+2 种基金the Research Fund of State Key Laboratory of Mechanics and Control of Me-chanical Structures(Grant Nos.MCMS-I-0418K01,MCMS-I-0419K01)the Fundamental Research Funds for the Central Universities(Grant Nos.NZ2020001,NC2018001,NP2019301,NJ20I 9002,and 30919011295)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Nb-doped TiAl alloys exhibit excellent mechanical properties at high temperatures,and the underlying mechanism and optimal doping amount remain elusive.Molecular dynamics simulation is helpful to clarify these problems,but most of the existing interatomic potentials are limited to the Ti-Al binary system and lack interatomic potentials for doped alloys.Here,an intera-tomic potential of Nb-Al-Ti ternary systems based on the modified embedded-atom method was developed.The ternary potential can accurately predict the structure and thermodynamic properties of the Nb-Al-Ti system.The potential shows that the optimal Nb content for high-temperature strength-ductility synergy of TiAl single crystals is 8%,consistent with the amount of miracle synthesis of TiAl single crystals.Tensile simulations further show that the developed potential can make an effective prediction at high temperatures,indicating the potential for the development and applications of high-temperature Nb-Al-Ti ternary systems.
基金Project supported by the National Natural Science Foundation of China(5057403)Scientific Research Special Foundation of Doctor Subject of Chinese University(20030145015)
文摘The high temperature chemical reaction process of La2O3 in H3BO3-C system was studied by means of XRD and TG-DTA.The results showed that dehydration reaction of H3BO3 occurred in the temperature range of 82~390 ℃;La2O3 and B2O3 reacted to form LaB3O6,LaBO3,and B4C in the temperature range of 836~1400℃;at 1450 ℃,B4C and LaBO3 further reacted to form LaB4,and partial LaB4 and B reacted to form LaB6;at 1500 ℃,LaB4 and B reacting into LaB6 was the main reaction,and the content of LaB6 increased with prolonging time.
文摘Ca2+ and calmodulin antagonist [trifluoperazine(TFP),N-(6-aminohexyl-chloro-1-naphthalenesulfonamide (W7)] pretreatments were conducted on two eggplant varieties Nongyouqie andErmingqie, which have different heat resistance. The results showed that under 40C(day/night), Ca2+ immersion pretreatment enabled the eggplant seedlings to keep relatively higheractivities of superoxide dismutase(SOD) and peroxidase(POD), reduced the production rate ofsuperoxide anion O2_ and the content of malondialdehyde(MDA), alleviated the damage of reducedglutathione(GSH) and the accumulation of proline (Pro), whereas calmodulin antagonist TFP andW7 immersion pretreatments could lead to more rapid loss of SOD and POD activities, increasethe contents of MDA, Pro and production rate of O2_, aggravate the damage of GSH. Under the samestress condition, heat-resistant variety Nongyouqie was less injured compared to the heat-sensitive variety Erminqie. These data indicated that Ca2+-CaM signal transduction systemmight regulate the heat resistance of eggplant seedlings by controlling the activity of someantioxidant enzymes and the contents of antioxidant substance.
基金supported by the Doctoral Fund of Henan Polytechnic University,China(Grant Nos.B2013-013 and B2013-044)the Research Projects of Science and Technology of the Education Department of Henan Province,China(Grant Nos.14B430026 and 12A430010)
文摘This paper reports the crystal growth of diamond from the Fe Ni–Carbon system with additive phosphorus at high pressures and high temperatures of 5.4–5.8 GPa and 1280–1360°C. Attributed to the presence of additive phosphorus,the pressure and temperature condition, morphology, and color of diamond crystals change obviously. The pressure and temperature condition of diamond growth increases evidently with the increase of additive phosphorus content and results in the moving up of the V-shape region. The surfaces of the diamonds also become coarse as the additive phosphorus added in the growth system. Raman spectra indicate that diamonds grown from the Fe Ni-phosphorus-carbon system have more crystal defects and impurities. This work provides a new way to enrich the doping of diamond and improve the experimental exploration for future material applications.
基金Supported by Shaanxi Provincial Department of Science and Technology(2024GX-YBXM-362)Supported by Northwest Institute for Nonferrous Metal Research(070YC2314)+1 种基金Key R&D Plan of Shaanxi Province(2024QCYKXJ-116)Scientific and Technological Innovation Team Project of Shaanxi Innovation Capability Support Plan of China(2022TD-30)。
文摘The high-temperature mechanical properties of Ta-8W-2Hf alloy doped with Re(1wt%)and C(0.01wt%)were investigated at room temperature,1300℃,and 1500℃.Results show that fine and dispersed precipitates Ta2C are detected in crystallized TaWHfReC alloy,which significantly enhance mechanical properties of the alloy.The strength of TaWHfReC alloy is much higher than that of TaWHf alloy,especially at 1300 and 1500℃.At 1300℃,the ultimate tensile strength of the TaWHf alloy is 322 MPa,while that of the TaWHfReC alloy reaches 392 MPa.When the temperature rises to 1500℃,precipitated-phase strengthening remains effective in the TaWHfReC alloy,achieving an ultimate tensile strength of 268 MPa.Additionally,at 1300℃,the elongation of the TaWHfReC alloy reaches 23.5%,which is nearly twice of that of the TaWHf alloy.The significant improvement in the mechanical properties of the TaWHfReC alloy at elevated temperatures is primarily attributed to the interaction between dislocations and the fine Ta2C precipitated phase.The fine and uniformly distributed particles effectively inhibit dislocation motion and exhibit a pronounced strengthening effect at high temperatures.
基金supported by the National Key R&D Program of China(2024YFB4106400)National Natural Science Foundation of China(22209200,52302331)。
文摘Electrocatalytic reduction of carbon dioxide(CO_(2))to carbon monoxide(CO)is an effective strategy to achieve carbon neutrality.High selective and low-cost catalysts for the electrocatalytic reduction of CO_(2)have received increasing attention.In contrast to the conventional tube furnace method,the high-temperature shock(HTS)method enables ultra-fast thermal processing,superior atomic efficiency,and a streamlined synthesis protocol,offering a simplified method for the preparation of high-performance single-atom catalysts(SACs).The reports have shown that nickel-based SACs can be synthesized quickly and conveniently using the HTS method,making their application in CO_(2)reduction reactions(CO_(2)RR)a viable and promising avenue for further exploration.In this study,the effect of heating temperature,metal loading and different nitrogen(N)sources on the catalyst morphology,coordination environment and electrocatalytic performance were investigated.Under optimal conditions,0.05Ni-DCD-C-1050 showed excellent performance in reducing CO_(2)to CO,with CO selectivity close to 100%(−0.7 to−1.0 V vs RHE)and current density as high as 130 mA/cm^(2)(−1.1 V vs RHE)in a flow cell under alkaline environment.
基金supported by the National Natural Science Foundation of China(Grant No.52207031)the National Key R&D Program of China(Grant No.2020YFA0710500)。
文摘High-temperature performance of energy storage dielectric polymers is desired for many electronics and electrical applications,but the trade-off between energy density and temperature stability remains fundamentally challenging.Here,we report a general material design strategy to enhance energy storage performance at high temperatures by crosslinking a polar polymer and a high glass-transition temperature polymer as a crosslinked binary blend.Such crosslinked binary polymers display a temperature-insensitive and high energy density behavior of about6.2~8.5 J cm^(-3) up to 110℃,showing a significant enhancement in thermal resistant properties and consequently outperforming most of the other ferroelectric polymers.Further microstructural investigations reveal that the improved thermal stability stems from the confinement effect on conformational motion of the crosslinking network,which is evidenced by the increased rigid amorphous fraction and steady intermolecular distance of amorphous regions from temperature-dependent X-ray diffraction results.Our findings provide a general and straightforward strategy to attain temperature-stable,high-energy-density polymer-based dielectrics for energy storage capacitors.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.62476278,12434009,and 12204533)the National Key R&D Program of China(Grant No.2024YFA1408601)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302402)。
文摘The discovery of new superconducting materials,particularly those exhibiting high critical temperature(Tc),has been a vibrant area of study within the field of condensed matter physics.Conventional approaches primarily rely on physical intuition to search for potential superconductors within the existing databases.However,the known materials only scratch the surface of the extensive array of possibilities within the realm of materials.