期刊文献+
共找到566篇文章
< 1 2 29 >
每页显示 20 50 100
Lightweight Multi-Resolution Network for Human Pose Estimation
1
作者 Pengxin Li Rong Wang +2 位作者 Wenjing Zhang Yinuo Liu Chenyue Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2239-2255,共17页
Human pose estimation aims to localize the body joints from image or video data.With the development of deeplearning,pose estimation has become a hot research topic in the field of computer vision.In recent years,huma... Human pose estimation aims to localize the body joints from image or video data.With the development of deeplearning,pose estimation has become a hot research topic in the field of computer vision.In recent years,humanpose estimation has achieved great success in multiple fields such as animation and sports.However,to obtainaccurate positioning results,existing methods may suffer from large model sizes,a high number of parameters,and increased complexity,leading to high computing costs.In this paper,we propose a new lightweight featureencoder to construct a high-resolution network that reduces the number of parameters and lowers the computingcost.We also introduced a semantic enhancement module that improves global feature extraction and networkperformance by combining channel and spatial dimensions.Furthermore,we propose a dense connected spatialpyramid pooling module to compensate for the decrease in image resolution and information loss in the network.Finally,ourmethod effectively reduces the number of parameters and complexitywhile ensuring high performance.Extensive experiments show that our method achieves a competitive performance while dramatically reducing thenumber of parameters,and operational complexity.Specifically,our method can obtain 89.9%AP score on MPIIVAL,while the number of parameters and the complexity of operations were reduced by 41%and 36%,respectively. 展开更多
关键词 LIGHTWEIGHT human pose estimation keypoint detection high resolution network
在线阅读 下载PDF
Luojia-HSSR:A high spatial-spectral resolution remote sensing dataset for land-cover classification with a new 3D-HRNet 被引量:2
2
作者 Yue Xu Jianya Gong +4 位作者 Xin Huang Xiangyun Hu Jiayi Li Qiang Li Min Peng 《Geo-Spatial Information Science》 SCIE EI CSCD 2023年第3期289-301,共13页
High Spatial and Spectral Resolution(HSSR)remote-sensing images can provide rich spectral bands and detailed ground information,but there is a relative lack of research on this new type of remote-sensing data.Although... High Spatial and Spectral Resolution(HSSR)remote-sensing images can provide rich spectral bands and detailed ground information,but there is a relative lack of research on this new type of remote-sensing data.Although there are already some HSSR datasets for deep learning model training and testing,the data volume of these datasets is small,resulting in low classification accuracy and weak generalization ability of the trained models.In this paper,an HSSR dataset Luojia-HSSR is constructed based on aerial hyperspectral imagery of southern Shenyang City of Liaoning Province in China.To our knowledge,it is the largest HSSR dataset to date,with 6438 pairs of 256×256 sized samples(including 3480 pairs in the training set,2209 pairs in the test set,and 749 pairs in the validation set),covering area of 161 km2 with spatial resolution 0.75 m,249 Visible and Near-Infrared(VNIR)spectral bands,and corresponding to 23 classes of field-validated ground coverage.It is an ideal experimental data for spatial-spectral feature extraction.Furthermore,a new deep learning model 3D-HRNet for interpreting HSSR images is proposed.The conv-neck in HRNet is modified to better mine the spatial information of the images.Then,a 3D convolution module with attention mechanism is designed to capture the global-local fine spectral information simultaneously.Subsequently,the 3D convolution is inserted into the HRNet to optimize the performance.The experiments show that the 3D-HRNet model has good interpreting ability for the Luojia-HSSR dataset with the Frequency Weighted Intersection over Union(FWIoU)reaching 80.54%,indicating that the Luojia-HSSR dataset constructed in this paper and the proposed 3D-HRnet model have good applicable prospects for processing HSSR remote sensing images. 展开更多
关键词 high Spatial and Spectral resolution(HSSR) remotesensing image classification deep learning Convolutional Neural network(CNN)
原文传递
Research on High Resolution Satellite Image Classification Algorithm based on Convolution Neural Network 被引量:2
3
作者 Gaiping He 《International Journal of Technology Management》 2016年第9期53-55,共3页
Artifi cial neural network is a kind of artificial intelligence method to simulate the function of human brain, and deep learning technology can establish a depth network model with hierarchical structure on the basis... Artifi cial neural network is a kind of artificial intelligence method to simulate the function of human brain, and deep learning technology can establish a depth network model with hierarchical structure on the basis of artificial neural network. Deep learning brings new development direction to artificial neural network. Convolution neural network is a new artificial neural network method, which combines artificial neural network and deep learning technology, and this new neural network is widely used in many fields of computer vision. Modern image recognition algorithm requires classifi cation system to adapt to different types of tasks, and deep network and convolution neural network is a hot research topic in neural networks. According to the characteristics of satellite digital image, we use the convolution neural network to classify the image, which combines texture features with spectral features. The experimental results show that the convolution neural network algorithm can effectively classify the image. 展开更多
关键词 high resolution Satellite Image Classification Convolution Neural network Clustering Algorithm.
在线阅读 下载PDF
High-resolution Image Reconstruction by Neural Network and Its Application in Infrared Imaging
4
作者 张楠 金伟其 苏秉华 《Defence Technology(防务技术)》 SCIE EI CAS 2005年第2期177-181,共5页
As digital image techniques have been widely used, the requirements for high-resolution images become increasingly stringent. Traditional single-frame interpolation techniques cannot add new high frequency information... As digital image techniques have been widely used, the requirements for high-resolution images become increasingly stringent. Traditional single-frame interpolation techniques cannot add new high frequency information to the expanded images, and cannot improve resolution in deed. Multiframe-based techniques are effective ways for high-resolution image reconstruction, but their computation complexities and the difficulties in achieving image sequences limit their applications. An original method using an artificial neural network is proposed in this paper. Using the inherent merits in neural network, we can establish the mapping between high frequency components in low-resolution images and high-resolution images. Example applications and their results demonstrated the images reconstructed by our method are aesthetically and quantitatively (using the criteria of MSE and MAE) superior to the images acquired by common methods. Even for infrared images this method can give satisfactory results with high definition. In addition, a single-layer linear neural network is used in this paper, the computational complexity is very low, and this method can be realized in real time. 展开更多
关键词 high resolution reconstruction infrared high frequency component MAE(mean ABSOLUTE error) MSE(mean squared error) neural network linear interpolation Gaussian LOW-PASS filter
在线阅读 下载PDF
基于改进HRNet的钢材缺陷像素级检测算法
5
作者 孙英伟 张岩 《计算机与数字工程》 2025年第3期840-844,920,共6页
论文提出了一种基于HRNet改进的高分辨率感知网络,用于像素级的检测钢材生产过程中产生的缺陷。该算法既可以定位缺陷的位置,也能够表征缺陷的几何形状。基于HRNet,论文设计了一种多尺度注意力感知模块(MAAM),用于增强每个阶段之间特征... 论文提出了一种基于HRNet改进的高分辨率感知网络,用于像素级的检测钢材生产过程中产生的缺陷。该算法既可以定位缺陷的位置,也能够表征缺陷的几何形状。基于HRNet,论文设计了一种多尺度注意力感知模块(MAAM),用于增强每个阶段之间特征的信息交互,通过通道注意力和空间注意力感知特征融合后的重要信息。另外,论文提出了一种混合损失函数,用于监督预测结果与真实标签的差距,提高了对钢材缺陷的检测准确率。经过实验验证,该算法能够应对各种类型的钢材缺陷,并且具有较高的检测准确率。 展开更多
关键词 缺陷检测 钢材缺陷 注意力机制 高分辨率网络
在线阅读 下载PDF
基于改进HRNet的高速公路路域内光伏板信息提取
6
作者 王靖凯 葛星彤 +2 位作者 李兆博 丁翔 彭玲 《测绘通报》 北大核心 2025年第5期74-78,99,共6页
随着绿色能源需求的日益增长,高速公路路域内光伏板基础设施成为可再生能源发展的一种重要途径。收费站和服务区作为高速公路路域的重要组成部分,其光伏发电也受到重视。本文研究了利用深度学习方法通过高分辨率遥感影像识别高速公路路... 随着绿色能源需求的日益增长,高速公路路域内光伏板基础设施成为可再生能源发展的一种重要途径。收费站和服务区作为高速公路路域的重要组成部分,其光伏发电也受到重视。本文研究了利用深度学习方法通过高分辨率遥感影像识别高速公路路域内收费站和服务区配置光伏板信息的技术方法。以江苏省作为研究试验区,下载全省谷歌19级遥感影像数据,通过制作样本,使用现有经典语义分割网络HRNet、ResNet、FCN和U-Net对试验区进行信息提取,获得光伏板信息提取结果;通过消融试验证实了本文融合CBAM注意力机制的HRNet语义分割网络提取效果最佳。该方法为高速公路路域内收费站和服务区的光伏板智能监测管理提供了技术支撑。 展开更多
关键词 高速公路路域内光伏 高分辨率遥感影像 改进的hrnet语义分割网络 CBAM注意力机制 江苏省试验区
原文传递
High resolution GPR and its experimental study 被引量:3
7
作者 黄玲 曾昭发 +1 位作者 王牧男 王者江 《Applied Geophysics》 SCIE CSCD 2007年第4期301-307,共7页
We develop a high resolution ground penetrating radar system (LANRCS-GPR) based on the E5071B Vector Network Analyzer (VNA). This system takes advantage of a wideband and adjustable frequency domain ground penetra... We develop a high resolution ground penetrating radar system (LANRCS-GPR) based on the E5071B Vector Network Analyzer (VNA). This system takes advantage of a wideband and adjustable frequency domain ground penetrating radar system and adds the characteristics of a network analyzer with ultra-wideband and high precision measurement. It adopts the LAN mode to concatenate system control that reduces construction cost and makes the system easy to expand. The high resolution ground penetrating radar system carries out real time imaging using F-K migration with high calculation efficiency. The experiment results of the system indicate that the LANRCS-GPR system provides high resolution and precision, high signal-to-noise ratio, and great dynamic range. Furthermore, the LANRCS-GPR system is flexible and reliable to operate with easy to expand system functions. The research and development of the LANRCS-GPR provide the theoretical and experimental foundation for future frequency domain ground penetrating radar production and also can serve as an experimental platform with high data gathering precision, enormous information capability, wide application, and convenient operation for electromagnetic wave research and electromagnetic exploration. 展开更多
关键词 high resolution ground penetrating radar vector network analyzer and frequency domain
在线阅读 下载PDF
Pre-locate net for object detection in high-resolution images 被引量:2
8
作者 Yunhao ZHANG Tingbing XU Zhenzhong WEI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第10期313-325,共13页
Small-object detection has long been a challenge.High-megapixel cameras are used to solve this problem in industries.However,current detectors are inefficient for high-resolution images.In this work,we propose a new m... Small-object detection has long been a challenge.High-megapixel cameras are used to solve this problem in industries.However,current detectors are inefficient for high-resolution images.In this work,we propose a new module called Pre-Locate Net,which is a plug-and-play structure that can be combined with most popular detectors.We inspire the use of classification ideas to obtain candidate regions in images,greatly reducing the amount of calculation,and thus achieving rapid detection in high-resolution images.Pre-Locate Net mainly includes two parts,candidate region classification and behavior classification.Candidate region classification is used to obtain a candidate region,and behavior classification is used to estimate the scale of an object.Different follow-up processing is adopted according to different scales to balance the variance of the network input.Different from the popular candidate region generation method,we abandon the idea of regression of a bounding box and adopt the concept of classification,so as to realize the prediction of a candidate region in the shallow network.We build a high-resolution dataset of aircraft and landing gears covering complex scenes to verify the effectiveness of our method.Compared to state-of-the-art detectors(e.g.,Guided Anchoring,Libra-RCNN,and FASF),our method achieves the best m AP of 94.5 on 1920×1080 images at 16.7 FPS. 展开更多
关键词 Aircraft and landing gear detection Candidate region Convolutional neural network high resolution images Small object
原文传递
Real-time and universal network for volumetric imaging from microscale to macroscale at high resolution
9
作者 Bingzhi Lin Feng Xing +7 位作者 Liwei Su Kekuan Wang Yulan Liu Diming Zhang Xusan Yang Huijun Tan Zhijing Zhu Depeng Wang 《Light(Science & Applications)》 2025年第7期1851-1869,共19页
Light-field imaging has wide applications in various domains,including microscale life science imaging,mesoscale neuroimaging,and macroscale fluid dynamics imaging.The development of deep learning-based reconstruction... Light-field imaging has wide applications in various domains,including microscale life science imaging,mesoscale neuroimaging,and macroscale fluid dynamics imaging.The development of deep learning-based reconstruction methods has greatly facilitated high-resolution light-field image processing,however,current deep learning-based light-field reconstruction methods have predominantly concentrated on the microscale.Considering the multiscale imaging capacity of light-field technique,a network that can work over variant scales of light-field image reconstruction will significantly benefit the development of volumetric imaging.Unfortunately,to our knowledge,no one has reported a universal high-resolution light-field image reconstruction algorithm that is compatible with microscale,mesoscale,and macroscale.To fill this gap,we present a real-time and universal network(RTU-Net)to reconstruct high-resolution light-field images at any scale.RTU-Net,as the first network that works over multiscale light-field image reconstruction,employs an adaptive loss function based on generative adversarial theory and consequently exhibits strong generalization capability.We comprehensively assessed the performance of RTU-Net through the reconstruction of multiscale light-field images,including microscale tubulin and mitochondrion dataset,mesoscale synthetic mouse neuro dataset,and macroscale light-field particle imaging velocimetry dataset.The results indicated that RTU-Net has achieved real-time and high-resolution light-field image reconstruction for volume sizes ranging from 300μm×300μm×12μm to 25 mm×25 mm×25 mm,and demonstrated higher resolution when compared with recently reported light-field reconstruction networks.The high-resolution,strong robustness,high efficiency,and especially the general applicability of RTU-Net will significantly deepen our insight into high-resolution and volumetric imaging. 展开更多
关键词 fluid dynamics imagingthe deep learning life science imagingmesoscale neuroimagingand multiscale imaging real time reconstruction universal network network high resolution light field imaging
原文传递
基于HRNet的高分辨率遥感影像道路提取方法 被引量:9
10
作者 陈雪梅 刘志恒 +2 位作者 周绥平 余航 刘彦明 《系统工程与电子技术》 EI CSCD 北大核心 2024年第4期1167-1173,共7页
高分辨率遥感影像中,传统的道路提取方法存在着精度低、鲁棒性低的问题,提出基于高分辨率网络(high-resolution net, HRNet)实现高分辨率遥感影像道路分割。对HRNet进行改进,将相同分辨率的HRNet子网的输出与输出层结果进行拼接并输入... 高分辨率遥感影像中,传统的道路提取方法存在着精度低、鲁棒性低的问题,提出基于高分辨率网络(high-resolution net, HRNet)实现高分辨率遥感影像道路分割。对HRNet进行改进,将相同分辨率的HRNet子网的输出与输出层结果进行拼接并输入非局部块,两个损失函数Cross-entropy Loss和Dice Loss用来解决道路数据集样本不平衡问题。实验结果表明,改进的HRNet在公开的CHN6-CUG道路数据集上的分割性能与其他方法相比对道路的提取效果更好,在召回率、均交并比和F1分数3个方面分别达到了97.65%、84.91%和97.25%。 展开更多
关键词 高分辨率网络 非局部块 遥感影像 深度学习
在线阅读 下载PDF
High resolution 3D nonlinear integrated inversion
11
作者 Li Yong Wang Xuben +2 位作者 Li Zhirong Li Qiong Li Zhengwen 《Applied Geophysics》 SCIE CSCD 2009年第2期159-165,共7页
The high resolution 3D nonlinear integrated inversion method is based on nonlinear theory. Under layer control, the log data from several wells (or all wells) in the study area and seismic trace data adjacent to the... The high resolution 3D nonlinear integrated inversion method is based on nonlinear theory. Under layer control, the log data from several wells (or all wells) in the study area and seismic trace data adjacent to the wells are input to a network with multiple inputs and outputs and are integratedly trained to obtain an adaptive weight function of the entire study area. Integrated nonlinear mapping relationships are built and updated by the lateral and vertical geologic variations of the reservoirs. Therefore, the inversion process and its inversion results can be constrained and controlled and a stable seismic inversion section with high resolution with velocity inversion, impedance inversion, and density inversion sections, can be gained. Good geologic effects have been obtained in model computation tests and real data processing, which verified that this method has high precision, good practicality, and can be used for quantitative reservoir analysis. 展开更多
关键词 high resolution integrated inversion network with multiple input and output hybrid intelligent learning algorithm
在线阅读 下载PDF
A new method for high resolution well-control processing of post-stack seismic data
12
作者 Wu Dakui Wu Zongwei Wu Yijia 《Natural Gas Industry B》 2020年第3期215-223,共9页
Increasing the resolution of seismic data has long been a major topic in seismic exploration.Due to the effect of high-frequency noises,traditional methods could only improve the resolution limitedly.To end this,this ... Increasing the resolution of seismic data has long been a major topic in seismic exploration.Due to the effect of high-frequency noises,traditional methods could only improve the resolution limitedly.To end this,this paper newly proposed a high-resolution seismic data processing method based on welleseismic combination after summarizing the research status on high resolution.Synthetic record and seismogram are similar in effective signals but dissimilar in noises.Their effective signals are regular and noises are irregular.And they are similar in adjacent frequency.Based on these“three-regularity”characteristics,the relationship between synthetic record and seismogram was established using the neural network algorithm.Then,the corresponding extrapolation algorithm was proposed based on the self-adaptive geological and geophysical variation of multi-layer network structure.And a model was established by virtue of this method and the theoretical simulation was carried out.In addition,it was tested from the aspects of frequency component and amplitude energy recovery,phase correction,regularity elimination and stochastic noise.And the following research results were obtained.First,this new method can extract high-frequency information as much as possible and remain middle and low-frequency effective information while eliminating the noises.Second,in this method,the idea of traditional methods to denoisefirst and then expand frequency is changed completely and the limitation of traditional methods is broken.It establishes the idea of expanding frequency and denoising simultaneously and increases the resolution to the uttermost.Third,this new method has been applied to a variety of reservoir descriptions and the high-resolution processing results have been improved significantly in precision and accuracy. 展开更多
关键词 Synthetic record Seismogram STACK high resolution Neural network DENOISING Frequency expanding Data processing
在线阅读 下载PDF
多尺度和多层级特征融合的人体姿态估计 被引量:2
13
作者 王燕妮 胡敏 +2 位作者 韩世鹏 陈艺瑄 吕昊 《计算机工程与应用》 北大核心 2025年第6期199-209,共11页
人体姿态估计的精度提升通常依赖于特征融合,但是现有特征融合策略往往忽略了尺度特征和层级特征之间的交互作用。为了充分利用不同特征之间的互补性,提出了一种新特征融合策略用以提升人体姿态估计精度,即多尺度和多层级特征融合网络(m... 人体姿态估计的精度提升通常依赖于特征融合,但是现有特征融合策略往往忽略了尺度特征和层级特征之间的交互作用。为了充分利用不同特征之间的互补性,提出了一种新特征融合策略用以提升人体姿态估计精度,即多尺度和多层级特征融合网络(multi-scale and multi-level network,MSLNet)。采用高分辨率网络(high-resolution network,HRNet)作为主干,通过跨尺度信息交互,实现不同分辨率特征图之间的信息交换,获取同时包含细粒度和粗粒度的姿态特征;引入期望最大化注意力-加权双向特征金字塔网络(expectation maximization attention-bidirectional feature pyramid network,EMA-BiFPN),实现多尺度特征融合后的多层级特征聚合,从局部到全局捕捉人体姿态的细节和关联信息;设计由残差结构组成的关键点检测头,完成输出特征的最终融合并提升人体关键点检测准确率。实验结果表明,MSLNet在COCO和MPII数据集上分别取得了75.8%和91.1%的准确率,实现了最优精度,充分验证了MSLNet能够融合尺度和层级之间的互补特征,进而提升人体姿态估计精度。 展开更多
关键词 高分辨率网络(hrnet) 人体姿态估计 期望最大化注意力 双向特征金字塔网络 特征融合
在线阅读 下载PDF
基于改进HRNet的牛体关键点检测算法
14
作者 赵雪莲 张继凯 +2 位作者 何一豪 曾翔皓 庄琦 《内蒙古科技大学学报》 CAS 2024年第2期172-177,共6页
针对现有关键点检测算法在复杂背景下检测精度低、高运算量等问题,提出一种轻量级关键点检测模型SE-HRNet。首先设计2种轻量型模块:SECAneck模块和SECAblock模块,在保持网络性能的同时减低计算参数,加快训练速度。其次,整合空间注意力... 针对现有关键点检测算法在复杂背景下检测精度低、高运算量等问题,提出一种轻量级关键点检测模型SE-HRNet。首先设计2种轻量型模块:SECAneck模块和SECAblock模块,在保持网络性能的同时减低计算参数,加快训练速度。其次,整合空间注意力机制于多分辨率融合阶段,使得模型对于不易检测到的关键点的定位和识别更为敏感。在自制牛体关键点数据集上进行实验评估,结果表明:改进后的HRNet网络比原网络参数量和运算浮点数分别减少了18.8 M和5.2 G,平均精度达到了93.2%,平均召回率达到了91.5%,每秒帧数(FPS)达到了36.3。 展开更多
关键词 关键点检测 高分辨率网络 注意力机制 多分辨率融合阶段
在线阅读 下载PDF
基于自注意力机制的高分遥感影像语义分割 被引量:2
15
作者 杨军 张金影 康玥 《哈尔滨工程大学学报》 北大核心 2025年第2期344-354,共11页
针对遥感影像多尺度特征提取困难、上下文信息利用不足的问题,本文结合自注意力机制和深度可分离卷积提出一种线性多头自注意力网络模型,适用于高分辨率遥感影像语义分割。在自注意力模块之前引入深度可分离卷积,减少计算量的同时有助... 针对遥感影像多尺度特征提取困难、上下文信息利用不足的问题,本文结合自注意力机制和深度可分离卷积提出一种线性多头自注意力网络模型,适用于高分辨率遥感影像语义分割。在自注意力模块之前引入深度可分离卷积,减少计算量的同时有助于捕获局部特征;在编码器分支中提出线性的多头自注意力模块以降低模型的计算复杂度;设计一个解码器来恢复特征图分辨率,通过级联操作整合各层级的特征并生成高分辨率的语义分割结果。所提算法在ISPRS Vaihingen和Potsdam数据集上的分割结果的mF1分别达到了90.77%和92.36%,与目前主流算法相比,不透水表面、建筑、低矮植物、树木类的分割准确率及总体分割准确率均有提高。本文算法构建的线性多头自注意力网络是一种高效的高分辨率遥感影像语义分割模型。 展开更多
关键词 高分辨率遥感影像 多头自注意力 深度可分离卷积 语义分割 特征提取 卷积神经网络 编码器 解码器
在线阅读 下载PDF
结合深度残差与多特征融合的步态识别方法
16
作者 罗亚波 梁心语 +1 位作者 张峰 李存荣 《中国图象图形学报》 北大核心 2025年第5期1466-1478,共13页
目的步态识别是交通管理、监控安防领域的关键技术,为了解决现有步态识别算法无法充分捕捉和利用人体生物特征,在协变量干扰下模型精度降低的问题,本文提出一种深度提取和融合步态特征与身形特征的高精度步态识别方法。方法首先使用高... 目的步态识别是交通管理、监控安防领域的关键技术,为了解决现有步态识别算法无法充分捕捉和利用人体生物特征,在协变量干扰下模型精度降低的问题,本文提出一种深度提取和融合步态特征与身形特征的高精度步态识别方法。方法首先使用高分辨率网络(high resolution network,HRNet)提取出人体骨架关键点;以残差神经网络ResNet-50(residual network)为主干,利用深度残差模块的复杂特征学习能力,从骨架信息中充分提取相对稳定的身形特征与提供显性高效运动本质表达的步态特征;设计多分支特征融合(multi-branch feature fusion,MFF)模块,进行不同通道间的尺寸对齐与权重优化,通过动态权重矩阵调节各分支贡献,把身形特征和步态特征融合为区分度更强的总体特征。结果室内数据集采用跨视角多状态CASIA-B(Institute of Automation,Chinese Academy of Sciences)数据集,本文方法在跨视角实验中表现稳健;在多状态实验中,常规组的识别准确率为94.52%,外套干扰组在同类算法中的识别性能最佳。在开放场景数据集中,模型同样体现出较高的泛化能力,相比于现有算法,本文方法的准确率提升了4.1%。结论本文设计的步态识别方法充分利用了深度残差模块的特征提取能力与多特征融合的互补优势,面向复杂识别场景仍具有较高的模型识别精度与泛化能力。 展开更多
关键词 生物特征识别 步态识别 高分辨率网络 特征融合 残差神经网络
原文传递
面向高分辨率图像传输的CNN网络编码方案研究
17
作者 刘娜 杨颜博 +2 位作者 张嘉伟 李宝山 马建峰 《西安电子科技大学学报》 北大核心 2025年第2期225-238,共14页
网络编码技术可以有效提升网络的吞吐率,然而,传统网络编码的编解码复杂度高且难以自适应环境噪声等动态因素的影响而容易导致解码失真,近年来有研究者引入神经网络以优化网络编码过程,但在高分辨率图像传输任务中,现有的神经网络编码... 网络编码技术可以有效提升网络的吞吐率,然而,传统网络编码的编解码复杂度高且难以自适应环境噪声等动态因素的影响而容易导致解码失真,近年来有研究者引入神经网络以优化网络编码过程,但在高分辨率图像传输任务中,现有的神经网络编码方案对高维度空间信息的捕捉能力不足,带来较大的通信及计算开销。为此,文中提出采用二维卷积神经网络(CNN)对各网络节点的编解码器进行参数化设计的联合源的深度学习网络编码方案,通过CNN捕捉深层空间结构信息并降低网络节点的计算复杂度。在信源节点,通过卷积层运算实现对传输数据的降维处理,提升数据的传输速率;在中间节点,接收来自两个信源的数据并通过CNN编码压缩至单个信道传输;在信宿节点,对接收到的数据利用CNN进行升维解码而恢复出原始图像。实验表明,在不同信道带宽占用比和信道噪声水平下,该方案在峰值信噪比和结构相似度上展现出优良的解码性能。 展开更多
关键词 网络编码 深度学习 卷积神经网络 高分辨率图像 图像通信
在线阅读 下载PDF
基于AF-BiTCN的弹道中段目标HRRP识别
18
作者 王晓丹 王鹏 +2 位作者 宋亚飞 向前 李京泰 《北京航空航天大学学报》 北大核心 2025年第2期349-359,共11页
针对弹道中段目标高分辨距离像(HRRP)的时序特征提取和识别问题,为充分利用弹道中段目标HRRP的双向时序信息,进一步提高识别性能,提出一种基于加性融合双向时间卷积神经网络(AF-BiTCN)的识别方法。对HRRP数据采用双向时序滑窗法处理为... 针对弹道中段目标高分辨距离像(HRRP)的时序特征提取和识别问题,为充分利用弹道中段目标HRRP的双向时序信息,进一步提高识别性能,提出一种基于加性融合双向时间卷积神经网络(AF-BiTCN)的识别方法。对HRRP数据采用双向时序滑窗法处理为双向序列;构建BiTCN逐层提取HRRP的双向深层时序特征,并将双向时序特征采用加性策略融合;利用更加稳健的融合特征实现对弹道中段目标的识别,并使用Adam算法优化AF-BiTCN的收敛速度和稳定性。实验结果表明:所提的基于AF-BiTCN的弹道中段目标HRRP识别方法较堆叠选择长短期记忆网络(SLSTM)、堆叠门控循环单元(SGRU)等6种时序方法具有更高的准确率和更快的识别速度,在测试集上达到了96.60%的准确率,并且在噪声数据集上表现出更好的鲁棒性。 展开更多
关键词 双向时间卷积神经网络 弹道目标识别 特征融合 高分辨距离像 滑窗算法
原文传递
基于STFTGAN模型的测井曲线超分辨方法研究
19
作者 韩建 贾园园 +2 位作者 郑兵 曹志民 吕婷婷 《化工自动化及仪表》 2025年第5期776-783,共8页
针对高含水阶段薄储层测井响应弱、传统超分辨方法纹理细节缺失的问题,提出了一种基于短时傅里叶变换(STFT)的生成对抗网络STFTGAN。该方法通过时频域联合学习优化高频信息重构,设计多级上采样残差模块以提取低分辨时频特征,并引入多尺... 针对高含水阶段薄储层测井响应弱、传统超分辨方法纹理细节缺失的问题,提出了一种基于短时傅里叶变换(STFT)的生成对抗网络STFTGAN。该方法通过时频域联合学习优化高频信息重构,设计多级上采样残差模块以提取低分辨时频特征,并引入多尺度判别器以强化对抗训练。此外,结合最小二乘损失、时频图损失和特征匹配损失函数,进一步提升了生成器的性能。实验结果表明,与BSI、SVM、LSTM和SRCNN方法相比,STFTGAN能够有效超分辨出测井曲线的高频细节,显著提高了薄储层识别精度,为复杂地质条件下的测井解释提供了新的解决方案。 展开更多
关键词 地球物理测井 超分辨 短时傅里叶变换 生成对抗网络 高频信息保持
在线阅读 下载PDF
基于新的F-YOLO深度网络的城市植被覆盖检测
20
作者 徐昇 吴迪 《江苏大学学报(自然科学版)》 北大核心 2025年第6期705-713,共9页
针对传统基于遥感影像处理的植被分析中人工干预较多导致的效率低、精度差、更新速度慢、耗费资源等问题,基于YOLO网络结构,提出一种新的全卷积F-YOLO(fully convolutional YOLO)结构网络模型对植被覆盖进行研究.通过修改损失函数来提... 针对传统基于遥感影像处理的植被分析中人工干预较多导致的效率低、精度差、更新速度慢、耗费资源等问题,基于YOLO网络结构,提出一种新的全卷积F-YOLO(fully convolutional YOLO)结构网络模型对植被覆盖进行研究.通过修改损失函数来提升图像中目标检测的精度,并输出像素级的目标检测结果,完成像素级分类任务.通过设计出自动端到端的像素分割算法,统计城市植被的覆盖度.选取南京市紫金山附近区域为研究对象,采用提出的F-YOLO对图片进行卷积和池化操作,从而得到特征图;再通过上采样将高度抽象的特征图还原成原图像大小;然后进行逐像素分析,判断此像素是否属于目标植被;最后进行植被的分割与覆盖度计算.试验结果表明算法植被分割像素精确率达到94.76%,植被覆盖度计算结果的精确度为96.72%.在目标检测任务中,文中方法召回率为97.33%,像素精确率为96.34%,F 1值为96.83%,都显著优于SSD与Faster-RCNN;在像素级分割任务中,该方法94.76%的像素精确率明显高于FCN-16、U-Net及FCN-32,验证了其具有综合性能优势. 展开更多
关键词 植被检测 高分辨率遥感图像 深度学习 YOLO 全卷积网络
在线阅读 下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部