Capacitive voltage transformers (CVTs) are essential in high-voltage systems. An accurate error assessment is crucial for precise energy metering. However, tracking real-time quantitative changes in capacitive voltage...Capacitive voltage transformers (CVTs) are essential in high-voltage systems. An accurate error assessment is crucial for precise energy metering. However, tracking real-time quantitative changes in capacitive voltage transformer errors, particularly minor variations in multi-channel setups, remains challenging. This paper proposes a method for online error tracking of multi-channel capacitive voltage transformers using a Co-Prediction Matrix. The approach leverages the strong correlation between in-phase channels, particularly the invariance of the signal proportions among them. By establishing a co-prediction matrix based on these proportional relationships, The influence of voltage changes on the primary measurements is mitigated. Analyzing the relationships between the co-prediction matrices over time allows for inferring true measurement errors. Experimental validation with real-world data confirms the effectiveness of the method, demonstrating its capability to continuously track capacitive voltage transformer measurement errors online with precision over extended durations.展开更多
In situ(TiC+SiC)particles(5 vol.%and 10 vol.%,respectively)-reinforced FeCrCoNi high entropy alloy matrix composites were fabricated via vacuum inductive melting method,with equal volume fractions of TiC and SiC parti...In situ(TiC+SiC)particles(5 vol.%and 10 vol.%,respectively)-reinforced FeCrCoNi high entropy alloy matrix composites were fabricated via vacuum inductive melting method,with equal volume fractions of TiC and SiC particles.X-ray diffraction,scanning electron microscope and energy diffraction spectrum were employed to analyze the microstructure and composi-tion of the samples.The results manifested that the FeCrCoNi matrix is composed of FCC phase,and the in situ particles are homogeneously scattered in the matrix.The presence of reinforcements augmented the ultimate tensile strength from 452 to 783 MPa,and raised the yield strength from 162 to 466 MPa at room temperature,whereas the elongation to fracture was reduced from 70.6%to 28.6%.All the tensile fracture surfaces consisted of numerous tiny dimples,indicating that the composites exhibited ductile fracture.Furthermore,the enhancement of strength ascribes to a combination of thermal mis-match strengthening,load-bearing effect,grain refinement,Orowan strengthening and solid solution strengthening effect,which contribute about 58.0%,2.4%,12.3%,11.1%and 16.2%to the improvement of yield tensile strength,respectively.展开更多
Further improvement on high temperature durability is one of the most important aims except for high specific strength, high specific stiffness, and excellent wear resistance, to design and fabricate discontinuously r...Further improvement on high temperature durability is one of the most important aims except for high specific strength, high specific stiffness, and excellent wear resistance, to design and fabricate discontinuously reinforced titanium matrix composites (DRTMCs). Their superior properties render them extensive application potential in aerospace and military industries due to the urgent demand for the materials with characteristics of lightweight, high strength, high stiffness and high temperature durability. With development on fabrication methods and room temperature properties, testing, characterizing, evaluating and further increasing high temperature properties of DRTMCs are becoming more and more important to promote their applications. This review provides insights and comprehensions on the high temperature tensile properties, superplastic tensile properties, creep behaviors, and high temperature oxidation behaviors of DRTMCs,展开更多
A high Fe containing aluminum matrix filler metal for hardfacing aluminum silicon alloys has been developed by using iron,nickel,and silicon as the major strengthening elements,and by measuring mechanical properties...A high Fe containing aluminum matrix filler metal for hardfacing aluminum silicon alloys has been developed by using iron,nickel,and silicon as the major strengthening elements,and by measuring mechanical properties,room temperature and high temperature wear tests,and microstructural analysis.The filler metal,which contains 3.0%-5.0% Fe and 11.0%-13.0% Si,exhibits an excellent weldability.The as cast and as welded microstructures for the filler metal are of uniformly distribution and its dispersed network of hard phase is enriched with Al Si Fe Ni.The filler metal shows high mechanical properties and wear resistance at both room temperature and high temperatures.The deposited metal has a better resistance to impact wear at 220℃ than that of substrate Al Si Mg Cu piston alloy;at room temperature,the deposited metal has an equivalent resistance to slide wear with lubrication as that of a hyper eutectic aluminum silicon alloy with 27% Si and 1% Ni.展开更多
Chipping, adhesive wear, abrasive wear and crater wear are prevalent for both the polycrystalline diamond (PCD) and the carbide tools during high speed turning of TiCp/TiBw hybrid reinforced Ti-6Al-4V (TC4) matrix...Chipping, adhesive wear, abrasive wear and crater wear are prevalent for both the polycrystalline diamond (PCD) and the carbide tools during high speed turning of TiCp/TiBw hybrid reinforced Ti-6Al-4V (TC4) matrix composite (TMCs). The combined effects of abrasive wear and diffusion wear caused the big crater on PCD and carbide tool rake face. Compared to the PCD, bigger size of crater was found on the carbide tool due to much higher cutting temperature and the violent chemical reaction between the Ti element in the workpiece and the WC in the tool. However, the marks of the abrasive wear looked much slighter or even could not be observed on the carbide tool especially when low levels of cutting parameters were used, which attributes to much lower hardness and smaller size of WC combined with more significant chemical degradation of carbide. When cutting TC4 using PCD tool, notch wear was the most significant wear pattern which was not found when cutting the TMCs. However, chipping, adhesive wear and crater wear were much milder when compared to the cutting of titanium matrix composite. Due to the absence of abrasive wear when cutting TC4, the generated titanium carbide on the PCD protected the tool from fast wear, which caused that the tool life for TC4 was 6-10 times longer than that for TMCs.展开更多
The compressive behavior of the squeeze cast SiC_w/AZ91 composite was investigated at 400℃ and strain rate of 0.01s -1 by Gleeble-1500 thermal mechanical simulator. The microstructure evolution of the composite d...The compressive behavior of the squeeze cast SiC_w/AZ91 composite was investigated at 400℃ and strain rate of 0.01s -1 by Gleeble-1500 thermal mechanical simulator. The microstructure evolution of the composite during compression was observed by scanning electron microscope(SEM) and transmission electron microscope (TEM). The results indicate that the microstructure evolutions involve the movement of SiC whiskers and the changes of the matrix. The rotation and the broken of SiC whiskers tend to be obvious with the increasing strain. At the initial stage of compression (ε=1%), high density of dislocations was observed in the matrix. And at further strain (ε=10%), a number of twins are formed in the matrix. In this case, some twins intercept with each other and are broken with the increasing strain, and dynamic recrystallization (DRX) grains are nucleated at twin boundaries and twin intersections.展开更多
MoSi2 is presently regarded as the most important material for electrical heating and as one with huge potential for high temperature structural uses. MoSi2 and MoSi2 matrix composites were prepared by self-propagatin...MoSi2 is presently regarded as the most important material for electrical heating and as one with huge potential for high temperature structural uses. MoSi2 and MoSi2 matrix composites were prepared by self-propagating high temperature synthesis (SHS). Pure MoSi2 was obtained and a compound of MoSi2 and WSi2was synthesized in the form of predominant solid solution (Mo,W)Si2. By adding aluminum of 5.5 at.% to Mo-Si, the crystal structure of MoSi2 changed into a mixture of tetragonal Cllb MoSi2and hexagonal C40 Mo(Si,Al)2. The (Mo,W)Si2-Mo(Si,Al)2-W(Si,Al)2 composite materials were synthesized by adding aluminum of 5.5 at.% to Mo-W-Si. However, if the amount of the added aluminum was not larger than 2.5 at.%, it did not have any significant effect. SHS is an effective technology for synthesis of MoSi2 and MoSi2 matrix composites.展开更多
The estimation of covariance matrices is very important in many fields, such as statistics. In real applications, data are frequently influenced by high dimensions and noise. However, most relevant studies are based o...The estimation of covariance matrices is very important in many fields, such as statistics. In real applications, data are frequently influenced by high dimensions and noise. However, most relevant studies are based on complete data. This paper studies the optimal estimation of high-dimensional covariance matrices based on missing and noisy sample under the norm. First, the model with sub-Gaussian additive noise is presented. The generalized sample covariance is then modified to define a hard thresholding estimator , and the minimax upper bound is derived. After that, the minimax lower bound is derived, and it is concluded that the estimator presented in this article is rate-optimal. Finally, numerical simulation analysis is performed. The result shows that for missing samples with sub-Gaussian noise, if the true covariance matrix is sparse, the hard thresholding estimator outperforms the traditional estimate method.展开更多
A type of high-order integral observers for matrix second-order linear systems is proposed on the basis of generalized eigenstructure assignment via unified parametric approaches. Through establishing two general para...A type of high-order integral observers for matrix second-order linear systems is proposed on the basis of generalized eigenstructure assignment via unified parametric approaches. Through establishing two general parametric solutions to this type of generalized matrix second-order Sylvester matrix equations, two unified complete parametric methods for the proposed observer design problem are presented. Both methods give simple complete parametric expressions for the observer gain matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically simple and reliable; the second one utilizes the fight factorization of the system, and allows eigenvalues of the error system to be set undetermined and sought via certain optimization procedures. A spring-mass-dashpot system is utilized to illustrate the design procedure and show the effect of the proposed approach.展开更多
文摘Capacitive voltage transformers (CVTs) are essential in high-voltage systems. An accurate error assessment is crucial for precise energy metering. However, tracking real-time quantitative changes in capacitive voltage transformer errors, particularly minor variations in multi-channel setups, remains challenging. This paper proposes a method for online error tracking of multi-channel capacitive voltage transformers using a Co-Prediction Matrix. The approach leverages the strong correlation between in-phase channels, particularly the invariance of the signal proportions among them. By establishing a co-prediction matrix based on these proportional relationships, The influence of voltage changes on the primary measurements is mitigated. Analyzing the relationships between the co-prediction matrices over time allows for inferring true measurement errors. Experimental validation with real-world data confirms the effectiveness of the method, demonstrating its capability to continuously track capacitive voltage transformer measurement errors online with precision over extended durations.
基金the National Undergraduate Training Program for Innovation and Entrepreneurship(No.201910288094Z)This work was also supported by the National Natural Science Foundation of China(51571118,51371098)Jiangsu Province Science and Technology Plan Project(BE2018753/KJ185629).
文摘In situ(TiC+SiC)particles(5 vol.%and 10 vol.%,respectively)-reinforced FeCrCoNi high entropy alloy matrix composites were fabricated via vacuum inductive melting method,with equal volume fractions of TiC and SiC particles.X-ray diffraction,scanning electron microscope and energy diffraction spectrum were employed to analyze the microstructure and composi-tion of the samples.The results manifested that the FeCrCoNi matrix is composed of FCC phase,and the in situ particles are homogeneously scattered in the matrix.The presence of reinforcements augmented the ultimate tensile strength from 452 to 783 MPa,and raised the yield strength from 162 to 466 MPa at room temperature,whereas the elongation to fracture was reduced from 70.6%to 28.6%.All the tensile fracture surfaces consisted of numerous tiny dimples,indicating that the composites exhibited ductile fracture.Furthermore,the enhancement of strength ascribes to a combination of thermal mis-match strengthening,load-bearing effect,grain refinement,Orowan strengthening and solid solution strengthening effect,which contribute about 58.0%,2.4%,12.3%,11.1%and 16.2%to the improvement of yield tensile strength,respectively.
基金financially supported by the National Natural Science Foundation of China (Nos.51101042,51271064 and 51471063)the High Technology Research and Development Program of China (No.2013AA031202)the Fundamental Research Funds for the Central Universities (No.HIT.BRETIII.201401)
文摘Further improvement on high temperature durability is one of the most important aims except for high specific strength, high specific stiffness, and excellent wear resistance, to design and fabricate discontinuously reinforced titanium matrix composites (DRTMCs). Their superior properties render them extensive application potential in aerospace and military industries due to the urgent demand for the materials with characteristics of lightweight, high strength, high stiffness and high temperature durability. With development on fabrication methods and room temperature properties, testing, characterizing, evaluating and further increasing high temperature properties of DRTMCs are becoming more and more important to promote their applications. This review provides insights and comprehensions on the high temperature tensile properties, superplastic tensile properties, creep behaviors, and high temperature oxidation behaviors of DRTMCs,
文摘A high Fe containing aluminum matrix filler metal for hardfacing aluminum silicon alloys has been developed by using iron,nickel,and silicon as the major strengthening elements,and by measuring mechanical properties,room temperature and high temperature wear tests,and microstructural analysis.The filler metal,which contains 3.0%-5.0% Fe and 11.0%-13.0% Si,exhibits an excellent weldability.The as cast and as welded microstructures for the filler metal are of uniformly distribution and its dispersed network of hard phase is enriched with Al Si Fe Ni.The filler metal shows high mechanical properties and wear resistance at both room temperature and high temperatures.The deposited metal has a better resistance to impact wear at 220℃ than that of substrate Al Si Mg Cu piston alloy;at room temperature,the deposited metal has an equivalent resistance to slide wear with lubrication as that of a hyper eutectic aluminum silicon alloy with 27% Si and 1% Ni.
基金supported by the National Natural Science Foundation of China (No.51275227)Nanjing Science and Technology Development Plan (201306024) of Chinathe Qinglan Project of Jiangsu Province (2014) of China
文摘Chipping, adhesive wear, abrasive wear and crater wear are prevalent for both the polycrystalline diamond (PCD) and the carbide tools during high speed turning of TiCp/TiBw hybrid reinforced Ti-6Al-4V (TC4) matrix composite (TMCs). The combined effects of abrasive wear and diffusion wear caused the big crater on PCD and carbide tool rake face. Compared to the PCD, bigger size of crater was found on the carbide tool due to much higher cutting temperature and the violent chemical reaction between the Ti element in the workpiece and the WC in the tool. However, the marks of the abrasive wear looked much slighter or even could not be observed on the carbide tool especially when low levels of cutting parameters were used, which attributes to much lower hardness and smaller size of WC combined with more significant chemical degradation of carbide. When cutting TC4 using PCD tool, notch wear was the most significant wear pattern which was not found when cutting the TMCs. However, chipping, adhesive wear and crater wear were much milder when compared to the cutting of titanium matrix composite. Due to the absence of abrasive wear when cutting TC4, the generated titanium carbide on the PCD protected the tool from fast wear, which caused that the tool life for TC4 was 6-10 times longer than that for TMCs.
文摘The compressive behavior of the squeeze cast SiC_w/AZ91 composite was investigated at 400℃ and strain rate of 0.01s -1 by Gleeble-1500 thermal mechanical simulator. The microstructure evolution of the composite during compression was observed by scanning electron microscope(SEM) and transmission electron microscope (TEM). The results indicate that the microstructure evolutions involve the movement of SiC whiskers and the changes of the matrix. The rotation and the broken of SiC whiskers tend to be obvious with the increasing strain. At the initial stage of compression (ε=1%), high density of dislocations was observed in the matrix. And at further strain (ε=10%), a number of twins are formed in the matrix. In this case, some twins intercept with each other and are broken with the increasing strain, and dynamic recrystallization (DRX) grains are nucleated at twin boundaries and twin intersections.
基金This project was financially supported by the National Natural Science Foundation of China (No. 50025412)
文摘MoSi2 is presently regarded as the most important material for electrical heating and as one with huge potential for high temperature structural uses. MoSi2 and MoSi2 matrix composites were prepared by self-propagating high temperature synthesis (SHS). Pure MoSi2 was obtained and a compound of MoSi2 and WSi2was synthesized in the form of predominant solid solution (Mo,W)Si2. By adding aluminum of 5.5 at.% to Mo-Si, the crystal structure of MoSi2 changed into a mixture of tetragonal Cllb MoSi2and hexagonal C40 Mo(Si,Al)2. The (Mo,W)Si2-Mo(Si,Al)2-W(Si,Al)2 composite materials were synthesized by adding aluminum of 5.5 at.% to Mo-W-Si. However, if the amount of the added aluminum was not larger than 2.5 at.%, it did not have any significant effect. SHS is an effective technology for synthesis of MoSi2 and MoSi2 matrix composites.
文摘The estimation of covariance matrices is very important in many fields, such as statistics. In real applications, data are frequently influenced by high dimensions and noise. However, most relevant studies are based on complete data. This paper studies the optimal estimation of high-dimensional covariance matrices based on missing and noisy sample under the norm. First, the model with sub-Gaussian additive noise is presented. The generalized sample covariance is then modified to define a hard thresholding estimator , and the minimax upper bound is derived. After that, the minimax lower bound is derived, and it is concluded that the estimator presented in this article is rate-optimal. Finally, numerical simulation analysis is performed. The result shows that for missing samples with sub-Gaussian noise, if the true covariance matrix is sparse, the hard thresholding estimator outperforms the traditional estimate method.
基金This work was supported by the Chinese National Natural Science Foundation ( No. 69925308).
文摘A type of high-order integral observers for matrix second-order linear systems is proposed on the basis of generalized eigenstructure assignment via unified parametric approaches. Through establishing two general parametric solutions to this type of generalized matrix second-order Sylvester matrix equations, two unified complete parametric methods for the proposed observer design problem are presented. Both methods give simple complete parametric expressions for the observer gain matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically simple and reliable; the second one utilizes the fight factorization of the system, and allows eigenvalues of the error system to be set undetermined and sought via certain optimization procedures. A spring-mass-dashpot system is utilized to illustrate the design procedure and show the effect of the proposed approach.