期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Polymer dispersed ionic liquid electrolytes with high ionic conductivity for ultrastable solid-state lithium batteries 被引量:3
1
作者 Shengyu Qin Yaping Cao +7 位作者 Jianying Zhang Yunxiao Ren Chang Sun Shuoning Zhang Lanying Zhang Wei Hu Meina Yu Huai Yang 《Carbon Energy》 SCIE CSCD 2023年第5期115-126,共12页
Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for building solid-state lithium batteries due to their excellent flexibility,scalability,and interfacial compatibility with electro... Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for building solid-state lithium batteries due to their excellent flexibility,scalability,and interfacial compatibility with electrodes.However,the low ionic conductivity and poor cyclic stability of SPEs do not meet the requirements for practical applications of lithium batteries.Here,a novel polymer dispersed ionic liquid-based solid polymer electrolyte(PDIL-SPE)is fabricated using the in situ polymerization-induced phase separation(PIPS)method.The as-prepared PDIL-SPE possesses both outstanding ionic conductivity(0.74 mS cm^(-1) at 25℃)and a wide electrochemical window(up to 4.86 V),and the formed unique three-dimensional(3D)co-continuous structure of polymer matrix and ionic liquid in PDIL-SPE can promote the transport of lithium ions.Also,the 3D co-continuous structure of PDIL-SPE effectively accommodates the severe volume expansion for prolonged lithium plating and stripping processes over 1000 h at 0.5 mA cm^(-2) under 25℃.Moreover,the LiFePO_(4)//Li coin cell can work stably over 150 cycles at a 1 C rate under room temperature with a capacity retention of 90.6%from 111.1 to 100.7 mAh g^(-1).The PDIL-SPE composite is a promising material system for enabling the ultrastable operation of solid-state lithium-metal batteries. 展开更多
关键词 high ionic conductivity lithium batteries solid polymer electrolytes solid-state batteries
在线阅读 下载PDF
High ionic conductive protection layer on Zn metal anode for enhanced aqueous zinc-ion batteries 被引量:4
2
作者 Xianyu Liu Qiongqiong Lu +1 位作者 Aikai Yang Yitai Qian 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第6期563-566,共4页
Aqueous zinc-ion batteries(ZIBs)has been regarded as a promising energy storage system for large-scale application due to the advantages of low cost and high safety.However,the growth of Zn dendrite,hydrogen evolution... Aqueous zinc-ion batteries(ZIBs)has been regarded as a promising energy storage system for large-scale application due to the advantages of low cost and high safety.However,the growth of Zn dendrite,hydrogen evolution and passivation issues induce the poor electrochemical performance of ZIBs.Herein,a Na_(3)Zr_(2)Si_(2)PO_(12)(NZSP)protection layer with high ionic conductivity of 2.94 m S/cm on Zn metal anode was fabricated by drop casting approach.The protection layer prevents Zn dendrites formation,hydrogen evolution as well as passivation,and facilitates a fast Zn~(2+)transport.As a result,the symmetric cells based on NZSP-coated Zn show a stable cycling over 1360 h at 0.5 m A/cm^(2)with 0.5 m Ah/cm^(2) and 1000 h even at a high current density of 5 m A/cm^(2) with 2 m Ah/cm^(2).Moreover,the full cells combined with V_(2)O_(5)-based cathode displays high capacities and high rate capability.This work offers a facile and effective approach to stabilizing Zn metal anode for enhanced ZIBs. 展开更多
关键词 Na_(3)Zr_(2)Si_(2)PO_(12) high ionic conductivity Drop casting Surface coating Zinc metal anode Aqueous zinc-ion batteries
原文传递
Interpretable machine learning framework for designing highionic conductivity in low-temperature lithium-ion batteryelectrolytes
3
作者 Huiyang Fan Zhengyang Mei +2 位作者 Jianhua Yan Zheng Bo Zhu Liu 《Materials Genome Engineering Advances》 2025年第4期17-27,共11页
Ionic conductivity is a critical determinant of electrolyte performance in lithium-ion batteries,governing functionalities such as rate capability and low-temperature operability.Conventional optimizations,empirical o... Ionic conductivity is a critical determinant of electrolyte performance in lithium-ion batteries,governing functionalities such as rate capability and low-temperature operability.Conventional optimizations,empirical or simulation-based,face significant limitations in either resource efficiency or predictive ac-curacy.To address these challenges,we developed an interpretable machine learning(ML)framework that combines least absolute shrinkage and selection operator(LASSO)regression with SHapley Additive exPlanations analysis to elucidate structure-property relationships in multicomponent electrolytes.This framework proposes a novel descriptor,model-input-weighted sum of LASSo features,which quantitatively captures the collective influence of molecular characteristics on ionic conductivity.Our approach achieves state-of-the-art pre-dictive accuracy(RMSE=1.33 mS cm^(-1),R^(2)=0.88)while identifying two dominant molecular features:PEOE_VSA1,representing surface charge distribu-tion,and NumAtomStereoCenters,reflecting stereochemical complexity.This led to the design of an optimized ternary electrolyte(1 mo1 L^(-1)LiTFSI in MA:THF:DMF,5:3:2 molar ratio)demonstrating unprecedented conductivity values:15.74 mS cm^(-1)at 25°C and 2.69 mS cm^(-1)at-70°C.These results validate our framework's ability to guide the development of high-performance electrolytes for low-temperature applications.This study establishes a robust ML framework for accelerated electrolyte discovery,providing fundamental insights into molecular determinants of ionic conductivity. 展开更多
关键词 high ionic conductivity interpretable machine leaming framework lithium-ion battery low-temperature electrolytes
在线阅读 下载PDF
Highly Active Interfacial Sites in SFT-SnO_(2) Heterojunction Electrolyte for Enhanced Fuel Cell Performance via Engineered Energy Bands:Envisioned Theoretically and Experimentally 被引量:1
4
作者 Sajid Rauf Muhammad Bilal Hanif +8 位作者 Faiz Wali Zuhra Tayyab Bin Zhu Naveed Mushtaq Yatao Yang Kashif Khan Peter D.Lund Martin Motola Wei Xu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期384-397,共14页
Extending the ionic conductivity is the pre-requisite of electrolytes in fuel cell technology for high-electrochemical performance.In this regard,the introduction of semiconductor-oxide materials and the approach of h... Extending the ionic conductivity is the pre-requisite of electrolytes in fuel cell technology for high-electrochemical performance.In this regard,the introduction of semiconductor-oxide materials and the approach of heterostructure formation by modulating energy bands to enhance ionic conduction acting as an electrolyte in fuel cell-device.Semiconductor(n-type;SnO_(2))plays a key role by introducing into p-type SrFe_(0.2)Ti_(0.8)O_(3-δ)(SFT)semiconductor perovskite materials to construct p-n heterojunction for high ionic conductivity.Therefore,two different composites of SFT and SnO_(2)are constructed by gluing p-and n-type SFT-SnO_(2),where the optimal composition of SFT-SnO_(2)(6∶4)heterostructure electrolyte-based fuel cell achieved excellent ionic conductivity 0.24 S cm^(-1)with power-output of 1004 mW cm^(-2)and high OCV 1.12 V at a low operational temperature of 500℃.The high power-output and significant ionic conductivity with durable operation of 54 h are accredited to SFT-SnO_(2)heterojunction formation including interfacial conduction assisted by a built-in electric field in fuel cell device.Moreover,the fuel conversion efficiency and considerable Faradaic efficiency reveal the compatibility of SFT-SnO_(2)heterostructure electrolyte and ruled-out short-circuiting issue.Further,the first principle calculation provides sufficient information on structure optimization and energy-band structure modulation of SFT-SnO_(2).This strategy will provide new insight into semiconductor-based fuel cell technology to design novel electrolytes. 展开更多
关键词 high ionic conductivity interfacial conduction modulated energy band structure p-n heterojunction SEMICONDUCTORS
在线阅读 下载PDF
Defect chemistry engineering of Ga-doped garnet electrolyte with high stability for solid-state lithium metal batteries
5
作者 陈思汗 黎俊 +5 位作者 刘可可 孙笑晨 万京伟 翟慧宇 唐新峰 谭刚健 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期560-567,共8页
Ga-doped Li_(7)La_(3)Zr_(2)O_(12)(Ga-LLZO)has long been considered as a promising garnet-type electrolyte candidate for all-solid-state lithium metal batteries(ASSLBs)due to its high room temperature ionic conductivit... Ga-doped Li_(7)La_(3)Zr_(2)O_(12)(Ga-LLZO)has long been considered as a promising garnet-type electrolyte candidate for all-solid-state lithium metal batteries(ASSLBs)due to its high room temperature ionic conductivity.However,the typical synthesis of Ga-LLZO is usually accompanied by the formation of undesired LiGaO_(2) impurity phase that causes severe instability of the electrolyte in contact with molten Li metal during half/full cell assembly.In this study,we show that by simply engineering the defect chemistry of Ga-LLZO,namely,the lithium deficiency level,LiGaO_(2) impurity phase is effectively inhibited in the final synthetic product.Consequently,defect chemistry engineered Ga-LLZO exhibits excellent electrochemical stability against lithium metal,while its high room temperature ionic conductivity(~1.9×10^(-3)S·cm^(-1))is well reserved.The assembled Li/Ga-LLZO/Li symmetric cell has a superior critical current density of 0.9 mA·cm^(-2),and cycles stably for 500 hours at a current density of 0.3 mA·cm^(-2).This research facilitates the potential commercial applications of high performance Ga-LLZO solid electrolytes in ASSLBs. 展开更多
关键词 Ga-doped Li_7La_3Zr_2O_(12)(Ga-LLZO) defect chemistry engineering high room temperature ionic conductivity electrochemical stability
原文传递
Recent advances of composite electrolytes for solid-state Li batteries 被引量:6
6
作者 Laiqiang Xu Jiayang Li +7 位作者 Honglei Shuai Zheng Luo Baowei Wang Susu Fang Guoqiang Zou Hongshuai Hou Hongjian Peng Xiaobo Ji 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期524-548,共25页
All-solid-state lithium batteries(ASSLBs)are recognized as high energy density batteries system without safety issues within the next generation of batteries.The development of solid electrolytes is the crucial step o... All-solid-state lithium batteries(ASSLBs)are recognized as high energy density batteries system without safety issues within the next generation of batteries.The development of solid electrolytes is the crucial step of ASSLBs.The composite electrolyte has stable physical and electrochemical characteristics,and its comprehensive performance surpasses the individual solid electrolyte,bringing unique vitality to the solid electrolyte.However,their intrinsic weakness limits the development of composite electrolytes.In this review,we provide a comprehensive and in-depth understanding of the challenges and opportunities of composite electrolytes,with special focus on mechanisms of ion transport,nanostructure design towards high ionic conductivity,interfacial issues within electrolytes and electrodes.Furthermore,future development is prospected,which can shed light on researchers in this field and accelerate the industrial production of composite electrolytes. 展开更多
关键词 high energy density Composite electrolytes Ion transport high ionic conductivity Interfacial issues
在线阅读 下载PDF
Modified room temperature solid-state synthesis of yttria-stabilized zirconia(YSZ) nano-powders for solid oxide fuel cells 被引量:1
7
作者 Xiaoqian Xu Yurun Feng +6 位作者 Zhaoyu Zhong Xue Guo Zhenhao Zhang Jiao Li Shikai Zhao Shigang Wu Haibin Sun 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第9期1385-1391,I0004,共8页
High-performance solid oxide fuel cell(SOFC) is in urgent need of high-quality electrolyte powders with high reactivity and chemical uniformity.Here,8 mol% Y_(2)O_(3) doped ZrO_(2)(YSZ) nano-powders were synthesized b... High-performance solid oxide fuel cell(SOFC) is in urgent need of high-quality electrolyte powders with high reactivity and chemical uniformity.Here,8 mol% Y_(2)O_(3) doped ZrO_(2)(YSZ) nano-powders were synthesized by an improved solid-state reaction method at ambient temperature,and were applied to the fabrication of SOFC electrolytes.YSZ nano-powders show average grain sizes of ^(2)0 nm and high dispersibility,which is comparable with or even better than some other chemical methods.Benefitting from their high reactivity,dense YSZ electrolytes(relative density of 97.9%) can be obtained at a relatively low sintering temperature of 1400℃.The optimized electrical conductivity reaches up to a high value of0.034 S/cm at 800 0C in air.The anode supported single cell with the construction of Ni-YSZ/YSZ/Sm_(0.2)Ce_(0.8)O_(2-δ)(SDC)/La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)(LSCF) exhibits the peak power density of 0.827 W/cm^(2) at800℃ while taking wet H_(2) as fuels and ambient air as oxidants. 展开更多
关键词 Room temperature solid-state reaction YSZ electrolyte high sintering activity high ionic conductivity Rare earths
原文传递
Functional inorganic additives in composite solid-state electrolytes for flexible lithium metal batteries 被引量:4
8
作者 Honglan Huang Chao Liu +6 位作者 Ziya Liu Yunyan Wu Yifan Liu Jinbo Fan Gen Zhang Pan Xiong Junwu Zhu 《Advanced Powder Materials》 2024年第1期22-39,共18页
Flexible lithium metal batteries with high capacity and power density have been regarded as the core power resources of wearable electronics.However,the main challenge lies in the limited electrochemical performance o... Flexible lithium metal batteries with high capacity and power density have been regarded as the core power resources of wearable electronics.However,the main challenge lies in the limited electrochemical performance of solid-state polymer electrolytes,which hinders further practical applications.Incorporating functional inorganic additives is an effective approach to improve the performance,including increasing ionic conductivity,achieving dendrite inhibiting capability,and improving safety and stability.Herein,this review summarizes the latest developments of functional inorganic additives in composite solid-state electrolytes for flexible metal batteries with special emphasis on their mechanisms,strategies,and cutting-edge applications,in particular,the relationship between them is discussed in detail.Finally,the perspective on future research directions and the key challenges on this topic are outlooked. 展开更多
关键词 Composite solid-state electrolytes Functional inorganic additives Lithium metal batteries high ionic conductivity Dendrite-free anode
在线阅读 下载PDF
Stretchable and conductive lignin hydrogel electrolyte for flexible supercapacitor
9
作者 He-Fei Wan Xin Zhao +2 位作者 Qian Guo Ce Gao Run-Cang Sun 《Frontiers of Chemical Science and Engineering》 2025年第4期117-125,共9页
Although lignin is the second most abundant forest biomass polymer,it has been largely neglected in hydrogel electrolytes due to its insolubility and inflexibility.In this study,a double-crosslinked hydrogel was prepa... Although lignin is the second most abundant forest biomass polymer,it has been largely neglected in hydrogel electrolytes due to its insolubility and inflexibility.In this study,a double-crosslinked hydrogel was prepared using aspartic acid-modified lignin and sodium alginate,significantly improving the mechanical properties.The hydrogel exhibited an exceptional strain of 3008%and a tensile strength of 0.03 MPa,demonstrating its remarkable mechanical properties.In addition,high ionic conductivity(11.7 mS∙cm-1)was obtained due to the abundant presence of hydrophilic groups in the hydrogel.The hydrogel-assembled supercapacitor manifested an impressive specific capacitance of 39.46 F∙g^(-1).Notably,the supercapacitor showed a wide potential window of 0-1.5 V and achieved a maximum energy density of 5.48 Wh∙kg-1 at the power density of 499.9 W∙kg^(-1).The capacitance retention remained at 115%after 10000 charge-discharge cycles.Finally,the coulombic efficiency was almost 100%during the cycles.Upon reaching a bending angle of 90°,the specific capacitance retention remained impressively high at 94%.These results suggest that the supercapacitor cans maintain normal electrochemical performance under extremely harsh conditions. 展开更多
关键词 aspartic acid modified lignin doublecrosslinked hydrogel electrolytes high ionic conductivity SUPERCAPACITOR
原文传递
NASICONs-type solid-state electrolytes:The history,physicochemical properties,and challenges 被引量:8
10
作者 Lixiao Zhang Yimeng Liu +2 位作者 Ya You Ajayan Vinu Liqiang Mai 《Interdisciplinary Materials》 2023年第1期91-110,共20页
Solid-state electrolytes are critical for the development of next-generation high-energy and high-safety rechargeable batteries.Among all the candidates,sodium(Na)superionic conductors(NASICONs)are highly promising be... Solid-state electrolytes are critical for the development of next-generation high-energy and high-safety rechargeable batteries.Among all the candidates,sodium(Na)superionic conductors(NASICONs)are highly promising because of their evident advantages in high ionic conductivity and high chemical/electrochemical stability.The concept of NASICONs was proposed by Hong and Goodenough et al.in 1976 by reporting the synthesis and characterization of Na1+xZr2(SixP3−x)O12(0≤x≤3),which has attracted tremendous attention on the NASICONs-type solid-state electrolytes.In this review,we are committed to describing the development history of NASICONs-type solid-state electrolytes and elucidating the contribution of Goodenough as a tribute to him.We summarize the correlations and differences between lithium-based and sodium-based NASICONs electrolytes,such as their preparation methods,structures,ionic conductivities,and the mechanisms of ion transportation.Critical challenges of NASICONs-structured electrolytes are discussed,and several research directions are proposed to tackle the obstacles toward practical applications. 展开更多
关键词 electrode/electrolyte interface grain boundary resistance high ionic conductivity NASICONs solid-state electrolyte
在线阅读 下载PDF
Novel Zr-doped β-Li_(3)PS_(4) solid electrolyte for all-solid-state lithium batteries with a combined experimental and computational approach
11
作者 Junbo Zhang Guoxi Zhu +6 位作者 Han Li Jiangwei Ju Jianwei Gu Renzhuang Xu Sumin Jin Jianqiu Zhou Bingbing Chen 《Nano Research》 SCIE EI CSCD 2023年第2期3516-3523,共8页
All-solid-state lithium batteries(ASSLBs)are promising for safety and high-energy-density large-scale energy storage.In this contribution,we propose a Li_(3–4x)Zr_(x)PS_(4)(LZPS)by Zr-dopedβ-Li_(3)PS_(4)(LPS)as a no... All-solid-state lithium batteries(ASSLBs)are promising for safety and high-energy-density large-scale energy storage.In this contribution,we propose a Li_(3–4x)Zr_(x)PS_(4)(LZPS)by Zr-dopedβ-Li_(3)PS_(4)(LPS)as a novel solid electrolyte(SE)for ASSLBs based on experimental and simulation methods.The structure,electronic property,mechanical property,and ionic transport properties of LZPS(x=0,0.03,0.06,and 0.1)are investigated with first-principles calculations.Meanwhile,LZPS is prepared by solid states reaction method.By combining experimental analysis and first-principles calculations,it is confirmed that a small amount of Zr4+can be successfully doped into the framework ofβ-LPS composites without significantly compromising structural integrity.When the Zr^(4+)concentration is x=0.03,the doped material Li_(2.88)Zr_(0.03)PS_(4)exhibits the highest ionic conductivity(5.1×10^(−4)S·cm^(−1))at 30℃,and the Li-ion migration energy barrier is the lowest.The Li_(2.88)Zr_(0.03)PS_(4)SE has obtained the best mechanical properties,the good ductility,and shear deformation resistance,which can better maintain the structural stability of the battery.In addition,the Li/Li symmetrical cell is assembled,which shows excellent electrochemical stability of electrolyte against lithium.The constructed all-solid-state batteries(LiCoO_(2)-Li_(6)PS_(5)Cl|Li_(2.88)Zr_(0.03)PS_(4)|Li-In)delivers an initial discharge capacity of 130.4 mAh·g^(−1)at 0.2 C and a capacity retention of 85.1%after 100 cycles at room temperature.This study provides a promising electrolyte for the application of ASSLBs with high ionic conductivity and excellent stability against lithium. 展开更多
关键词 all-solid-state lithium batteries first-principles calculations high ionic conductivity interface stability
原文传递
Unlocking the potential of silicon anodes in lithium-ion batteries:A claw-inspired binder with synergistic interface bonding
12
作者 Jun Shen Shilin Zhang +10 位作者 Haoli Wang Renxin Wang Yingying Hu Yiyang Mao Ruilin Wang Huihui Zhang Yumeng Du Yameng Fan Yingtang Zhou Zaiping Guo Baofeng Wang 《eScience》 2024年第3期127-133,共7页
Binders play a crucial role in enhancing the cycling stability of silicon anodes in next-generation Li-ion batteries.However,traditional linear polymer binders have difficulty withstanding the volume expansion of sili... Binders play a crucial role in enhancing the cycling stability of silicon anodes in next-generation Li-ion batteries.However,traditional linear polymer binders have difficulty withstanding the volume expansion of silicon during cycling.Herein,inspired by the fact that animals’claws can grasp objects firmly,a claw-like taurine-grafted-poly(acrylic acid)binder(Tau-g-PAA)is designed to improve the electrochemical performance of silicon anodes.The synergistic effects of different polar groups(sulfo and carboxyl)in Tau-g-PAA facilitate the formation of multidimensional interactions with silicon nanoparticles and the diffusion of Li ions,thereby greatly improving the stability and rate performance of silicon anodes,which aligns with results from density functional theory(DFT)simulations.As expected,a Tau-g-PAA/Si electrode exhibits excellent cycling performance with a high specific capacity of 1003mAhg−1at 1C(1C=4200mAhg−1)after 300 cycles,and a high rate performance.The design strategy of using polar small molecule-grafted polymers to create claw-like structures could inspire the development of better binders for silicon-based anodes. 展开更多
关键词 Si electrode Taurine-g-poly(acrylic acid) Claw-inspired binder high ionic conductivity
原文传递
LPEO enhanced LAGP composite solid electrolytes for lithium metal batteries
13
作者 Dongmei Dai Pengyao Yan +9 位作者 Xinxin Zhou Haowen Li Zhuangzhuang Zhang Liang Wang Mingming Han Xiaobing Lai Yaru Qiao Mengmin Jia Bao Li Dai-Huo Liu 《Green Carbon》 2024年第3期310-315,共6页
The application of solid electrolyte is expected to realize the commercialization of high energy density lithium metal batteries(LMBs).While the interfacial contact between solid inorganic electrolyte and electrodes h... The application of solid electrolyte is expected to realize the commercialization of high energy density lithium metal batteries(LMBs).While the interfacial contact between solid inorganic electrolyte and electrodes has become a stumbling block for achieving stable cycling in LMBs.In this work,a Li-containing polyethylene oxide(LPEO)was introduced between LAGP and electrodes as a buffer layer to regulate the interfacial compatibility and reduce interfacial impedance,inhibiting the side reactions.Moreover,ether-oxygen bond on LPEO chain can coordinate with Li+and guide the transportation of Li+,achieving fast Li+diffusion between Li1+xAlxGe2-x(PO4)3(LAGP)and electrodes.Specifically,the growth of lithium dendrites is effectively suppressed in LAGP with LPEO modification,which would lead to remarkable cycling stability and rate capability.Therefore,the Li|LPEO-LAGP|Li battery can cycle stably for more than 600 h at 0.1 mA cm−2.In addition,long-term performance of Li|LPEO-LAGP|LiFePO4(LFP)battery was achieved at a rate of 0.4 C,and capacity retention is more than 74%after 200 cycles.The Li|LPEO-LAGP|LiNi0.8Co0.1Mn0.1O2 also realized the steady operation in the voltage range of 2.8-4.3 V. 展开更多
关键词 LAGP solid electrolyte LPEO buffer layer Interfacial modification high ionic conductivity Lithium metal battery
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部