Conventional superconducting nanowire single-photon detectors(SNSPDs)have been typically limited in their applications due to their size,weight,and power consumption,which confine their use to laboratory settings.Howe...Conventional superconducting nanowire single-photon detectors(SNSPDs)have been typically limited in their applications due to their size,weight,and power consumption,which confine their use to laboratory settings.However,with the rapid development of remote imaging,sensing technologies,and long-range quantum communication with fewer topographical constraints,the demand for high-efficiency single-photon detectors integrated with avionic platforms is rapidly growing.We herein designed and manufactured the first drone-based SNSPD system with a system detection efficiency(SDE)as high as 91.8%.This drone-based system incorporates high-performance NbTiN SNSPDs,a self-developed miniature liquid helium dewar,and custom-built integrated electrical setups,making it capable of being launched in complex topographical conditions.Such a drone-based SNSPD system may open the use of SNSPDs for applications that demand high SDE in complex environments.展开更多
An experiment for m p(14C},14C*→10Be+α)p inelastic excitation and decay was performed in inverse kinematics at a beam energy of 25.3 MeV/u. A series of 14C excited states, including a new one at 18.3(1) MeV, w...An experiment for m p(14C},14C*→10Be+α)p inelastic excitation and decay was performed in inverse kinematics at a beam energy of 25.3 MeV/u. A series of 14C excited states, including a new one at 18.3(1) MeV, were observed which decay to various states of the final nucleus of 10Be. A specially designed telescope system, installed around zero degrees, played an essential role in detecting the resonant states near the α-separation threshold. A state at 14.1(1) MeV is clearly identified, being consistent with the predicted band-head of the molecular rotational band characterized by the π-bond linear chain configuration. Further clarification of the properties of this exotic state is suggested by using appropriate reaction tools.展开更多
基金the Innovation Program for Quantum Science and Technology(Grant No.2023ZD0300100)the National Key Research and Development Program of China(Grant Nos.2023YFB3809600 and 2023YFC3007801)+1 种基金the National Natural Science Foundation of China(Grant Nos.62301543 and U24A20320)the Shanghai Sailing Program(Grant No.21YF1455700).
文摘Conventional superconducting nanowire single-photon detectors(SNSPDs)have been typically limited in their applications due to their size,weight,and power consumption,which confine their use to laboratory settings.However,with the rapid development of remote imaging,sensing technologies,and long-range quantum communication with fewer topographical constraints,the demand for high-efficiency single-photon detectors integrated with avionic platforms is rapidly growing.We herein designed and manufactured the first drone-based SNSPD system with a system detection efficiency(SDE)as high as 91.8%.This drone-based system incorporates high-performance NbTiN SNSPDs,a self-developed miniature liquid helium dewar,and custom-built integrated electrical setups,making it capable of being launched in complex topographical conditions.Such a drone-based SNSPD system may open the use of SNSPDs for applications that demand high SDE in complex environments.
基金Supported by National Key R&D Program of China(2018YFA0404403)the National Natural Science Foundation of China(11535004,11775004,11405005,11375017)
文摘An experiment for m p(14C},14C*→10Be+α)p inelastic excitation and decay was performed in inverse kinematics at a beam energy of 25.3 MeV/u. A series of 14C excited states, including a new one at 18.3(1) MeV, were observed which decay to various states of the final nucleus of 10Be. A specially designed telescope system, installed around zero degrees, played an essential role in detecting the resonant states near the α-separation threshold. A state at 14.1(1) MeV is clearly identified, being consistent with the predicted band-head of the molecular rotational band characterized by the π-bond linear chain configuration. Further clarification of the properties of this exotic state is suggested by using appropriate reaction tools.