期刊文献+
共找到366篇文章
< 1 2 19 >
每页显示 20 50 100
Bioinspired Actuation of Liquid Crystal Elastomers with Hierarchical Structures Based on Light Response
1
作者 Li-Zhi Zhang Bo-Yu Liu +1 位作者 Chen Zhu Lin Xu 《Chinese Journal of Polymer Science》 2025年第11期1981-1990,I0007,共11页
This work proposes a bioinspired hierarchical actuation strategy based on liquid crystal elastomers(LCEs),inspired by the helical topological dynamic adaptation mechanism of plant tendrils,to overcome the bottleneck o... This work proposes a bioinspired hierarchical actuation strategy based on liquid crystal elastomers(LCEs),inspired by the helical topological dynamic adaptation mechanism of plant tendrils,to overcome the bottleneck of precise anisotropic control in LCEs.Mechanically pre-programmed hierarchical LCE structures responsive to near-infrared(NIR)light were fabricated:the oriented constrained actuator achieves asymmetric contraction under NIR irradiation,enabling reversible switching between helix and planar morphologies with multi-terrain grasping capability;the biomimetic vine-like helical actuator,composed of Ag nanowire photothermal layers combined with helical LCE,utilizes temperaturegradient-induced phase transition wave propagation to achieve NIR-controlled climbing motion;the M?bius topology actuator realizes reversible deformation or self-locking states by tuning the twist angle(180°/360°);based on these,a bioinspired koala-like concentric soft robot was constructed,successfully demonstrating tree trunk climbing.This study reveals that artificial helical stretching significantly enhances the molecular chain orientation of LCEs(surpassing uniaxial stretching),reaching up to 1000%pre-strain,and the Ag NWs/LCE/PI(Polyimide)tri-layer structure achieves efficient photothermal-mechanical energy conversion via localized surface plasmon resonance(LSPR).This study provides a new paradigm for soft robotics material design and topological programming,demonstrating the potential for remote operation and adaptive grasping. 展开更多
关键词 Liquid crystal elastomers Bioinspired actuation hierarchical structures Topological structures
原文传递
Hierarchical structures on platinum-iridium substrates enhancing conducting polymer adhesion 被引量:1
2
作者 Linze Li Changqing Jiang Luming Li 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第6期889-898,共10页
Conducting polymers(CPs),including poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS),are promising coating materials for neural electrodes.However,the weak adhesion of CP coatings to substrates such a... Conducting polymers(CPs),including poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS),are promising coating materials for neural electrodes.However,the weak adhesion of CP coatings to substrates such as platinum-iridium is a significant challenge that limits their practical application.To address this issue,we used femtosecond laser-prepared hierarchical structures on platinum-iridium(Pt-Ir)substrates to enhance the adhesion of PEDOT:PSS coatings.Next,we used cyclic voltammetry(CV)stress and accelerated aging tests to evaluate the stability of both drop cast and electrodeposited PEDOT:PSS coatings on Pt-Ir substrates,both with and without hierarchical structures.Our results showed that after 2000 CV cycles or five weeks of aging at 60℃,the morphology and electrochemical properties of the coatings on the Pt-Ir substrates with hierarchical structures remained relatively stable.In contrast,we found that smooth Pt-Ir substrate surfaces caused delamination of the PEDOT:PSS coating and exhibited both decreased charge storage capacity and increased impedance.Overall,enhancing the stability of PEDOT:PSS coatings used on common platinum-iridium neural electrodes offers great potential for improving their electrochemical performance and developing new functionalities. 展开更多
关键词 hierarchical structures Femtosecond laser Conducting polymers Neural electrodes Stability
暂未订购
Role of Multi-scale Hierarchical Structures in Regulating Wetting State and Wetting Properties of Structured Surfaces
3
作者 Yue Jiang Xinyi Li +5 位作者 Zhichao Ma Zhihui Zhang Cuie Wen Zhonghao Jiang Nan Lin Luquan Ren 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第3期1347-1359,共13页
Amplifying the intrinsic wettability of substrate material by changing the solid/liquid contact area is considered to be the main mechanism for controlling the wettability of rough or structured surfaces.Through theor... Amplifying the intrinsic wettability of substrate material by changing the solid/liquid contact area is considered to be the main mechanism for controlling the wettability of rough or structured surfaces.Through theoretical analysis and experimental exploration,we have found that in addition to this wettability structure amplification effect,the surface structure also simultaneously controls surface wettability by regulating the wetting state via changing the threshold Young angles of the Cassie-Baxter and Wenzel wetting regions.This wetting state regulation effect provides us with an alternative strategy to overcome the inherent limitation in surface chemistry by tailoring surface structure.The wetting state regulation effect created by multi-scale hierarchical structures is quite significant and plays is a crucial role in promoting the superhydrophobicity,superhydrophilicity and the transition between these two extreme wetting properties,as well as stabilizing the Cassie-Baxter superhydrophobic state on the fabricated lotus-like hierarchically structured Cu surface and the natural lotus leaf. 展开更多
关键词 hierarchical structure Wetting state regulation Wetting transition SUPERHYDROPHOBICITY SUPERHYDROPHILICITY
在线阅读 下载PDF
Enhanced photodegradation activity of ZnO:Eu3+and ZnO:Eu3+@Au 3D hierarchical structures 被引量:2
4
作者 Nataliya Babayevska Igor Iatsunskyi +3 位作者 Patryk Florczak Marcin Jarek Barbara Peplińska Stefan Jurga 《Journal of Rare Earths》 SCIE EI CAS CSCD 2020年第1期21-28,共8页
In this work the flower-like hierarchical structures(HS) based on 3 D pristine ZnO,ZnO:Eu^3+ and ZnO:Eu^3+ @Au were successfully obtained by a template-free solvothermal and deposition-precipitation method.The decolor... In this work the flower-like hierarchical structures(HS) based on 3 D pristine ZnO,ZnO:Eu^3+ and ZnO:Eu^3+ @Au were successfully obtained by a template-free solvothermal and deposition-precipitation method.The decolorization/photodegradation of these structures towards model organic dye(rhodamine 6 G) was studied.The synthesized ZnO-based HS were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),UV-vis and photoluminescence(PL) spectroscopies.The proposed synthesis approaches allow to obtain highly crystalline 3 D ZnO,ZnO:Eu^3+ and ZnO:Eu^3+ @Au composites.Results of scanning microscopy show that ZnO flower-like HS are assemblies from smaller components,forming larger ones,the whole ZnO structure was approximately 3 μm.Au nanoparticles(size^10 nm)are successfully deposited on ZnO HS surface.Luminescent studies show that ZnO is an ideal matrix for incorporation of Eu^3+ ions in broad concentration range(Eu^3+=1.0 at%-5.0 at%) with an efficient red luminescence.The strong UV emission in ZnO,as well as ZnO;Eu^3+HS is observed under 325 nm excitation.Doping of ZnO HS matrix by Eu^3+ions leads to the red shift of deep level emission peak(DLE).The PL intensity reaches the maximum up to 5 at% Eu^3+.The photocatalytic properties of ZnO and ZnO:Eu^3+ @Au HS were investigated under UV-Vis light irradiation towards rhodamine 6 G.The obtained results demonstrate the synergetic effect of the deposited gold nanoparticles and Eu3^+ doping on photocatalytic activity of ZnO:Eu^3+@Au HS in comparison to pristine ZnO and ZnO:Eu^3+ HS. 展开更多
关键词 Zinc oxide hierarchical structures EUROPIUM GOLD PHOTOCATALYSIS Rhodamine 6G
原文传递
Wettability regulated gram-negative bacterial adhesion on biomimetic hierarchical structures 被引量:1
5
作者 You Jiang Yi-Jie Yin +2 位作者 Xin-Cheng Zha Xiao-Qiu Dou Chuan-Liang Feng 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第4期813-817,共5页
One of the critical issues in gram-negative bacterial adhesion is how wettability regulates adhesion as the surface wettability varies from superhydrophilic to superhydrophobic,and what is the relevant/contributing ro... One of the critical issues in gram-negative bacterial adhesion is how wettability regulates adhesion as the surface wettability varies from superhydrophilic to superhydrophobic,and what is the relevant/contributing role of the lipopolysaccharide(LPS) outer layer of the gram-negative shell during this procedure.Herein,by avoiding the unexpected influence induced by the varied topographies,control over gram-negative bacteria adhesion by wettability is achieved on biomimetic hierarchical surfaces,which is mainly mediated by LPS layer.The study provides a methodology to have a good control over bacteria cell adhesion by properly designing wettable surface structures.This design concept is helpful for developing new generations of biomaterials in order to control a variety of diseases induced by gramnegative bacteria,which still continue to be very important and necessary in the fields of biomedicine. 展开更多
关键词 Wettability Gelator Self-assembly hierarchical structures Bacteria adhesion
原文传递
NiO nanoparticles-decorated ZnO hierarchical structures for isopropanol gas sensing 被引量:3
6
作者 Shi-Chao Wang Xiao-Hu Wang +5 位作者 Gao-Qun Qiao Xiao-Yan Chen Xin-Zhen Wang Nan-Nan Wu Jian Tian Hong-Zhi Cui 《Rare Metals》 SCIE EI CAS CSCD 2022年第3期960-971,共12页
In this paper,a three-dimensional(3D)hierar-chical ZnO structure consisting of nanosheets modified with ultrafine NiO particles was synthesized via a facile two-step chemical precipitate method.Various techniques char... In this paper,a three-dimensional(3D)hierar-chical ZnO structure consisting of nanosheets modified with ultrafine NiO particles was synthesized via a facile two-step chemical precipitate method.Various techniques characterized the as-synthesized ZnO/NiO composites and pure ZnO.The p-NiO/n-ZnO junctions formed between adjacent ZnO and NiO nanoparticles,improving the gas sensing performance.The ZnO/NiO composite with the Ni:Zn atomic ratio of 7.42:100 exhibited the best iso-propanol sensing properties.Compared to pure ZnO,it showed high selectivity and sensitivity(R_(a)/R_(g)=221.3 toward 400×10^(-6)isopropanol),fast response rate(less than 10 s),short recovery time,and simultaneously low operating temperature.Also,the ZnO/NiO composite exhibited a wide sensing range(1×10^(-6)-1000×10^(-6))to isopropanol and processed good long-term stability.The experimental results suggested the potential application in fabricating efficient isopropanol sensors using this ZnO/NiO composite.The enhanced isopropanol sensing mech-anism is also discussed in charge transfer between heterojunctions,surface area,and surface defects. 展开更多
关键词 ZNO NIO hierarchical structure Gas sensor ISOPROPANOL
原文传递
Fabrication and efficient electromagnetic waves attenuation of three-dimensional porous reduced graphene oxide/boron nitride/silicon carbide hierarchical structures 被引量:3
7
作者 Qiuqi Zhang Xiao You +5 位作者 Li Tian Mengmeng Wang Xiangyu Zhang Ying Shi Jinshan Yang Shaoming Dong 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第24期192-201,共10页
In this work,hierarchical hybrid composites consisting of porous three-dimensional reduced graphene oxide(3D-rGO)skeleton and lamellar boron nitride(BN)/silicon carbide(SiC)coatings are prepared by chemical vapor infi... In this work,hierarchical hybrid composites consisting of porous three-dimensional reduced graphene oxide(3D-rGO)skeleton and lamellar boron nitride(BN)/silicon carbide(SiC)coatings are prepared by chemical vapor infiltration(CVI)process.The graphene framework prepared by 3D printing and frozen self-assembly exhibits a lightweight structure and a perforated conductive network,which extends the transmission path of incident microwaves.The introduced ceramic coatings can effectively tune the impedance matching degree and supply a lossy phase,and the hierarchical structure of the composites enhances the multiple scattering of the incident microwaves.As expected,the 3D-rGO/BN/SiC composites possess an excellent absorbing performance with a minimum reflection loss value of–37.8 dB,and the widest effective absorbing bandwidth(RL<–10 dB)of 5.90 GHz is obtained.The controllable fabrication of composites can provide a guideline for rational design and fabrication of high-performance electromagnetic waves absorbing materials in practical applications. 展开更多
关键词 Porous network structure hierarchical structure Electromagnetic wave absorbing High attenuation ability Effective absorbing bandwidth
原文传递
Boosting multiple loss by hierarchical nano-architecture with manipulation of interfacial charge redistribution in Mott-Schottky heterostructures for enhanced electromagnetic absorption
8
作者 Tong Liu Chong Wang +7 位作者 Hai Huang Haoyang Huo Miao Li Chenzhengzhe Yan Ge Zhang Hao Li Xingxing Zhang Wenhuan Huang 《Journal of Materials Science & Technology》 2025年第20期66-75,共10页
The regulation of the interfacial electric field plays a pivotal role in magnifying the electromagnetic en-ergy attenuation capability during the design and synthesis of efficient and tunable absorbers for elec-tromag... The regulation of the interfacial electric field plays a pivotal role in magnifying the electromagnetic en-ergy attenuation capability during the design and synthesis of efficient and tunable absorbers for elec-tromagnetic waves(EMW).Herein,a rational and universally applicable two-step hydrothermal method strategy was proposed to effectively control the electronic structure of Mott-Schottky EMW absorbing materials derived from Co-MOF.The as-synthesized Co_(3)S_(4)@MoS_(2)/NC ensures efficient electron transfer,while the change redistribution leads to the emergence of additional electric dipoles under an external EMM field.In addition,the hierarchical Co_(3)S_(4)@MoS_(2)/NC nano-architecture with a hierarchical arrange-ment in 2D and 3D offers more polarization sites,thereby extending the path for EMW transmission through multiple reflections and scattering.The potential to enhance the EMW absorption performance of Co_(3)S_(4)@MoS_(2)/NC lies in its unique microstructure and substantial surface area,which optimize impedance matching properties through a synergistic effect of dipole and interfacial polarization induced by Mott-Schottky heterointerfaces.As anticipated,the Co_(3)S_(4)@MoS_(2)/NC exhibits a maximum EMW absorption ca-pacity with an RLmin value of-41.97 dB and a broad EAB of 4.24 GHz at a thickness of 2.0 mm.This study provides insights for designing highly efficient Mott-Schottky EMW absorbing materials at the molecular level rationally. 展开更多
关键词 Electromagnetic wave absorption Mott-Schottky heterostructures Multiple loss hierarchical structures
原文传递
Bolstered bone regeneration by multiscale customized magnesium scaffolds with hierarchical structures and tempered degradation
9
作者 Zehui Lv Bo Peng +7 位作者 Yu Ye Haojing Xu Xuejie Cai Jinge Liu Jiabao Dai Yixin Bian Peng Wen Xisheng Weng 《Bioactive Materials》 2025年第4期457-475,共19页
Addressing irregular bone defects is a formidable clinical challenge,as traditional scaffolds frequently fail to meet the complex requirements of bone regeneration,resulting in suboptimal healing.This study introduces... Addressing irregular bone defects is a formidable clinical challenge,as traditional scaffolds frequently fail to meet the complex requirements of bone regeneration,resulting in suboptimal healing.This study introduces a novel 3D-printed magnesium scaffold with hierarchical structure(macro-,meso-,and nano-scales)and tempered degradation(microscale),intricately customized at multiple scales to bolster bone regeneration according to patient-specific needs.For the hierarchical structure,at the macroscale,it can feature anatomic geometries for seamless integration with the bone defect;The mesoscale pores are devised with optimized curvature and size,providing an adequate mechanical response as well as promoting cellular proliferation and vascularization,essential for natural bone mimicry;The nanoscale textured surface is enriched with a layered double hydroxide membrane,augmenting bioactivity and osteointegration.Moreover,microscale enhancements involve a duallayer coating of high-temperature oxidized film and hydrotalcite,offering a robust shield against fast degradation.Eventually,this scaffold demonstrates superior geometrical characteristics,load-bearing capacity,and degradation performance,significantly outperforming traditional scaffolds based on in vitro and in vivo assessments,marking a breakthrough in repairing customized bone defects. 展开更多
关键词 hierarchical structure Tempered degradation Mg scaffold 3D printing Biodegradable bone implants
原文传递
Understanding the Machining Process of Hierarchical Micro/Nanograting Structures Used for Optical Variable Device
10
作者 Yanquan Geng Wenhan Zhu +5 位作者 Xiaosong Zhang Aoxiang Zhang Yongda Yan Hailong Cui Bo Xue Jiqiang Wang 《Chinese Journal of Mechanical Engineering》 2025年第1期161-185,共25页
Hierarchical micro/nanograting structures have attracted increasing attention owing to their significant applications in the fields of structural coloring,anti-counterfeiting,and decoration.Thus,the fabrication of hie... Hierarchical micro/nanograting structures have attracted increasing attention owing to their significant applications in the fields of structural coloring,anti-counterfeiting,and decoration.Thus,the fabrication of hierarchical micro/nanograting structures is important for these applications.In this study,a strategy for machining hierarchical micro/nanograting structures is developed by controlling the tool movement trajectory.A coupling Euler-Lagrange finite element model is established to simulate the machining process.The effect of the machining methods on the nanograting formation is demonstrated,and a suitable machining method for reducing the cutting force is obtained.The height of the nanograting decreases with an increase in the tool edge radius.Furthermore,optical variable devices(OVDs)are machined using an array overlap machining approach.Coding schemes for the parallel column unit crossover and column unit in the groove crossover are designed to achieve high-quality machining of OVDs.The coloring of the logo of the Harbin Institute of Technology and the logo of the centennial anniversary of the Harbin Institute of Technology on the surface of metal samples,such as aluminum alloys,is realized.The findings of this study provide a method for the fabrication of hierarchical micro/nanograting structures that can be used to prepare OVDs. 展开更多
关键词 hierarchical micro/nanograting structures Optical variable devices Finite element simulation Tool trajectory controlling
在线阅读 下载PDF
Designing hierarchical structures for innovative cooling textile 被引量:2
11
作者 Xiran Du Jinlei Li +1 位作者 Bin Zhu Jia Zhu 《Nano Research》 SCIE EI CSCD 2024年第10期9202-9224,共23页
The potential of personal cooling technologies in reducing air conditioning energy consumption and enhancing human thermal comfort is substantial.This review focuses on recent advancements in hierarchical structure de... The potential of personal cooling technologies in reducing air conditioning energy consumption and enhancing human thermal comfort is substantial.This review focuses on recent advancements in hierarchical structure design for innovative cooling textiles.Beginning with insights into fundamental heat transfer processes between the human body,textile,and the surroundings,we uncover key control mechanisms.Then the advanced hierarchical structure designs enabling effective radiation,sweat evaporation,conduction management,and integration of cold energy sources for realizing effective human body cooling are systematically summarized.Additionally,we explore multifunctional designs beyond cooling,including switchable cooling-heating and sensing.Finally,we engage in discussions on unifying cooling performance tests and additional multiple requirements to make strides toward practical applications.This review is anticipated to be a valuable resource,providing the scientific and industrial communities with a quick grasp of past advancements,current challenges,and future directions in achieving effective human body cooling. 展开更多
关键词 thermal comfort personal cooling TEXTILE hierarchical structures
原文传递
Robust Photo-responsive Superwetting Surfaces on Hierarchical-structured Copper Mesh via Dip-coating with Mussel-inspired Azo-copolymer
12
作者 Bo-Lun Feng Cong-Cong Zhai +7 位作者 De-Bin Zhang Hao-Chen Guo Hou-Li Zhang Lin Zhang Hui Li Lu Wang Lan Lei Chuan-Yong Zong 《Chinese Journal of Polymer Science》 2025年第7期1134-1145,共12页
Endowing stimuli-responsive materials with micro-nano structures is an intriguing strategy for the fabrication of superwetting surfaces;however,its application is limited by poor chemical/mechanical stability.Herein,a... Endowing stimuli-responsive materials with micro-nano structures is an intriguing strategy for the fabrication of superwetting surfaces;however,its application is limited by poor chemical/mechanical stability.Herein,a simple and versatile strategy was developed to fabricate durable polymeric superwetting surfaces with photoswitchable wettability on hierarchically structured metallic substrates.Inspired by nature,a novel functional terpolymer incorporating mussel-inspired catechol groups,photoresponsive azobenzene groups,and low-surface-energy fluorine-containing groups was synthesized via solution radical polymerization.The azobenzene-containing terpolymer possesses outstanding photoresponsiveness in both the solution and film states because of the trans-cis isomerization of the azobenzene moieties.After dip-coating with the mussel-inspired azo-copolymer,the as-prepared smart surfaces exhibited a photo-triggered change in wettability between high hydrophobicity and superhydrophilicity.More importantly,these superwetting surfaces with enhanced adhesion properties can tolerate harsh environmental conditions and repeated abrasion tests,thereby demonstrating excellent chemical robustness and mechanical durability.This study paves a new avenue for the convenient and large-scale fabrication of robust smart surfaces that could find widespread potential applications in microfluidic devices,water treatment,and functional coatings. 展开更多
关键词 PHOTO-RESPONSIVE Azo-copolymer Superwetting hierarchical structures DIP-COATING
原文传递
Lightweight and large-scale rGO reinforced SiBCN aerogels with hierarchical cellular structures exposed to high-temperature environments 被引量:1
13
作者 Huijie Wang Zhiwei Chen Dong Su 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第12期145-154,共10页
SiBCN ceramic aerogel is an ideal potential candidate for ultra-high temperature thermal insulation due to its unique microscopic pore structure combined with the excellent thermal stability of SiBCN ce-ramic.Here,red... SiBCN ceramic aerogel is an ideal potential candidate for ultra-high temperature thermal insulation due to its unique microscopic pore structure combined with the excellent thermal stability of SiBCN ce-ramic.Here,reduced graphene oxide(rGO)modified SiBCN aerogels(rGO/SiBCN)were prepared through solvothermal,freeze-casting and pyrolysis,and the dimension of the aerogel is up toΦ130 mm×28 mm.The density of the rGO/SiBCN aerogel is as low as 0.024 g/cm^(3) and the microstructural regulation is achieved by controlling the rGO content in the aerogel.The hierarchical cellular structure endows the aerogel with a high specific surface area(148.6 m^(2)/g)and low thermal conductivity(0.057 W m^(-1) K^(-1)).The 10 mm-thick sample exhibits excellent thermal insulation and ablation resistance,as evidenced by its ability to reduce the temperature from~1100℃to~180℃under the intense heat of a butane flame.Moreover,benefiting from the ultrahigh-temperature stability of SiBCN,the rGO/SiBCN aerogel exhibits good thermal stability up to 1200℃in argon and short-oxidation resistance at 800℃in air.There-fore,the rGO/SiBCN aerogel with superior overall performance could expand its practical application in high-temperature thermal insulation under extreme environments. 展开更多
关键词 rGO/SiBCN LIGHTWEIGHT Large size hierarchical cellular structure Thermal insulation
原文传递
Nano-Au-decorated hierarchical porous cobalt sulfide derived from ZIF-67 toward optimized oxygen evolution catalysis:Important roles of microstructures and electronic modulation 被引量:1
14
作者 Hongyu Gong Guanliang Sun +6 位作者 Wenhua Shi Dongwei Li Xiangjun Zheng Huan Shi Xiu Liang Ruizhi Yang Changzhou Yuan 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期1-14,共14页
Enhancing both the number of active sites available and the intrinsic activity of Co-based electrocatalysts simultaneously is a desirable goal.Herein,a ZIF-67-derived hierarchical porous cobalt sulfide decorated by Au... Enhancing both the number of active sites available and the intrinsic activity of Co-based electrocatalysts simultaneously is a desirable goal.Herein,a ZIF-67-derived hierarchical porous cobalt sulfide decorated by Au nanoparticles(NPs)(denoted as HP-Au@CoxSy@ZIF-67)hybrid is synthesized by low-temperature sulfuration treatment.The well-defined macroporous-mesoporous-microporous structure is obtained based on the combination of polystyrene spheres,as-formed CoxSy nanosheets,and ZIF-67 frameworks.This novel three-dimensional hierarchical structure significantly enlarges the three-phase interfaces,accelerating the mass transfer and exposing the active centers for oxygen evolution reaction.The electronic structure of Co is modulated by Au through charge transfer,and a series of experiments,together with theoretical analysis,is performed to ascertain the electronic modulation of Co by Au.Meanwhile,HP-Au@CoxSy@ZIF-67 catalysts with different amounts of Au were synthesized,wherein Au and NaBH4 reductant result in an interesting“competition effect”to regulate the relative ratio of Co^(2+)/Co^(3+),and moderate Au assists the electrochemical performance to reach the highest value.Consequently,the optimized HP-Au@CoxSy@ZIF-67 exhibits a low overpotential of 340 mV at 10 mA cm^(-2)and a Tafel slope of 42 mV dec-1 for OER in 0.1 M aqueous KOH,enabling efficient water splitting and Zn-air battery performance.The work here highlights the pivotal roles of both microstructural and electronic modulation in enhancing electrocatalytic activity and presents a feasible strategy for designing and optimizing advanced electrocatalysts. 展开更多
关键词 Au nanoparticles cobalt sulfide electronic modulation hierarchical porous structure oxygen evolution reaction
在线阅读 下载PDF
Hierarchical nitrogen-doped multichannel carbon nanofibers for efficient potassium–selenium batteries 被引量:1
15
作者 Jae Bong Lim Hyun Jin Kim +3 位作者 Jeong Ho Na Jin Koo Kim Seong-Yong Jeong Seung-Keun Park 《Rare Metals》 2025年第6期3839-3851,共13页
K–Se batteries have been identified as promising energy storage systems owing to their high energy density and cost-effectiveness.However,challenges such as substantial volume changes and low Se utilization require f... K–Se batteries have been identified as promising energy storage systems owing to their high energy density and cost-effectiveness.However,challenges such as substantial volume changes and low Se utilization require further investigation.In this study,novel N-doped multichannel carbon nanofibers(h-NMCNFs)with hierarchical porous structures were successfully synthesized as efficient cathode hosts for K–Se batteries through the carbonization of two electrospun immiscible polymer nanofibers and subsequent chemical activation.Mesopores originated from the decomposition of the polymer embedded in the carbon nanofibers,and micropores were introduced via KOH activation.During the activation step,hierarchical porous carbon nanofibers with enhanced pore volumes were formed because of the micropores in the carbon nanofibers.Owing to the mesopores that enabled easy access to the electrolyte and the high utilization of chain-like Se within the micropores,the Se-loaded hierarchical porous carbon nanofibers(60 wt%Se)exhibited a high discharge capacity and excellent rate performance.The discharge capacity of the nanofibers at the 1,000th cycle was 210.8 mA.h.g^(-1)at a current density of 0.5C.The capacity retention after the initial activation was 64%.In addition,a discharge capacity of 165 mA.h.g^(-1)was obtained at an extremely high current density of 3.0C. 展开更多
关键词 K-Se batteries ELECTROSPINNING Porous carbon structures hierarchical pore structures Chain-like Semolecules
原文传递
3D Printing of Hierarchical Gyroid Hydroxyapatite-Akermanite Scaffolds with Improved Compressive Strength
16
作者 HUA Shuaibin PENG Chang +4 位作者 CHENG Lijin WU Jiamin ZHANG Xiaoyan WANG Xiumei SHI Yusheng 《硅酸盐学报》 北大核心 2025年第9期2706-2717,共12页
Introduction It is necessary for an ideal bioceramic scaffold to have a suitable structure.The structure can affect the mechanical properties of the scaffold(i.e.,elastic modulus and compressive strength)and the biolo... Introduction It is necessary for an ideal bioceramic scaffold to have a suitable structure.The structure can affect the mechanical properties of the scaffold(i.e.,elastic modulus and compressive strength)and the biological properties of the scaffold(i.e.,degradability and cell growth rate).Lattice structure is a kind of periodic porous structure,which has some advantages of light weight and high strength,and is widely used in the preparation of bioceramic scaffolders.For the structure of the scaffold,high porosity and large pore size are important for bone growth,bone integration and promoting good mechanical interlocking between neighboring bones and the scaffold.However,scaffolds with a high porosity often lack mechanical strength.In addition,different parts of the bone have different structural requirements.In this paper,scaffolds with a non-uniform structure or a hierarchical structure were designed,with loose and porous exterior to facilitate cell adhesion,osteogenic differentiation and vascularization as well as relatively dense interior to provide sufficient mechanical support for bone repair.Methods In this work,composite ceramics scaffolds with 10%akermanite content were prepared by DLP technology.The scaffold had a high porosity outside to promote the growth of bone tissue,and a low porosity inside to withstand external forces.The compressive strength,fracture form,in-vitro degradation performance and bioactivity of graded bioceramic scaffolds were investigated.The models of scaffolds were imported into the DLP printer with a 405 nm light.The samples were printed with the intensity of 8 mJ/cm^(2)and a layer thickness of 50μm.Finally,the ceramic samples were sintered at 1100℃.The degradability of the hierarchical gyroid bioceramic scaffolds was evaluated through immersion in Tris-HCl solution and SBF solution at a ratio of 200 mL/g.The bioactivity of bioceramic was obtained via immersing them in SBF solution for two weeks.The concentrations of calcium,phosphate,silicon,and magnesium ions in the soaking solution were determined by an inductively coupled plasma optical emission spectrometer.Results and discussion In this work,a hierarchical Gyroid structure HA-AK10 scaffold(sintered at 1100℃)with a radial internal porosity of 50%and an external porosity of 70%is prepared,and the influence of structural form on the compressive strength and degradation performance of the scaffold is investigated.The biological activity of the bioceramics in vitro is also verified.The mechanical simulation results show that the stress distribution corresponds to the porosity distribution of the structure,and the low porosity is larger and the overall stress concentration phenomenon does not appear.After soaking in SBF solution,Si—OH is firstly formed on the surface of bioceramics,and then silicon gel layer is produced due to the presence of calcium and silicon ions.The silicon gel layer is dissociated into negatively charged groups under alkaline environment secondary adsorption of calcium ions and phosphate ions,forming amorphous calcium phosphate,and finally amorphous calcium phosphate crystals and adsorption of carbonate ions,forming carbonate hydroxyapatite.This indicates that the composite bioceramics have a good biological activity in-vitro and can provide a good environment for the growth of bone cells.A hierarchical Gyroid ceramic scaffold with a bone geometry is prepared via applying the hierarchical structure to the bone contour scaffold.The maximum load capacity of the hierarchical Gyroid ceramic scaffold is 8 times that of the uniform structure.Conclusions The hierarchical structure scaffold designed had good overall compressive performance,good degradation performance,and still maintained a good mechanical stability during degradation.In addition,in-vitro biological experimental results showed that the surface graded composite scaffold could have a good in-vitro biological activity and provide a good environment for bone cells.Compared to the heterosexual structure,the graded scaffold had greater mechanical properties. 展开更多
关键词 bioceramic scaffolds hierarchical gyroid structure compressive strength bioactivity digital light processing
原文传递
High-performance Nb alloy featuring a hierarchical carbides configuration for elevated-temperature applications
17
作者 Yafang Zhang Lairong Xiao +11 位作者 Zhenyang Cai Ruiyang Xiao Maokun Yin Xing Li Yiqian Fu Xiangchen Xiao Yuxiang Jiang Zhenwu Peng Sainan Liu Xiaojun Zhao Wei Li Miao Song 《Journal of Materials Science & Technology》 2025年第15期263-278,共16页
In aerospace,BBC-Nb alloys confront notable challenges in thermal stability and toughness under cyclic fatigue at varying temperatures.Insufficient thermal stability and expedited coalescence of precipitates substanti... In aerospace,BBC-Nb alloys confront notable challenges in thermal stability and toughness under cyclic fatigue at varying temperatures.Insufficient thermal stability and expedited coalescence of precipitates substantially accelerates the degradation of alloys at elevated temperatures.Here,a Nb alloy with impressive thermal stability and mechanical properties was designed using theoretical calculations and a two-step graded heat treatment process.The superlative properties of the Nb alloy are primarily associated with the NbC hierarchical structures,i.e.,stable nanoparticles in Nb-BCC grains and discontinuous microparticles at grain boundaries(GBs).The hierarchical carbides configuration avoids continuous precipitation of carbides at GBs and preferential coarsening within the grains.The process involves precipitating ZrC nanoparticles at 1350℃,then stabilizing NbC at 1800℃ by replacing Zr with Nb.Nb-FCC nanophases enveloping NbC prevent coarsening and have strong relationships with both NbC nanoparticles and matrix.The concept of fine-tuning NbC precipitation within grains and introducing NbC at GBs with a substitution method offers a strategy for high-strength,heat-resistant materials. 展开更多
关键词 TOUGHNESS Thermal stability Nb superalloy Carbides hierarchical structure
原文传递
MOFs-derived flower-like cobalt@carbon multiscale hierarchical composites with effective microwave absorption in the low frequency range
18
作者 Jiali Guan Hongmei Li +7 位作者 Jiannan Ren Wenhui Qiu Qi Li Zhufeng He Mingwei Zhu Wei Li Nan Jia Shaowei Lu 《International Journal of Minerals,Metallurgy and Materials》 2025年第4期954-963,共10页
The wave-absorbing materials are kinds of special electromagnetic functional materials and have been widely used in electromagnetic pollution control and military fields.In-situ integrated hierarchical structure const... The wave-absorbing materials are kinds of special electromagnetic functional materials and have been widely used in electromagnetic pollution control and military fields.In-situ integrated hierarchical structure construction is thought as a promising route to improve the microwave absorption performance of the materials.In the present work,layer-structured Co-metal-organic frameworks(Co-MOFs)precursors were grown in-situ on the surface of carbon fibers with the hydrothermal method.After annealed at 500℃ under Ar atmosphere,a novel multiscale hierarchical composite(Co@C/CF)was obtained with the support of carbon fibers,keeping the flower-like structure.Scanning electron microscope,transmission electron microscope,X-ray diffraction,Raman,and X-ray photoelectron spectroscopy were performed to analyze the microstructure and composition of the hierarchical structure,and the microwave absorption performance of the Co@C/CF composites were investigated.The results showed that the growth of the flower-like structure on the surface of carbon fiber was closely related to the metal-to-ligand ratio.The optimized Co@C/CF flower-like composites achieved the best reflection loss of−55.7 dB in the low frequency band of 6–8 GHz at the thickness of 2.8 mm,with the corresponding effective absorption bandwidth(EAB)of 2.1 GHz.The EAB of 3.24 GHz was achieved in the high frequency range of 12–16 GHz when the thickness was 1.5 mm.The excellent microwave absorption performance was ascribed to the introduction of magnetic components and the construction of the unique structure.The flower-like structure not only balanced the impedance of the fibers themselves,but also extended the propagation path of the microwave and then increased the multiple reflection losses.This work provides a convenient method for the design and development of wave-absorbing composites with in-situ integrated structure. 展开更多
关键词 carbon fiber metal-organic framework hierarchical structure flower-like composite microwave absorption
在线阅读 下载PDF
Cryogenic 3D printing of damage tolerant hierarchical porous ceramics
19
作者 Zheng Zhu Dandan Gao +9 位作者 Zhuo Huang Wei Chang Bin Wu Kaihao Zhang Minghan Sun Hengxu Song Robert O Ritchie Tao Wang Wei Huang Huamin Zhou 《International Journal of Extreme Manufacturing》 2025年第4期265-275,共11页
Fabricating damage tolerant porous ceramics with efficient energy absorption and impact-resistant capability has been a challenge because of the brittle nature of ceramic materials.In nature,mineralized tissues or org... Fabricating damage tolerant porous ceramics with efficient energy absorption and impact-resistant capability has been a challenge because of the brittle nature of ceramic materials.In nature,mineralized tissues or organisms such as cuttlebones and diatoms have evolved with hierarchical porous structures to overcome this difficulty.A bioinspired design of ceramic lattice structure with pores at multiple length scales,ranging from few nanometers to hundreds of micrometers,is proposed in the present work.These ceramic lattices with hierarchical porous structures were successfully fabricated via 3D cryogenic printing.Under quasi-static compressions,the printed ceramic lattices showed unprecedented long plateau strain(∼60%)and a specific energy absorption of∼10 kJ·kg^(−1) with a porosity of∼90%.The resulting energy absorption capability was comparable with most composites and metals,thus overcoming the brittle nature of traditional porous ceramics.This was attributed to the delayed destruction of the lattice structure,as well as the gradual collapse of pores at multiple length scales.Similar trends have also been observed under split Hopkinson pressure bar(SHPB)tests,indicating excellent energy absorption under high strain-rate impacts.The proposed 3D printing technique that produces hierarchical pores was also demonstrated to apply to other functional materials,such as silicon carbide,barium titanate,hydroxyapatite,and even titanium alloy,thus opening up new possibilities for fabricating bioinspired hierarchical porous structures. 展开更多
关键词 hierarchical structure bioinspired designs energy absorption damage tolerance 3D printing
在线阅读 下载PDF
Excellent dielectric response and microwave absorption in magnetic field-induced magnetic ordered structures
20
作者 Zheng Xiu Fei Pan +7 位作者 Kai Yao Haojie Jiang Xiao Wang Lixin Li Jingli Wang Xiaona Ma Yang Yang Wei Lu 《Journal of Materials Science & Technology》 2025年第5期241-251,共11页
Weak interactions prevent the magnetic particles from achieving excellent electromagnetic wave absorp-tion(EMA)at a low filler loading(FL).The construction of one-dimensional magnetic metal fibers(1D-MMFs)contributes ... Weak interactions prevent the magnetic particles from achieving excellent electromagnetic wave absorp-tion(EMA)at a low filler loading(FL).The construction of one-dimensional magnetic metal fibers(1D-MMFs)contributes to the formation of an electromagnetic(EM)coupling network,enhancing EM properties at a low FL.However,precisely controlling the length of 1D-MMFs to regulate permittivity at low FL poses a challenge.Herein,a novel magnetic field-assisted growth strategy was used to fabricate Co-based fibers with adjustable permittivity and aspect ratios.With a variety of FL changes,centimeter-level Co long fibers(Co-lf)consistently exhibited higher permittivity than Co particles and Co short fibers due to the enhancement of the effective EM coupling.The Co-lf exhibits excellent EMA performance(-54.85 dB,5.8 GHz)at 10 wt.%FL.Meanwhile,heterogeneous interfaces were introduced to increase the interfacial polarization through a fine phosphorylation design,resulting in elevated EMA performances(-51.50 dB,6.6 GHz)at 10 wt.%FL for Co_(2)P/Co long fibers.This study improves the orderliness of the particle arrangement by regulating the length of 1D-MMFs,which affects the behavior of electrons inside the fibers,providing a new perspective for improving the EMA properties of magnetic materials at a low FL. 展开更多
关键词 Cobalt micro-fiber Ordered structure hierarchical structure Electromagnetic wave absorption
原文传递
上一页 1 2 19 下一页 到第
使用帮助 返回顶部